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ABSTRACT In this article, we propose a data-driven approach to group users in a Non-Orthogonal
Multiple Access (NOMA) MIMO setting. Specifically, we formulate user clustering as a multi-label
classification problem and solve it by coupling a Classifier Chain (CC) with a Gradient Boosting Decision
Tree (GBDT), namely, the LightGBM algorithm. The performance of the proposed CC-LightGBM scheme
is assessed via numerical simulations. For benchmarking, we consider two classical adaptation learning
schemes: Multi-Label k-Nearest Neighbours (ML-KNN) and Multi-Label Twin Support Vector Machines
(ML-TSVM); as well as other naive approaches. Besides, we also compare the computational complexity of
the proposed scheme with those of the aforementioned benchmarks.

INDEX TERMS NOMA, multi-label classification, classifier chains, gradient-boosting decision trees, user
clustering.

I. INTRODUCTION
Non-orthogonal multiple access (NOMA) [1] has been inten-
sively investigated in the context of (beyond) 5G wireless
networks. NOMA makes it possible to serve more than one
user in each resource block (RB), e.g., a time slot, subcarrier,
spreading code, or space. Consequently, NOMA exhibits a
higher spectral efficiency than orthogonal multiple access
techniques. This is particularly relevant for scenarios with
a massive number of connections requiring sporadic/low
data-rate transmissions: allocating one entire RB to each con-
nection would be largely inefficient here. Besides, NOMA
architectures can be easily combined with multi-antenna
(MIMO) techniques.

One of the main challenges with NOMA is how to group
the users sharing the same RB efficiently. Most of the lit-
erature on NOMA has traditionally considered the case of
two users per resource block, because it appears complicated
to be able to successfully separate more than two code-
words under imperfect channel state information conditions.
In a multi-antenna setting, this translates into two users per
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degree of freedom, understood as RB per antenna. Equiv-
alently, for the MIMO scenario considered in this work,
we propose to group users into two subsets (clusters). To
decode users, we use a Linear Minimum Mean Square
Error (LMMSE) receiver in combination with Successive
Interference Cancellation (SIC) [2]. The challenge here is
that the number of clustering solutions (CS) grows expo-
nentially in the number of users. This precludes the use of
an exhaustive search to identify the optimal CS in terms
of sum-rate. We also want to depart from greedy/heuristic
approaches attempting to e.g., minimize inter-cluster inter-
ference [3] or maximize channel gain disparity [4] in order to
accomplish the task in a computationally-affordable manner.
Instead, we design a clustering strategy based on data-driven
methodologies (see e.g., [5], [6]) which generally offer a good
trade-off between performance and computational complex-
ity. Specifically, we model user grouping as a multi-label
(ML) classification problem where binary labels indicate the
cluster to which each user belongs. Admittedly, the so-called
label power-set method allows to transform a ML classifica-
tion problem into multi-class classification one by combining
entire label sets into a single atomic label. However, the num-
ber of such atomic labels increases exponentially in the
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number of original labels (the curse of dimensionality prob-
lem), which translates into unaffordable complexity. To avoid
that, a number of specific multi-label classification tech-
niques have been developed. Those techniques can be cate-
gorized [7] into (i) transformation-learning methods, which
decompose the multi-label problem into several single-label
ones (binary relevance method, BM), or transform it into a
label ranking problem (e.g., via calibrated label ranking); and
(ii) adaptation learning methods, which modify single-label
algorithms so that they can directly process multi-label data:
multi-label k Nearest Neighbours (ML-kNN), Decision Trees
(ML-DT), or Twin Support Vector Machines (ML-TSVM).
Even if BM is widely used in the literature, it disregards
pair-wise label correlations (e.g., the fact that two specific
labels frequently/ seldom co-occur). Neglecting such side
information has a negative impact on the performance of the
individual classifiers. To circumvent that, Classifier Chains
(CC) [8], [9] can be used to link the individual classifiers
along a probability chain.
Contribution: In this work, we model user clustering as a

multi-label classification problem. Notably, this application
area is radically different from that of text categorization
(in multiple simultaneous topics) where multi-label learn-
ing techniques originated [10]. Further, ML classification
allows to overcome the scalability problem found in our
previous user clustering work [11] which was based on the
power label set method. We solve the problem by coupling
a boosted decision tree (DT) for each single-label binary
classifier (i.e., BM approach within transformation learning)
with a classifier chain, to account for label correlation which
emerges from a pre-sorting of users. As for the boosting strat-
egy, we adopt a gradient-based (vs. bagging) approach [12],
which is able to enhance the limited generalization capa-
bility of the (low-complexity) DTs used as base learners.
To minimize the computational complexity of the resulting
Gradient Boosting Decision Tree (GBDT), we implement
it via Microsoft’s LightGBM algorithm [13]. The overall
approach will be referred to in the sequel as a Classifier
Chain-based LightGBM (CC-LightGBM). To the best of
authors’ knowledge, the combination of CC with LightGBM
is novel and, further, it has never been used to solve a user
clustering problem for MIMO NOMA. Besides, we assess
the performance of CC-LightGBM via numerical simula-
tions and use two classical adaptation learning algorithms
from the literature, ML-kNN [14] and ML-TSVM [15],
as benchmarks.

