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ABSTRACT Multi-user free-space optical communication (FSOC) is beginning to draw a significant
attention for its ability to support increased system network capacity while using single receiving photodiode
and satisfying size, weight, and power (SWaP) constraints imposed by space- and aerial-based mobile
communication. Despite these advantages, support of multi-user capabilities cause increased system com-
plexity due to accommodating heterogenous users communications with varying transmission and data rate
requirements. Machine learning (ML) has recently been considered as a promising approach for introducing
cognition into the network to mitigate some of the complexity. A cognitive method based on unsupervised
ML was derived for estimating the number of users communicating and sharing time and bandwidth
resources with a single-node receiver. A weighted clustering approach was introduced and experimentally
validated when users received with similar amplitude information that results in underestimation. Obtained
results confirmed that the proposed methodology was able to accurately differentiate the number of simulta-
neously transmitting users with accuracy greater than 92%— even in the presence of moderate atmospheric
turbulence. An experimental analysis was conducted to determine data size and receiver sampling rate
requirements for accurate estimation. Furthermore, an empirical model was derived to evaluate the effect
of preamble signal length given a particular sampling rate on the accuracy of the estimation. The model was
validated for up-to four users.

INDEX TERMS Clustering, Cognitive Optical Wireless Communication (OWC), free space optical commu-
nication (FSOC), machine learning (ML), multi-user, Number of Users’ Estimation, sample size, sampling
rate.

I. INTRODUCTION
Free-space optics (FSO) technology is poised to alleviate
the scarcity of radio frequency (RF) spectrum and data
rate limitations inherent in RF systems [1]. FSO offers a
high-bandwidth and naturally supports Gb/s data rates. This
technology encodes information on visible and invisible
light, and then transmits light beams into the atmosphere
to establish license-free, directional, secure, and electro-
magnetic interference-immune networking [2], [3]. Recently
available FSO solutions successfully demonstrated the feasi-
bility of free-space optical communication (FSOC) to meet
the increasing demand for wireless capacity of space- and
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air-based networks. Project Loon—developed by Google
X—established a network of high-altitude balloons traveling
in the stratosphere to address internet connectivity scarcity for
a significant portion of the world’s unserved population [4].
FSOC was adopted for inter-balloon crosslink communica-
tion. This same technology is also gaining significant atten-
tion for space applications. NASA space communications
and navigation (SCaN) recently developed and tested optical
communication technology using lasers with their lunar laser
communications demonstration (LLCD), utilizing a lunar
orbit spacecraft terminal and three ground terminals with up
to 622 Mbps transmission rate in uplink [5]. One downside
of current FSOC systems is the need for strict pointing,
acquisition and tracking (PAT) systems, which require bulky
mechanical gimbals for maintaining link availability and
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guaranteeing wide or omni-directional coverage [6]. PAT
systems are known to violate mobile communication net-
work size, weight and power (SWaP) requirements [7], [6].
To further advance optical wireless networking capabili-
ties without affecting such restrictive SWaP specifications,
omni-directional and multi-user communication should be
provided [8]. Multi-user FSOC will fulfil the increase
bandwidth, high-capacity and -density demands of future
communication networks and will represent a leap from
the current single user limitation. Accordingly, extensive
research has been directed at investigating technologies
and methods that enable high-capacity, multi-point FSOC
systems. Efforts have primarily focused on developing an
FSO omnidirectional transceiver [9]–[12] and on investigat-
ing signal processing and optical multiple access (O-MAC)
techniques to supportmulti-user communication. Researchers
in [13]–[16] introduced and experimentally demonstrated
the effectiveness of two O-MAC techniques—and combina-
tions thereof—in a multi-user FSOC link: 1) non-orthogonal
multiple access (NOMA) and 2) independent component
analysis (ICA), which is an unsupervised signal processing
method. Results showed successful signal decoding when
employing two and three independent laser sources that are
sharing time and bandwidth resources at the transmitting side
and a fiber bundle at the receiver side. Notably, all tested
O-MAC techniques assumed that the number of transmitting
users is known at the receiver side. This phenomenon does
not necessarily hold true, however, in real and dynamic
communication scenarios. As such, knowledge of number
of concurrent transmissions shall be beneficial to adaptively
select the proper O-MAC technique for signal separation and
decoding. Consequently, it is highly desirable to utilize an
intelligent and flexible omni-directional and multi-user FSO
system providing a) autonomous and real-time number of
communicating users detection; b) dynamic and autonomous
O-MAC techniques selection; c) real-time dynamic adjust-
ment of transmitting/receiving parameters; d) agile, on-
demand diverse service requirement fulfillments; and e)
autonomous transmitter/receiver add and drop [13]. Such
functionalities will likely cause future multi-user FSO net-
works increased system complexity and heterogeneity with
regard to communicating devices, varied transmission tech-
nologies, and diverse quality of service (QoS) requirements
from each user [17].

Introducing self-configuration, self-optimization, and
automated decision-making capabilities for supporting het-
erogeneous users and services presents a significant chal-
lenge for future optical wireless networks [17]–[20]. In this
paper, we propose a methodology to embed intelligence at
the physical layer (PHY) of a multi-point FSOC system.
Our solution utilizes unsupervisedmachine learning (ML) for
detecting the number of transmitting users necessary to per-
form real-time, dynamic, and autonomous O-MAC technique
selection. Clustering analysis (e.g., K-mean, K-medoid, hier-
archical, and fuzzy algorithms) was employed to estimate
the number of concurrently transmitting users simultaneously

sharing bandwidth, time, and space resources by exploiting
their amplitude information. Furthermore, a weighted anal-
ysis was proposed wherein users with identical amplitude
information were received and number of transmitters was
underestimated [21].

A crucial issue in ML algorithms is determining the
amount of data needed to achieve a specific required per-
formance (i.e., sample complexity [22]) [23]–[26]. In fact,
data sets that require lengthy processing time or excessive
memory represent a significant limiting factor for real-time
applications, even though improved accurate performance is
guaranteed. Required storage for many clustering algorithms
is more than linear. For example, hierarchical clustering
memory requires O(m2), where m is the number of data
objects. Large dataset scalability for clustering algorithms has
been investigated, and several solutions have been proposed
in literature [20], [27]. Sample size and sampling rate effects
were experimentally studied to determine user count estima-
tion accuracy. Once the minimum number of samples—given
receiver sampling rate to guarantee accurate user estimation
was identified, an empirical model was derived. Using a
fitting power-law model, the empirical equation aimed to
forecast the number of detectable transmitting users when
provided with the number of processed samples and the
receiver sampling rate.

The novelty of the presented study is the development
of a blind technique (namely user discovery algorithm) to
identify number of simultaneous transmissions sharing allo-
cation resources (time and frequency). The work detailed in
this paper contributes to the field of optical wireless com-
munication (OWC) in three primary ways. It 1) establishes
an analytical model for user discovery to allow accurate
implementation of NOMA protocol for future multi-user
FSOC networks; 2) establishes a ML-based methodology for
enhancing cognitive capabilities at the PHY layer—beyond
existing designs into cognitive fiber-based networks—for
future OWC systems; and 3) details extensive experimen-
tal testing, analysis, and validation conducted for diverse
communication scenarios by clearly identifying system per-
formance and limitations for real-time system design and
implementation.

The balance of this paper is organized as follows. The
next section presents related work on ML applications for
introducing cognition and intelligence into optical networks.
Section 3 describes the experimental setup used for the model
derivation, and Section 4 introduces the mathematical formu-
lation of the proposed methodology, along with the data pre-
processing steps and model validation. This is accomplished
through experimental analysis, including several communi-
cation scenarios. Section 5 presents the sample complexity
analysis and the derived empirical model. Section 6 describes
experimental validation of the sample complexity analysis
presented in Section 5, albeit with an increased number of
users. Section 7 details system limitations; and Section 8 con-
cludes the paper and provides suggestions for future
work.

207576 VOLUME 8, 2020



F. Aveta et al.: Cognitive Multi-Point FSOC: Real-Time Users Discovery Using Unsupervised ML

II. RELATED WORK
ML is a methodology that has been widely employed to
introduce intelligence in the network, making it pos-
sible for systems to independently perform cognitive
tasks. Researchers are currently focusing on embedding
intelligence in the PHY- and network-layer domains
in point-to-point, fiber-based optical communication net-
works [17]–[19]. Applications of ML at the PHY domain
primarily include quality of transmission (QoT) estimation,
modulation format recognition (MFR), and optical perfor-
mance monitoring (OPM), to name just a few.

Optical communication system OPM has become crucial
for ensuring robust and reliable system performance. This
task consists of estimating physical parameters (e.g., bit-
error rate [BER], optical signal-to-noise ratio [OSNR], polar-
ization mode dispersion [PMD], chromatic dispersion [CD],
Q-factor, and others) without prior knowledge from incoming
optical signals for undertaking actions like adjusting trans-
mitted power, re-routing traffic, and changing modulation
format. Researchers in [28], [29] proposed using an artifi-
cial neural network (ANN) for simultaneous monitoring of
OSNR, CD, and PMD. In [28], investigators trained the ANN
using an asynchronous amplitude histogram. Simulation
results for both 40 Gb/s return-to-zero differential quadrature
phase-shift keying (RZ-DQPSK) and 40 Gb/s 16 quadrature
amplitude modulation (16-QAM) systems demonstrated high
monitoring accuracies. In [29], an ANNwas trained using the
first five empirical moments of the asynchronously sampled
signal amplitude. Also, the first five empirical moments of
the amplitude signal traversing through an offset fiber branch
were added in the training phase to discriminate the sign of
accumulated CD. Simulations in 40/56 Gb/s RZ-DQPSK and
40 Gb/s RZ-DPSK systems proved good simultaneous and
independent in-band OSNR, signed CD, and PMD monitor-
ing accuracy.