II. SIGNAL AND SYSTEM MODEL
Consider the uplink of a multi-user SIMO system where one
Base Station (BS) equipped with NBS antennas serves K
single-antenna users. The received signal at the BS reads1

y = Hs+ n, (1)

1Of course, the same signal model is valid in a multi-user MIMO setting
transmitting according to a purely spatial multiplexing technique, where K
would be the total number of transmit antennas.

whereH = [h1,h2, . . . ,hK ] ∈ CNBS×K is the channel matrix
with hk ∈ CNBS standing for the (column) channel vector
associated to the k th user; vector s ∈ CK accounts for the
transmit signal, with its elements fulfilling E

[
|sk |2

]
= 1; ∀k ,

that is, transmit power is identical for all nodes and no power
control mechanisms are in place. Finally, n ∈ CNBS denotes
zero-mean i.i.d. additive white Gaussian noise of variance σ 2,
namely, n ∼ CN (0, σ 2INBS ). Nodes operate at a central
frequency fc and are uniformly distributed in the served cell.
We also assume that full Channel State Information (CSI) is
available at the BS.We adopt a geometric channel model with
Lp scattering paths that is widely used in the literature (see
e.g., [16]). Hence, for each column in the channel matrix H
we have that

hk =
1
ρk

Lp∑
l=1

αk,la(θk,l), (2)

with ρk accounting for the path-loss and shadow-fading
associated to the k-th node. Consequently, we have that

ρk =

√
(1+ dηk )/10

βk
10 , where dk is the node-to-BS distance,

η denotes the path-loss exponent (typically, η ∈ [2, 6]); and
βk ∼ N (0, σ 2

β ) is the spatially-uncorrelated shadow-fading
coefficient, with σ 2

β typically ranging from 6 dB (free-space
propagation) to 10 dB (indoor environments) [17]. Further,
the coefficient αk,l of (2) is the complex gain of the l-th path,
withE

[
|αk,l |

2
]
= 1; and θk,l ∼ N (θ̄k , σ 2

θ ) denotes the angle-
of-arrival (AoA) of the l-th path of node k , with θ̄k associated
to the actual location of such node. Vector a(θk,l) ∈ CNBS×1

accounts for the antenna array response. For a uniform linear
array, it reads

a
(
θk,l

)
=

[
1, e−j

2π
λ
d sin(θk,l), . . . , e−j(NBS−1) 2πλ d sin(θk,l)

]T
,

where λ is the signal wavelength, and d is the distance
between antenna elements.

A. MULTIPLE-ACCESS AND DECODING STRATEGIES
Let K denote the set of K active users in the system. We par-
tition K into two disjoint subsets (clusters) K1 and K2 of
cardinalities K1 and K2, and such that K = K1 + K2.
The subset K1 is decoded first. After detection, the received
signal associated to those users is reconstructed and its con-
tribution removed from y (i.e., via Successive Interference
Cancellation, SIC [2]). After this interference cancellation
step, the nodes in the K2 subset are finally decoded. For
a Linear Minimum Mean Square Error (LMMSE) receiver,
the optimal beamformers w(1,2)

k ∈ CNBS associated to
an arbitrary node k in K1 or K2 read, respectively (see
Section 8.3.3 in [18]),

w(1)
k = (HHH

+ σ 2INBS )
−1hk , (3)

w(2)
k = (H(K1)H

H
(K1)
+ σ 2INBS )

−1hk , (4)

where matrix H(K1) contains all the columns of H except for
those corresponding to nodes from subset K1. Based on (3)
and (4), one can easily prove that the instantaneous SINR for
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an arbitrary node in the first/second subsets read, respectively
(see further [18]):

γ
(1)
k = hHn (H(k)HH

(k) + σ
2INBS )

−1hk , (5)

γ
(2)
k = hHn (H(K1∪{k})H

H
(K1∪{k})

+ σ 2INBS )
−1hk . (6)

Finally, the instantaneous sum-rate R can be expressed as

R =
∑
k∈K

log2(1+ l̄kγ
(1)
k + lkγ

(2)
k ), (7)

where lk ∈ {0, 1} is an indicator variable such that lk = 0 if
node k belongs to subsetK1, and 1 otherwise; and l̄k , 1− lk
denotes the opposite of lk .

B. PRE-SORTING OF USERS
Prior to detection, we assume that users are sorted in such
a way that the spatial correlation for consecutive users (i.e.,
users with successive indices after pre-sorting) is high. The
rationale behind is as follows: when the spatial correlation
is high, it becomes harder for the MIMO system to separate
those users. Hence, consecutive users are likely to be assigned
to different clusters (i.e., if lk = 0 then lk+1 = 1). This
strategy introduces additional constraints in the clustering
process that, as we discuss in Section V ahead, improve
the performance of the proposed data-driven approaches. For
single-scattering LOS scenarios (i.e., Lp = 1), this can
be readily accomplished by (i) estimating their respective
AoAs (e.g., by means of spectral estimation methods such
as minimum variance or MUSIC [19]); and (ii) sorting them
in ascending order of their AoAs. For the more general case
Lp > 1, one can first identify the two users out of the K
active users exhibiting the highest correlation by checking the
alignment of the vector channel responses (2) as in [6]; and
then subsequently include the user with the highest alignment
with the last one (that is, in a greedy manner).

III. FORMULATION AS A MULTI-LABEL CLASSIFICATION
PROBLEM
Our goal is thus to define a partition of the set K of K nodes
into two disjoint subsetsK1 andK2. such that the sum-rate of
a MIMO-NOMA system based on a LMMSE receiver with
SIC is maximized. In the sequel, we will refer to each of
those possible node partitions as a Clustering Solution (CS).
More formally, the optimization problem can be formulated
as follows:

max
{l1,... lK }

∑
k∈K

log2(1+ l̄kγ
(1)
k + lkγ

(2)
k )

s.t. lk ∈ {0, 1} for k = 1 . . .K (8)

The task of selecting the optimal CS can be modeled as a
supervised learning problem. Specifically it can be cast into
a multi-label binary classification task where:

• The input is a vector t =
[
t1, . . . , tNf

]T
∈ RNf×1 of

features formed by stacking the real and imaginary parts
of the entries in the channel matrixH, withNf = 2KNBS.

• The output is a K × 1 binary vector l = [l1, . . . , lK ]T of
labels where the k th element indicates the cluster the k th

user belongs to.

A. DESCRIPTION AND GENERATION OF THE TRAINING
DATASET
The training dataset comprises a total ofNtr examples stacked
in a training matrix T =

[
t1, . . . , tNtr

]
∈ RNf×Ntr as an

input, where the subscript denotes the example index. And,
as an output, a binary matrix L =

[
l1, . . . , lNtr

]
∈ NK×Ntr

which gathers the corresponding labels for each example. The
generation of the training dataset is given in Algorithm 1.

Algorithm 1 Generation of the Training dataset
1: Inputs: K , Ntr, η, σβ , σθ .
2: Generation of the channel matrices H in (1) for each of

theNtr realizations of the system scenario (node locations
and {dk}Kk=1, {θ̄k}

K
k=1, path-loss, shadow-fading).

3: Computation of the corresponding sum-rate as per (7) for
each of the NCS = 2K clustering solutions.

4: Let the label of each example be the set of K binary vari-
ables li, i = 1, . . . ,NCS associated to the CS yielding
the highest sum-rate, which is determined via exhaustive
search.

To avoid significant bias in the training, features are nor-
malized prior to their use by the learning scheme, namely,
tij ←

(
tij − Ei[tij]

)
/
(
maxi

[
tij
]
−mini

[
tij
])
, with Ei[·]

denoting the row-wise empirical average in matrix T.

B. ANALYSIS OF LABEL CORRELATIONS
Figure 1 below depicts the pair-wise Pearson correlation
coefficients between the labels of a training dataset gener-
ated according to the above procedure (for the computations,
the binary labels were mapped onto the {−1, 1} set). As dis-
cussed in Section II-B, users are pre-sorted in an increasing
order of their angles of arrival (Lp = 1 case). Off-diagonal
elements in Fig. 1 (left) confirm that, for the K = 6 scenario,
label correlation is quite high for consecutive users (the ones
which are spatially closer), as conjectured in Section II. The
fact that correlation takes negative values indicates that in
roughly 45% of the cases, consecutive users are assigned to
different clusters. On the contrary, label correlation decreases
rapidly for non-consecutive ones. In Fig. 1 (right), we observe
a stronger correlation for non-consecutive users since, in a
scenario with K = 9 users, they are spatially closer.
Such empirical observations substantiate the need for intro-

ducing specific mechanisms to exploit correlation in the
aforementioned single-label classification problems, as we
discuss next.

IV. CC-LightGBM: CLASSIFIER CHAINS WITH LIGHT
GRADIENT BOOSTING MACHINE
In this section, we provide an overview of the two algorithms
that will be combined to solve our multi-label classification
problem efficiently. On the one hand, a Classifier Chain (CC)
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FIGURE 1. Matrix with pair-wise label correlation coefficients for a
system with K = 6 (top) and K = 9 (bottom) users sorted according to
increasing angles-of-arrival (NBS = 4 antennas).

will be adopted to exploit label correlation. On the other,
Gradient Boosted Decision Trees (GBDT) and, more specif-
ically, the LightGBM algorithm will be used to build the K
single-label binary classifiers.