Researchers experimentally demonstrated the use of a
deep neural network (DNN) for OSNR monitoring in [25],
and the use of a convolutional neural network (CNN) for
OSNR estimation and modulation format/symbol rate clas-
sification in [30]. Both experiments used asynchronously
sampled raw data collected by a coherent receiver. NN input
consisted of 512 samples x four channels corresponding to
the horizontal (H) and vertical (V) polarization of the in-
phase (I) and quadrature-phase (Q) components of the optical
field (i.e., HI, HQ, VI and VQ). In [25], a five-layer DNN
trained with 400,000 samples proved to successfully esti-
mate OSNR in a 16 GBd dual-polarization quadrature phase-
shift keying (DP-QPSK) with a measured averaged error
of 1.6 dB. The CNN in [30] proved to successfully estimate
OSNR in 14- and 16-GBd DP-QPSK, 16-QAM, and 64-
QAM systems with mean square error (MSE) less than 0.3 dB
for all the tested modulation formats. Classification accu-
racy >95% was achieved for modulation format/symbol rate
classification.

MFR aims to estimate themodulation format at the receiver
side—without prior information from the transmitters—for

improving signal demodulation accuracy and signal
processing. Notably, some digital signal processing (DSP)
algorithms used in a coherent receiver (e.g., adaptive equal-
ization, carrier phase recovery and symbol detection) are
modulation-format dependent. In [31], researchers experi-
mentally demonstrated MFR in a 312.5 MBd QPSK, 8 phase
shift keying (PSK), and 16-QAM system over 40 km single
mode fiber (SMF) using a clustering technique. K -means
algorithm was adopted to estimate number of clusters in the
2-dimensional I and Q constellation diagram. BER results
proved successful demodulation for all tested modulation
formats. Researchers in [32] implemented a simultaneous
MFR and OSNR estimation using a CNN and eye-diagram as
the processing objective. Eye-diagrams were simulated for a
wide range of OSNR (e.g., 10 to 25 dB) and for four modula-
tion formats, namely RZ-on off keying (OOK), non-return-
to-zero NRZ-OOK, RZ-DPSK, and four-pulse amplitude
modulation (4-PAM). 100% MFR accuracy was achieved
with training data from 800 eye-diagrams, and 100% OSNR
estimation was obtained after 31 epochs. Researchers in
[33] used neural network (NN)-based nonlinear regression
and a support vector machine (SVM) classifier to experi-
mentally demonstrate independent in-band OSNR estimation
and MFR. OSNR values ranged from 4 to 30 dB in four
modulation formats, namely QPSK, 8-QAM, 16-QAM, and
64-QAM, which were experimentally tested. Eight features
were extracted from the power eye-diagram (i.e., related to
the mean values and variances at two points in the eye-
diagram) of the directly-detected optical signals. One feature
was used for NN training, and all features were employed for
SVM. Results showed that the NN provided accurate OSNR
estimation with mean estimation error of 0.7 dB; the classifier
obtained an average classification accuracy of 94%.

QoT estimation in an optical connection consists of pre-
dicting some PHY parameters of a candidate light path as
OSNR, BER, Q-factor, or another that might affect signal
detection at the receiver side. Thus, these parameters repre-
sent a metric that should be measured, given that a required
QoT is satisfied. In [26], a QoT estimation technique that con-
sidered both linear and nonlinear impairments was proposed.
Synthetic BER data were calculated with varying total link
length, span length values, channel input powers, data rate,
and modulation formats. Three ML-based classifiers, namely
Random Forest (RF), SVM, and K-Nearest Neighbor (KNN),
were used to predict if light path BER will exceed a thresh-
old. Results proved that SVM outperformed RF and KNN;
99.15% classification accuracy was achieved. Researchers
in [23] proposed and experimentally validated an ANN-based
transfer learningmethod for predicting theQ-factor in various
optical transmission systems without re-training the all-ANN
model.

ANN was trained in a four-span, large effective area fiber
(LEAF) 100 Gb/s QPSK testbed, and then used to predict
Q-factor in three optical systems: 1) four-span LEAF
200 Gb/s 16-QAM; 2) two-span LEAF 200 Gb/s 16-QAM;
and 3) three-span dispersion-shifted fiber (DSF) 100 Gb/s
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FIGURE 1. Depiction of the experimental setup.

FIGURE 2. Fiber bundle receiver: (a) front view; (b) top view.

QPSK. Only 20 training samples were added for each of the
three tested optical systems and only weights of some hidden
layers in ANN were tuned. A Q-factor prediction accuracy
of 0.42 dB, 0.37 dB, and 0.67 dB was achieved, respectively,
for the four-span LEAF 16-QAM, two-span LEAF 16-QAM,
and three-span DSF QPSK systems.