A. CLASSIFIER CHAINS (CC)
The Classifier Chain model (CC) involves K binary classi-
fiers {C1, . . . , CK } linked along a chain. Each classifier Ck is
responsible for learning and predicting the binary association
of label lk given the original feature space t described in
Section III (i.e., entries in the channel matrix), augmented by
all prior binary relevance predictions in the chain, namely,
l1, . . . , lk−1, for k ≤ 2. The augmented feature space xk can
thus be defined as

xk =

{
t, k = 1
[tT , l1, . . . , lk−1]T , k = 2, . . . ,K .

(9)

This augmented feature space will be used by each classifier
Ck in the chain in order to compute

p̂(xk ) = Pr(lk = 1|xk ), (10)

namely, the conditional probability of lk = 1 given xk . Using
this construction, label information is propagated among clas-
sifiers and, hence, their correlation is explicitly taken into

account. Even if, on average, K/2 inputs are added to each
individual classifier, in general this is a small number in com-
parison with the original number of features (Nf = 2KNBS).
It is important to note that the K single-label classification
problems are solved sequentially and, thus, the specific order-
ing of the chain may have a remarkable impact on perfor-
mance. Ensemble Chain Classifiers [8] allow to perform an
averaging over orderings and training data subsets. However,
for our scenario with pre-sorted users the baseline CC yields
excellent performance results (see Section V ahead), which
allows to avoid the additional computational complexity that
ensemble methods entail.

B. GRADIENT BOOSTING DECISION TREES (GBDT)
Here, we describe how to build each of the aforementioned
K single-label binary classifiers Ck . Decision trees (DT) are
known to be powerful tools for classification and regres-
sion tasks. The main advantages are their low complexity
once trained/constructed, and their understandability from a
human viewpoint (a sequence of split decisions). To construct
a DT, the root node is first divided (split) into two children
nodes as a function of a given feature in the augmented
feature space xk of (9) (e.g., xk,4 in Fig. 2, namely, the fourth
feature in xk ), and a splitting point (equal to 10, in this
example) to be identified, see next paragraph. The entire
training dataset, which is initially associated to the root node,
is split accordingly: all records with e.g., xk,4 < 10 go to
the left node, otherwise to the right node. The process is
iterated with the children nodes. If a node does not split
into further nodes, then it is called a leaf node (grayed
nodes in Fig. 2).

To grow a tree, the main tasks are thus: (i) to identify the
optimal feature to split a node; (ii) to determine the splitting
points, in particular for continuous features; and, in leaf-
wise (vs. level-wise) strategies, (iii) to decide which node
to split next. Tasks (i) and (ii) typically entail an exhaustive
search over features/splitting points for each node. As for
(iii), the goal when splitting a parent node is to increase
the homogeneity of the records in the children nodes and,
ultimately, in the leaves. This means that, in classification
problems, records in children nodes should belong to fewer
classes; and for regression ones, they should have simi-
lar output values. Typical homogeneity measures include
Gini gain (i.e., reduction of Gini Impurity Index) or the
Information Gain (namely, decrease of entropy) between the
parent and children nodes, for classification; or decrease
of variance/MSE-related measures, for regression (see e.g.,
[20]). Those measures help determine which node should
be split next, in general in a greedy manner (e.g, the node
resulting in the largest information gain). Node splitting stops
when the number of tree levels reaches a pre-defined maxi-
mum value, the number of records in a node is below some
threshold, or the records in a node are homogenous enough
(e.g., low impurity index). Leaf nodes, each accounting for a
disjoint region Rj of the feature space, determine the output
of the decision tree for any new example in the test dataset.
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FIGURE 2. Sample decision tree for binary classification with J = 3 leaf nodes each associated to a
disjoint region.

For classification, this is accomplished by taking the class
with the highest probability in that particular leaf/region (see
Fig. 2). For regression, on the contrary, the output asso-
ciated to each leaf is given by some average (e.g., mean,
median) of the output values of the examples in the training
dataset.

Boosting is a method of converting an ensemble of weak
(or base) learners such as DTs into a strong learner. Sub-
sequent trees help classify observations that are not well
classified by the previous ones. And the prediction of the
final ensemble model is the weighted sum of the predic-
tions made by the DTs. In boosting, each new tree is a fit
on a modified version of the original data set. In Gradient
Boosting Decision Trees (GBDT), this modified version fol-
lows from the gradient of the loss function for the ensemble
model.