III. EXPERIMENTAL SETUP
The experimental setup used in this work is composed
of three independent optical transmitters and a dual-path
fiber bundle receiver (See Fig. 1). In the block diagram,
the black lines connecting the blocks represent electrical
links; the gray lines represent optical fiber connections; and
the dashed lines represent free space optical links. Opti-
cal sources consisted of three electrical-to-optical converters
with fiber-coupled laser diodes operating at three optical
transmission wavelengths (e.g., 1550 nm, 1310 nm, and
850 nm). Although the transmitters employed three different
wavelengths, no wavelength division multiplexing (WDM)
was implemented (see photodiode specs—employed photo-
diode receives all three wavelengths as one) in this study.
(The wavelength of each transmitter will be used through-
out this manuscript as a label/identifier of the transmit-
ter.) An intensity modulation (i.e., NRZ-OOK) with direct
detection (IM/DD) scheme was employed for transmission.
Laser sources were directly modulated by three independent,
pseudo-random bit sequences (PRBS) that were 231−1 bits in

length. Data rate was experimentally proven up to 250 Mbps
(See validation section VI). The 1550 nm optical output was
connected to a doped fiber optical amplifier, and the 1310 nm
to a semiconductor optical amplifier. No amplifier was imple-
mented for the 850 nm source. Output power for each source
was coupled with an optical telescope for collimating the
propagating beams to the receiver. The dual-path fiber bundle
receiver was composed of a hexagonal array of 19 small
lenses—3 mm focal length— that couple the signal in an
array of 19 multi-mode fibers—core diameter 400 µm and
numerical aperture of 0.37 [11] (See Fig. 2). The fiber bundle
was implemented to greatly enhance the receiver’s field-of-
view, while allowing the researchers to control signal path.
The fibers split into two separate paths, with 10 fibers in one
path, and 9 in the other. Fibers transmitted the signals to an
array of graded index lenses, which collimated optical signals
in two aspheric lenses—focal length of 20 mm and diameter
of 25.4 mm. Array outputs were focused toward the collect-
ing area of two photodetectors, namely Thorlabs PDA10CF
(PD1: 800-1700 nm, 150 MHz BW) and PDA015C (PD2:
800-1700 nm, 380MHzBW). Although three different wave-
lengths were implemented, the two photodiodes receive them
as one signal, given no wavelength-based filtering employed.
A 10◦ wedge prism was placed in front of the receiving lens
array to vary the angle between the optical signals received
by photodiode one and two. Fiber bundle design guaran-
teed a 10 ◦ wide field of view (FoV), making the receiver
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FIGURE 3. Three users different power: (a) Received mixed signal; (b) Derivative of received mixed signal; (c) 1-D histogram HL
[
yLF

]
; (d) Peak

detection of HL
[
yLF

]
.

FIGURE 4. Three users same power: (a) Received mixed signal; (b) Derivative of received mixed signal; (c) 1-D histogram HL
[
yLF

]
; (d) Peak detection

of HL
[
yLF

]
.

suitable for multi-user communication analysis. Transmitter
beam diameters were adjusted such that a) optical power
of 1550 nm and 1310 nm laser sources coupled efficiently into
photodetectors PD1 and PD2 and b) optical power of 850 nm
laser source coupled efficiently into only photodetector PD2.
Wavelength selective filters or wavelength demultiplexers
were not implemented at the receiving side. Our experimen-
tation validates the proposed method to accurately identify
transmitting users sharing a receiver. A National Instruments
virtual bench oscilloscope with sampling rate of 1 GSample/s
was used to record data collected from the two photodetectors
and the transmitted PRBS. Data analysis was performed after
data collection using MATLAB software and the available
statistical and MLMATLAB toolbox software equipped with
a 2.60-GHz Intel Core i7 processor.

IV. USERS DISCOVERY ALGORITHM
A NRZ-OOK modulation was adopted as the scheme for this
study. OOK is a binary level modulation format widely used
in FSOC due to its simplicity and high-power efficiency [3].
When employing OOK with one user, two possible optical
outputs are expected: 1) PT (transmitted power) when ‘‘1’’
is transmitted and 2) αePT (αe = optical source extinction
ratio 0 ≤ αe ≤ 1) when ‘‘0’’ is transmitted [34]. When
N independent users simultaneously transmit, there will be
k = 2N possible optical power outputs. Hence, k power levels
will be detected at the receiver side. Conversely, if k power
measurements are detected, it is possible to retrieve the num-
ber of transmitting users as N = log2 k . Thus, we propose
using unsupervised learning (i.e., clustering techniques) to
extract power levels from the receivedmixed signals, and then

calculate the number of broadcasting users. The steps carried
out in our proposed methodology are shown in Fig. 3 and 4.
Data pre-processing was required to compute the number
of expected clusters (K ) as input to clustering algorithms.
Four clustering methods (e.g., K -mean, K -medoid, hierar-
chical, and fuzzy) were subsequently evaluated. Moreover,
a weighted clustering was developed to correct for user
underestimation when received amplitudes a) were of equal
power and b) equality N = log2 k was no longer valid.
Although cases with one, two, and three transmitting users
were analyzed, only three-user case scenario results will be
shown hereafter.