To maximize binary classification accuracy, one needs to
minimize the cross-entropy loss (also referred to as log-
loss or deviance in the literature) for all the examples in the
training dataset, namely,

Lk =
Ntr∑
i=1

Lk
(
lk,i, p̂(xk,i)

)
= −

Ntr∑
i=1

lk,i · log
(
p̂(xk,i)

)
+ (1− lk,i) · log

(
1− p̂(xk,i)

)
(11)

with xk,i denoting the i-th example of the augmented feature
space defined in (9); lk,i accounting for the k-th label asso-
ciated to the i-th example, as defined in Section IV-A; and
p̂(xk,i) standing for the a posteriori probability in (10). For
brevity, in the sequel we will omit the user/classifier index k
in the loss function and its parameters. A common approach
(see Fig. 3) is to build an ensemble model and train it to
compute the log-likelihood ratio, namely,

F (x) = log
(
Pr (l = 1|x)
Pr (l = 0|x)

)
= log

(
p̂(x)

1− p̂(x)

)
, (12)

FIGURE 3. Gradient-boosting architecture for binary classification with M
base learners.

such that the corresponding label can, in turn, be estimated as
l̂ = u (F (x)), with u(·) standing for the Heaviside step func-
tion. A boosting strategy approximates F(x) by an additive
expansion of the form

F(x) =
M∑
m=0

βmhm(x), (13)

where βm denotes the m-th expansion coefficient; and func-
tion hm(x) = h(x; am) is the corresponding base learner,
with am denoting its parameter set (optimal splitting features,
splitting points, average output value for each leaf, etc; see
Section IV-B). Notice that, despite that the resulting GBDT
solves a classification problem, the base learners hm(x) turn
out to be regression trees with real-valued outputs whose
summation yields2F (x). The coefficients βm and the param-
eters am are jointly fit to the training data in a forward
stage-wisemanner, as we explain next. Starting from an initial
guess F0(x), for m = 1, . . . ,M we thus have

Fm(x) = Fm−1(x)+ βmhm(x), (14)

as Fig. 3 illustrates. For an arbitrary differentiable loss func-
tionL(l,F), this problem can be approximately solved with a
two-step procedure [12]. First, function hm(x) is fit to the cur-
rent pseudo-residuals given by the gradient of the preceding

2Classification trees, each providing a prediction of p̂ cannot be added up
to get a useful quantity.
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loss function Fm−1(x), namely,

rm,i = −
[
∂L(li,F(xi))
∂F(xi))

]
F(x)=Fm−1(x)

= li ·
e−Fm−1(xi)

1+ e−Fm−1(xi)
− (1− li)

eFm−1(xi)

1+ eFm−1(xi)
, (15)

with i denoting the training example index. And where,
in the second equality, we have used the change of variables
p̂(x) = 1

1+e−F(x)
resulting from equation (12). This step

is followed by a single parameter optimization for the step
size βm based on the general criterion L defined in (11).
With regression trees as base learners, as it follows from
Section IV-B, recursion (14) can be approximately (and effi-
ciently) computed region-wise [12] as

Fm(x) = Fm−1(x)+
J∑
j=1

νm,j1[x ∈ Rm,j], (16)

where 1[·] is the indicator function, Rm,j denotes the j-th
disjoint region of the m-the tree (base learner); and νm,j,
the output value associated to such disjoint region (leaf),
is given by

νm,j =

∑
xi∈Rm,j

rm,i∑
xi∈Rm,j

(li − rm,i)(li − rm,i − 1)
. (17)

As for the initial guess F0(x), we let it be

F0(x) = argmin
ν

Ntr∑
i=1

L(li, ν) = log
(

l̄

1− l̄

)
, (18)

where l̄ , 1
Ntr

∑Ntr
i=1 li can be interpreted as the a priori equiv-

alent to probability p̂(x) in (12) since, clearly, l̄ = Pr (l = 1).

C. LightGBM: A SCALABLE GBDT
One major difficulty with GBDTs is their limited scalability
when the feature dimension is high and/or the training dataset
is large. This stems from the fact that, for each feature,
the regression tree in each base learner needs to scan every
example of the dataset to estimate the information gain of
all possible split points. This, of course, is computationally
intensive. To alleviate this, LightGBM [13] introduces two
novel techniques, namely, (i) Gradient-based One-Side Sam-
pling, by which only examples in the dataset with larger
gradients (and just a fraction of those with smaller gradients)
are used for the information gain computations needed to
grow the tree; and (ii) Exclusive Feature Bundling, which
reduces the number of effective features by bundling together
those which rarely take non-zero values (i.e. are mutually
exclusive). Besides, LightGBM consumes very few mem-
ory resources compared to other baseline classifiers in the
literature [13].