A. PRE-PROCESSING
Pre-processing steps for three users received with varying
power (See Fig. 3) and with the same power (See Fig. 4)
are shown. A third-order median filter was applied on the
received mixed signals to remove impulsive noise resulting
from electrical devices or communication transmission [35].
Fig. 3(a) demonstrates an example of de-noised, received
mixed signals for three users with different power levels and
Fig. 4(a) with the same levels. Because we were interested
in detecting power levels (i.e., constant power values) of
transmitting users, low frequency components of the received
signal (i.e., amplitude values changing slowly or slightly in
the time domain) were considered. Numerical differentiation
of the de-noised received mixed signal y[n] was performed,
and the high- and low-frequency components of the data were
extracted, as described in Eq. (1). Standard deviation of the
first derivative of the received signal was set as a threshold.
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FIGURE 5. Three users different power: (a) K -means clustering results; (b) clusters centroids and histogram peaks; (c) cluster weights ρi ;
(d) overlapping parameter λi .

FIGURE 6. Three users two same power: (a) K-means clustering results; (b) clusters centroids and histogram peaks; (c) cluster weights ρi ;
(d) overlapping parameter λi .

FIGURE 7. Three users same power: (a) K-means clustering results; (b) clusters centroids and histogram peaks; (c) cluster weights ρi ;
(d) overlapping parameter λi .

See magenta dotted lines in Fig. 3(b) and Fig. 4(b).

y [n] =

 yLF [n] if
dy [n]
dn

< std
(
dy [n]
dn

)
yHF [n] if otherwise

(1)

Low frequency components of the signal yLF [n] (i.e.,
received samples y [n] whose derivative fell within its stan-
dard deviation) were considered for the pre-processing analy-
sis. To extract power levels, the occurrence of the signal’s low
frequency components were measured, and the empirical 1-D
histogram HL

[
yLF

]
was computed, as illustrated in Fig. 3(c)

and 4(c). Since we were interested in peak detection, local
maxima of the HL[yLF] (i.e. more frequent power values [or
levels]) were calculated following Eq. (2). See Fig. 3(d) and
Fig. 4(d).

argmax
yLF

HL[yLF ] = pm (2)

pm is the peak position with integer mε[1, number of
detected peaks]; number of peaks in the histogram was

expected to be m = k = 2N . Thus, number of detected
peaks was provided as input for the clustering algorithms as
number of expected clusters. In the first case, m = 8 was
obtained validatingm = k = 8 = 23 (See Fig.3[d]); whereas,
in the second case, m = 4 was obtained obtaining the
inequality m 6= k = 23. (See Fig.4[d]). As such, calculation
of the local maxima of HL[yLF] does not suffice for correctly
estimating number of concurrently transmitting users, given
that a power control scheme was not implemented at the
transmitting side. As such, a weighted clustering analysis was
introduced to overcome user number underestimation.

B. WEIGHTED CLUSTERING
K -mean, K -medoid, hierarchical, and fuzzy clustering algo-
rithms were applied on the low frequency components of
the received mixed signal yLF [n]. All methods were able to
cluster data samples, as illustrated in Figures 5 through 7.
However, given that a power allocation scheme was not
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employed, and more than one user was transmitting with the
same power, the results would have been an overlapping of
the received signals in the power domain. This would lead to
inequality m 6= k = 2N . In fact, when two users transmit
with the same power PT , they will be clustered together,
which leads to an underestimation of user number, as shown
in Fig. 6 and Fig. 7. Thus, to evaluate if each cluster has more
than one signal overlapped, each will be assigned weight ρi,
defined as:

ρi =
Li
L
, 1 ≤ i ≤ K (3)

where L is the total number of samples of the processed data;
Li is the number of samples belonging to cluster i; and K is
the total number of obtained clusters. Thus, weights ρi satisfy
the following conditions.

K∑
i=1

ρi = 1 and 0 < ρi ≤ 1 (4)

As previously mentioned, given N transmitting users,
k = 2N possible outputs power are expected. Assuming that
the probability of transmitting a ‘‘1’’ or a ‘‘0’’ is equally
likely for all users, the probability of each possible out-
put El with 1 ≤ l ≤ k is equal to P (El) = 1

k =
1
2N .

Thus, the expected weight ρ̂i for each cluster, given no
overlap in the power domain such that k = K , is
expressed as:

ρ̂i = P (El) =
1
2N

1 ≤ i ≤ K and 1 ≤ l ≤ k (5)

If the probability that users transmitting ‘‘0’’ will always
be P (E1) = 1

2N , regardless of their transmitting power,
we can define the reference weight ρ̂1 as the minimumweight
obtained from Eq. 3:

ρ̂1 ≈ P (E1) = min {ρi}Ki=1 (6)

To identify the number of signals hidden in each cluster,
we introduce an overlapping parameter λi, defined as the
nearest integer of the ratio between theweights of each cluster
ρi and the reference weight ρ̂1:

λi =

[
ρi

ρ̂1

]
, 1 ≤ i ≤ K (7)

Hence, parameter λi should satisfy the following
conditions:

K∑
i=1

λi = k = 2N and 1 ≤ λi ≤ 2N (8)

C. RESULTS
Validation of the proposed methodology was performed on
one-user, two-user, and three-user scenarios. Users with both
the same and different power values were tested. For the
sake of conciseness, only the following three-user scenarios
are illustrated: 1) three users with different power; 2) three
users with same power; and 3) three users two of which have

same power. Notably, results from only K -means clustering
algorithm are reported below, since all clustering algorithms
performed similarly.

1) THREE USERS DIFFERENT POWER
Transmitted power was tuned to assure three users arrived at
the fiber-bundle receiver with different power levels. Fig. 3(d)
shows that the number of detected peaks in the 1-D histogram
function ism = 8. Hence, ‘‘8’’ is used as input for the cluster-
ing algorithms as the number of maximum expected clusters.
Results of the clustering techniques are shown in Fig. 5. More
specifically, Fig. 5(a) shows the obtained clusters forK -mean
on the received mixed signal y [n] that was shown in Fig. 3(a).
All algorithms produced similar results, namely the ability to
identify the same clusters. Fig. 5(b) shows obtained clusters
centroids (See red markers in Fig. 5[a]) and the histogram
peaks values versus the number of clusters. Results illustrate
that the clustering centroids and the histogram peaks values
match with only a very small error. However, before defining
the number of users, each cluster was assigned a weight ρi
with 1 ≤ i ≤ 8 for evaluating if signals are hidden. Clus-
ter weights versus the identified clusters obtained for each
algorithm are illustrated in the Fig. 5(c) bar graph. Blue bars
show results from fuzzy clustering; orange show hierarchical;
yellow represent K -medoids; and purple represent K -mean
clustering. All bars have comparable cluster heights; accord-
ingly, similar weights ranging from 0.1 to 0.15 were obtained.
Moreover, by observing produced weights for each cluster,
we were able to conclude that all algorithms performed in
a similar way. Reference weight ρ̂i was set as expressed
in Eq. 6, and the obtained overlapping parameter λi where
1 ≤ i ≤ 8 were calculated; results are shown in Fig. 5(d).
The illustration shows that each cluster has an overlapping
parameter λi = 1, indicating there are no hidden signals in the
clusters and that all transmitting users have different powers.
Thus, given Eq. 8, we obtained

∑8
i=1 λi =

∑8
i=1 1 = 8.

Knowing that 8 = 2N and that λi = 1 for 1 ≤ i ≤ 8,
we can conclude that the number of received users is equal
to N = log2 8 = 3.

2) THREE USERS WITH SAME POWER
We tuned the transmission power of the laser sources such
that at the receiver side two users were received with same
power values and the third user with a different power
value. Peak detection of the 1D empirical histogram function
HL

[
yLF

]
was performed, and the number of detected peaks in

the histogram ism = 6. This parameter was provided as input
to the clustering algorithms as the number of expected clus-
ters. Results of the clustering techniques are shown in Fig. 6.
More specifically, Fig. 6(a) shows the obtained six clusters
for K -mean algorithm. Results in Fig. 6(b) illustrate that all
clustering algorithms had comparable results and that the
cluster centroids matched with peak values obtained from the
histogram. Two clusters have a greater number of samples.
Accordingly, an overlapping of more than one signal is highly
likely. Cluster 2 (See blackmarkers) and cluster 5 (See yellow
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markers) have a higher number of samples when compared
with other clusters. Eq. 6 suggests that clusters 2 and 5 should
outweigh other clusters. Weight analysis was performed and
obtained weights for each cluster are shown in Fig. 6(c).
Blue bars indicate results from fuzzy clustering; orange for
hierarchical; yellow for K -medoids; and purple for K -mean
clustering.

All clusters had similar weights, ranging from 0.1 to
0.15, except for clusters 2 and 5, which had greater weights
(∼0.25). The overlapping parameter λi, where 1 ≤ i ≤ 6,
was computed. See Fig. 6(d). Results indicate that λ2 = 2
and λ5 = 2, while λi = 1, meaning that two signals present
in clusters 2 and 5 are hidden. Thus, from Eq. 8,

∑6
i=1 λi =

1+2+1+1+2+1 = 8. Knowing that 8 = 2N , λ2 = 2, and
λ5 = 2, we can conclude that the number of broadcasting
users is equal to N = log2 8 = 3 and that two users are
transmitting with the same power.