V. COMPUTER SIMULATION RESULTS
In this section, we assess the performance of the pro-
posed CC-LightGBM scheme for a system scenario with

TABLE 1. Main Parameters Used in Computer Simulations.

one multi-antenna Base Station and K single-antenna ter-
minals/users (uplink). The main parameters used for com-
puter simulations can be found in Table 1. For LightGBM,
we used Microsoft’s implementation as a Python library
(https://lightgbm.readthedocs.io). Performance is measured
in terms of (i) Sum-Rate Loss (SRL), that is, the loss (in
percentage) with respect to the sum-rate achievable by the
optimal clustering solution which is found via exhaustive
search; and (ii) Hamming Loss (HL) for multi-label prob-
lems, which can be defined as [9, Eq. (5)]

HL ,
1

NtstK

Ntst∑
i=1

K∑
k=1

1

[
lk,i 6= l̂k,i

]
. (19)

The HL allows to evaluate, for each example in the test
dataset, the fraction of wrongly classified labels (users) to
the total number of labels3. Notice that the minimization
of the cross-entropy loss, the score function adopted in
Section IV-B for each individual classifier, along with the CC
framework results into the minimization of the HL.

A. PERFORMANCE OF CC-LightGBM
First, in Fig. 4 we analyze the performance of the
CC-LightGBM as a function of the number of the base
learners (M ) used. This is accomplished for a range of
learning rates4 λr ∈ {0.1, 0.05, 0.01}, while keeping other
hyperparameters to their default values. For an increasing
M , the residuals to which subsequent learners are fit become
smaller. Consequently, the resulting regression tree is able to
generate increasingly complex decision regions. As a result,
the HL (i.e., the percentage of misclassified users) depicted
in Fig. 4b decreases and, hence, so does the SRL in Fig. 4a.
Interestingly enough, the SRL values are lower than those of
the HL (e.g., for M = 105, HL equals 0.13 whereas SRL
is close to 1%). This is due to the fact that, even if one
user/few users have not been assigned to the right cluster5,
the sum-rate for the wrong clustering solution can still be
quite high. The reason is two-fold: (i) the LMMSE receiver
can accommodate one extra user in a cluster at the expense of
some SINR penalty; and (ii) we have assumed that users in
the first subset can always be reliably decoded irrespectively

3This different from the so-called 0/1 loss, where a prediction is deemed
to be correct if and only if all its label predictions are correct.

4After computing the optimal step size βm in (14), it is further
shrunk (multiplied) by a λr factor since, empirically, it was found that small
values (λr ≤ 0.1) lead to much smaller generalization error [12]

5Notice that for HL = 0.13 and K = 10, roughly one user per example is
misclassified, on average.
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FIGURE 4. Performance of CC-LightGBM in terms of: (a) Sum-rate loss;
(b) Hamming loss; and (c) CPU time on a 1.8 GHz Intel Core i5 CPU with a
16 GB 1.6 GHz DDR3 RAM; as a function of the number of base learners
M (K = 10 users, Ntr = 105).

of their SINR (i.e., no error propagation among subsets).
Further, Fig. 4a reveals that the SRL reaches a floor, which
depends on the size of the training dataset as we discuss in the
next paragraph, when the number of classifiers is in the range
of 104 to 105. However, from Fig. 4c, the CPU time rapidly
increases beyond M = 104. Consequently, for this setting it
is advisable to use a number of base learners in the range of
M ∈ [104, 105]. Finally, we observe that lower values of the
learning rate λr result in a slower decrease of both the HL and
the SRL.

Complementarily, Fig. 5 depicts the SRL and HL as a
function of the number of examples in the training datasetNtr.

FIGURE 5. Performance of CC-LightGBM in terms of: (a) Sum-rate loss;
and (b) Hamming loss as function of the training size Ntr (K = 10 users,
M = 105 base learners).

As expected, larger training datasets result in lower losses.
Specifically, the SRL decreases from 4.9% to roughly 1.1%
when the number of examples increases from 5 · 103 to
roughly 105. And, accordingly, the HL decreases from
0.21 to 0.135.

B. ALGORITHM BENCHMARKING
Next, we benchmark the proposed scheme with other
approaches specifically tailored to multi-label classification
problems, namely,
• Multi-label k Nearest Neighbours (ML-KNN) [14]:
As its single-label counterpart, ML-KNN first identifies
the k nearest neighboursNx in the training set for a given
(new) test example x. Then, it counts how many times
each label (user) can be found inNx. Finally, a decision
is made on a per-label basis. Specifically, ML-KNN lets
the l-th label in the test example be equal to 1 if its a
posteriori probability given the number of occurrences
of such label inNx is larger than that of being equal to 0
(i.e., Maximum A Posteriori principle).The a posteri-
ori probabilities can be estimated from the training set
(based on counting) and the Bayes rule.

• Multi-label Twin Support Vector Machine (ML-
TSVM) [15]: To capture the multi-label information
in the data, ML-TSVM builds a set of K proximal
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hyperplanes (i.e., as many as labels/users) such that each
hyperplane is as close as possible to the instances in the
training set with the l th label, and as far as possible from
the others. The multiple non-parallel hyperplanes can be
found by solving a set of quadratic programming prob-
lems. For simulations, we use a Gaussian (radial-based)
kernel function. The optimal hyperparameters, namely,
the variance of the Gaussian kernel ψ and the regular-
ization parameter c ∈ R+ were found via grid search in
the [2−6, 26] range.

We also consider three additional naive strategies as bench-
marks: (i) the so-called ‘1010 strategy’, a low-complexity
approach in line with our discussions in Section II-B which
assigns consecutive users to clusters in an alternating man-
ner (i.e., alternatively, to cluster 1 or 0); (ii) ‘random’
user clustering; and (iii) ‘CC-LightGBM wo/sort’, that is,
CC-LightGBM without user pre-sorting.

Figure 6 depicts the SRL as a function of the num-
ber of active users. The proposed CC-LightGBM scheme
clearly outperforms all the benchmarks and naive strate-
gies for the whole range of K values. Moreover, the gap is
wider when the number of users is high. For K = 12 in
particular, CC-LightGBM exhibits a SRL as low as 2%,
whereas the loss for ML-KNN with an optimal number
of neighbours is roughly 12% (one order of magnitude
higher) or 30.3% for ML-TSVM (15 times higher). Such
a large gain stems from (i) the gradient-boosting mecha-
nism embedded in CC-LightGBM, that enhances accuracy
in particular for large M ; and (ii) the fact that the classifier
chain explicitly models and leverages on inter-label (user)
correlation, whereas this is simply ignored by ML-kNN and
ML-TSVM. Moreover, the gain with respect to random user
clustering is tremendous. For K = 6 users, the sum-rate
degradation for random clustering is 20%; and for K = 12
users, it reaches 40%. The explanation for this behaviour
can be found in Fig. 7 below. Even if the cost function in
the optimization problem (8) is multi-modal in all cases,
the sum-rate difference betweenmaxima andminima is larger
for increasing K (and so is loss when performing a ran-
dom selection). All the above, of course, justifies the adop-
tion of data-driven approaches to solve the user clustering
problem.

Again in Fig. 6, the gap between the CC-LightGBM
curves with and without user pre-sorting evidences the
gain associated to the CC mechanism itself. Without pre-
sorting, labels/users are totally uncorrelated. Consequently,
the estimates from previously classified users provide no
side information to be exploited by the CC. Specifically, for
CC-LightGBMwo/sort and K = 12 users, its SRL is roughly
9%, this meaning that the 7% extra gain should be attributed
to the CC mechanism.

Finally, the behaviour exhibited by the lazy ‘0101’ strat-
egy deserves some explanations. For a reduced number
of users, its performance is comparable to that of the
ML-TSVM or ML-kNN approaches. For large K , on the
contrary, the 0101 strategy performs as poorly as random

FIGURE 6. Sum-rate loss performance of the various approaches for a
varying number of users.

clustering. Figure 7 provides some insights into such
behaviour. Whereas for K = 6 users the 0101..01 clustering
solution or its symmetric solution (see vertical dashed lines in
the plots) often provide the global maximum of the sum-rate
various realizations, this is no longer the case for K = 12
users. Hence, in this case, there is no point in getting ‘locked’
to a given solution. This extent is further confirmed in
the histogram of Fig. 8 where the peaks associated to the
0101..01 and 1010..10 clustering solutions for K = 6 (top)
do not exist for K = 12 (bottom).

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In Table 2, we report on the computational complexities
(for both the training and test phases) of the CC-LightGBM
scheme and those of the various benchmarks. For ML-kNN
in particular, the corresponding training and test complexities
can be found in [7], with k denoting the number of nearest
neighbours (a hyper-parameter) andNf = 2KNBS accounting
for the number of features in the input vector (see definition
in Section III).

TABLE 2. Computational Complexities of CC-LightGBM and Several
Benchmarks.

As for MLTSVM, in the training phase it needs to solve
K sub-quadratic programming problems (one for each label)
by using the successive over-relaxation (SOR) solver. The
complexity of the SOR solver is on the order of Ntr per
iteration. If S denotes the number of iterations of SOR, then
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FIGURE 7. Sum-rate associated to each clustering solution for several
examples/realizations (colors) and varying number of users: K = 6 (top),
K = 9 (middle) and K = 12 (bottom).