3) THREE USERS WITH SAME POWER
Finally, given a case where all received users had the same
received power, clustering algorithms were able to identify
four expected clusters from the peak detection analysis shown
in Fig. 4(d); results for K -means are illustrated in Fig. 7(a).
Fig. 7(b) shows that all cluster centroidsmatch extremelywell
with peak location values obtained in the histogram. Given
cluster weights illustrated in Fig. 7(c), it is observed that
cluster 2 (See black markers) and cluster 3 (See red markers)
outweigh the other two clusters with weights ranging from
0.35 to 0.4. The calculated overlapping parameter λi where
1 ≤ i ≤ 4 is shown in Fig. 7(d). Notably, λ2 = 3 and
λ3 = 3, while λ1 = 1 and λ4 = 1, meaning that three signals
are present within clusters 2 and 3. From Eq. 8, we obtained∑4

i=1 λi = 1+ 3+ 3+ 1 = 8. Hence, knowing that 8 = 2N ,
λ2 = 3, and λ3 = 3, we concluded that the number of users
was equal to N = log2 8 = 3 and that three users were
received with the same strengths.

4) DISCUSSION
The significance of the developed methodology, although it
is simple, is its effectiveness to estimate transmitting users
regardless of their transmission times; hence no synchroniza-
tion or prior knowledge of transmission times are required.
The algorithm can be implemented at the PHY-layer to con-
tinuously monitor power levels and their associated weights
to determine the number of users as transmissions get added
or dropped asynchronously.

Accuracy analysis was conducted on 45 tested cases to
evaluate overall performance of the proposed methodology.
Accuracy was defined as the number of cases in which
the number of transmitting users was correctly estimated
over the total number of studied cases. Results are shown
in Table 1. The 45 cases were separated in the following
way: 20 for two-user scenarios and 25 for three-user scenar-
ios. High accuracy—greater than 92%—was achieved for all
cases.

TABLE 1. Accuracy analysis.

FIGURE 8. Turbulence analysis: (a) two users; (b) three users two same
power.

D. TURBULENCE EFFECTS
FSOC can be significantly degraded due to its optical beam
atmospheric turbulence sensitivity. Inhomogeneities in atmo-
spheric temperature and pressure lead to random changes in
the refractive index, which then cause random variations in
the amplitude and phase of optical wave propagating in the
turbulent medium. The result is a degraded optical signal [3].
Fluctuation of the received signal intensity (i.e., scintilla-
tions [36]) affects FSOC system performance quality and
heavily reduces communication performance. The proposed
amplitude-based method was evaluated under atmospheric
turbulence scenarios. Description of the atmospheric turbu-
lence generation and analysis are detailed in [8]. Received
mixed signal under moderate atmospheric turbulence was
analyzed. Moderate atmospheric turbulence is characterized
by 58.61 ◦C temperature; 14.21 m/s wind speed; and 80.56%
humidity, which resulted in a scintillation index σ 2

i equal to
0.1330 (m2) and refractive index structure constant param-
eter C2

n equal to 6.19 · 10−12 (m−2/3). Fig. 8 illustrates
the peak detection for (a) two users and (b) three users—
two of which have the same power for turbulent (See red
line) and non-turbulent (See blue line) scenarios. Note that
turbulence effect on the empirical distribution of the received
mixed signal causes received signal amplitude attenuation
and a broadening of obtained peaks. Broadening is clearly
visible by comparing peak spacing distances and reduced
peak occurrence value of the turbulence compared to non-
turbulence. Broadening is primarily due to increasing inten-
sity fluctuations (i.e., temperature and wind); attenuation is
mainly caused by the humidity generator (i.e., fog). Weighted
clustering analysis was computed, and overlapping parameter
λi = 1 with 1 ≤ i ≤ 4 was calculated for Fig. 8(a) and
λ1 = λ2 = λ5 = λ6 = 1 and λ3 = λ4 = 2 were computed
for Fig. 8(b). Results shown in Fig. 8(a) and Fig. 8(b) confirm
two and three communicating users, respectively.

V. SAMPLE COMPLEXITY ANALYSIS
Given cluster weight ρi definition in Eq. 3, the number of
processed samples represents a fundamental parameter for
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FIGURE 9. Under-sampling factor M: (a) two users peak detection; (b) three users peak detection; (c) peaks detection analysis two users; (d) peaks
detection analysis three users.