the complexity of solving the k-th subproblem is O(SNtr).
Therefore, the total training complexity of MLTSVM reads
O(KSNtr). The test complexity reduces to computing the
distance of each Nf-dimensional instance to each constructed
hyperplane. Therefore, the test complexity of MLTSVM is
O(KNfNtst).
Next, let ftrain and ftest denote the training and test complex-

ities of LightGBM, respectively. According to [7], Classifier
Chains have a computational complexity of O(K · ftrain) for
training and O(K · ftest) for testing. In those expressions,
B � (Nf + K ) stands for the number of bundles used by
the Exclusive Feature Bundling mechanism of LightGBM
that, as discussed in Section IV-B, is in charge of re-grouping
mutually exclusive features of the (Nf + K )-dimensional
augmented feature space. Next, we need to determine the
complexities of LightGBM in the training and test stages.
Let L denote the number of leaf nodes, then the depth of
the tree is on the order of log2(L) levels. In the training
phase, all the Ntr examples need to be assigned to one of

FIGURE 8. Histogram of optimal clustering solutions for a varying number
of users: K = 6 (top), K = 9 (middle) and K = 12 (bottom).

the leaves and, to that aim, the optimal splitting variables
(out of the B bundles) and splitting points must be found via
exhaustive search. Hence, the complexity of constructing one
tree is O(NtrB log2(L)). Considering M trees, we have that
ftrain = O(NtrBM log2(L)) and, hence, the training complex-
ity of CC-LightGBM yields O(KBM log2(L)Ntr). In the test
phase, one just needs to determine the target leaf node for
each example in the dataset. This, on average, entails log2(L)
comparisons against the optimal splitting variables and points
identified in the training phase. Consequently, the test com-
plexity ismuch lower. Specifically, we have that for a scenario
with M weak learners, the computational complexity reads
O(KM log2(L)Ntst). As for the two naïve approaches (random
and ‘0101’ strategy), they only have a test complexity and it
can be easily shown to beO(Ntst). Finally, since the complex-
ity of pre-sorting the users is negligible compared to training
and test complexities, CC-LightGBM and CC-LightGBM
without sorting have the same complexity.

We start by comparing the corresponding training com-
plexities. To that aim, it should be noticed from [21] that the
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number of SOR iterations needed in MLTSVM is typically
on the order of Ntr. Consequently, the training complexity of
MLTSVM can be approximated byO(KN 2

tr). This means that,
unlike the ML-kNN and MLTSVM approaches, the training
complexity of CC-LightGBM grows linearly in (not with
the square of) the size of the training dataset. Note also
that, even if in Fig. 6 the number of trees was relatively
high (M = 104), it could be substantially reduced with a
moderate performance penalty. Specifically, for M = 100
(and K = 10, λr = 0.1) the SRL in Fig. 4 is still below 4%.
In other words, for M = 100 CC-LightGBM would still
outperform the other two approaches. As for the test com-
plexity, ML-KNN exhibits the lowest one, followed by
MLTSVM and CC-LightGBM. The complexity of MLTSVM
vs. CC-LightGBM will ultimately depend on the specific
values of Nf and M log2(L) (see expressions in Table 2).
Nonetheless, for the parameter set we used in Section V-B
(i.e., Nf = 80 for K = 10, NBS = 4; and M = 104),
the CPU time that CC-LightGBM takes is substantially lower
than that of MLTSVM. This is mostly attributed to the fact
that the basic operation performed by the decision trees
of CC-LightGBM (comparison against splitting thresholds)
is less computationally intensive than the computation of
distances to hyperplanes which are required by MLTSVM.
Last, the complexities exhibited by the naïve approaches are,
unsurprisingly, the lowest ones. On the one hand, no training
is involved. On the other, the prediction cost per test example
is negligible and the overall cost scales linearly in the size of
the test dataset.

VI. CONCLUSION
In this article, we have formulated user clustering in a
MIMO NOMA setting as a multi-label classification prob-
lem. To solve it, we have adopted a transformation learning
(data-driven) approach to avoid the exponential complexity
of exhaustive search methods. Specifically, we have used
a Gradient-Boosting Decision Tree (LightGBM) for each
single-label classifier coupled with a Classifier Chain (CC) to
account for label correlation stemming from user pre-sorting.
Computer simulation results reveal that, for a number of base
learners in the 104 − 105 range, the sum-rate and Hamming
losses of LightGBM can be minimized while avoiding a rapid
increase of CPU time. The proposed CC-LightGBM scheme
clearly outperforms all the benchmarks and naive strategies
for the whole range of the number of active users. ForK = 12
users in particular, its sum-rate loss is one order of magni-
tude/15 times lower than that of the ML-kNN/ML-TSVM
algorithms, respectively. Moreover, the gain with respect to
random user clustering (and the lazy ‘1010’ strategy for
large K ) is tremendous. With respect to the case without user
pre-sorting, the CC mechanism achieves a 7% extra gain.
From the computational complexity analysis, we learnt that
the training complexity of CC-LightGBM grows linearly in
the size of the training dataset. As for the test phase, its
complexity is potentially higher than that of ML-KNN and
MLTSVM, yet this ultimately depend on the parameter set.

However, the actual CPU time is also affected by the fact that
the basic operation in CC-LightGBM is less computationally
intensive than those of the benchamrks.
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