FIGURE 10. Number of samples Ns: (a) two users peak detection; (b) three users peak detection; (c) peaks detection analysis two users; (d) peaks
detection analysis three users.

achieving accurate estimation in the proposed methodology.
Furthermore, accurate peak detection in the preprocessing
analysis (See Eq. 2) is a crucial step for clustering initial-
ization. Optimal threshold selection is pivotal. Experimental
analysis for identifying required sample size and receiver
sampling rate was conducted to obtain accurate estimation
of number of users. The objective was to identify the mini-
mum sample number of the received signals (i.e., preamble
signal length) collected and processed with a given receiver
sampling rate for accurately detecting histogram peaks of
HL[yLF] in the pre-processing analysis. Two approaches were
experimentally tested—separately and combined: 1) varying
sample size Ns (Ns = L of Eq. 3) of received signal and
2) varying-sampling reduction factor M for measuring m
power levels detected at the receiver side in the pre-
processing step. These are illustrated in Fig. 3(d) and
Fig. 4(d). To perform peak detection (i.e., local maxima of
the HL[yLF]), three thresholds were evaluated. Threshold
is defined as the level of occurrences in the 1D histogram
HL

[
yLF

]
after a crossed peak is detected. Three evaluated

thresholds—50, 100, and adaptive (i.e., median value of
HL

[
yLF

]
occurrence) were chosen. Afterward, a comparison

between detected m and expected peaks k was computed,
where number of expected peaks was k = 22 = 4 for
two users and k = 23 = 8 for three users. Analysis was
conducted for one, two, and three users. Results for two- and
three-user scenarios are discussed and illustrated in the next
sections.

A. SAMPLING RATE ANALYSIS
The first analysis decreased the sampling rate of the time
series-received mixed signal shown in Fig. 3(a) by a factor
M . Data were collected, and sampling rate reduction was
performed as a pre-processing step.M = 1, 2, 3 were tested.
Figures 9(a) and 9(b) show the local maxima of the empir-
ical 1-D histogram HL [yLF ] for M = 1, 2, and 3 for two
and three users, respectively. When comparing results shown
in Figures 10(a) and 10(b), one can see that reducing under-
sampling factor M causes the histogram shape to change
and the location of detected peaks to shift in a uniform
way. This phenomenon is true because samples belonging to
each peak are sampled with equal probability. Consequently,
peak locations are not shifting much. To define the number
of detected peaks, three different thresholds—50, 100, and
adaptive—were evaluated. The adaptive threshold is illus-
trated in Figures 9(a) and 9(b) for each histogram computed
at each M value (See dotted horizontal lines in Fig. 9).
Ten acquisitions were collected and detected peak mean val-
ues and standard deviations were computed. Fig. 9(c) and
Fig. 9(d) illustrate the number of detected peaks obtained
with the three thresholds and number of expected peaks (See
magenta dotted line) versus the sampling reduction factor M
for two and three users. Given that M increases, the fixed
thresholds underestimated the number of peaks, while the
adaptive threshold correctly detected the number of peaks for
all tested M values. To identify the number of samples that
nullify the error between detected m and correct k number of
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FIGURE 11. Absolute error versus (a) M; (b) Ns.

peaks, the absolute error was defined as Err = |k − m̄| for
the adaptive threshold. Computed absolute error is illustrated
in Fig. 11(a), which shows that zero error was subsequently
obtained for all M values in both two-(See blue line) and
three-(See magenta line) user scenarios.

B. NUMBER OF SAMPLES ANALYSIS
The second analysis varied number of samples Ns of the
time series received mixed signal for three users, as shown
in Fig. 3(a). Starting sample size Ns = 3208 and 4010 sam-
ples were used for two- and three-users, respectively. Sample
size was consecutively reduced by steps of 500 samples,
and the local maxima of empirical 1D histogram HL[yLF ]
were computed, as shown in Figures 10(a) and (b). Simi-
lar to the previous case, the histogram shape and the peak
locations change; however, this phenomenon occurs in a less
uniform way when compared to the previous analysis. Ten
acquisitions were collected and processed for each scenario.
Mean value and standard deviations of detected peaks were
computed. Fig. 10(c) illustrates the number of detected peaks
and expected peaks obtained with three thresholds versus
sample number Ns for two users, and Fig. 10(d) shows with
three users. Results demonstrate that the adaptive threshold
(See blue line) converges faster to the correct number of
peaks (Seemagenta dotted line) than the fixed thresholds. The
fixed threshold of 100 (See light blue line) converges to the
correct number of peaks slowly, whereas the fixed threshold
of 50 (See red line) first converges, and then over-estimates
number of peaks. The latter is primarily due to the fact that it
might detect small peaks caused by noise. Absolute error was
computed, and results show that it is equal to zero, given that
the number of analyzed samples is equal to or greater than
Ns = 1208 for two users (See blue line) and Ns = 2510 for
three users (See magenta line), as shown in Fig. 11(b).

C. COMBINED ANALYSIS
Finally, a combined analysis of number of samples Ns
with various sampling rate reduction M was conducted.
Figures 12(a) and 12(b) show the number of detected peaks
using all three thresholds versus the number of samples for
different factors M for two and three users, respectively.
As previously shown in Section V.B, adaptive thresholds (See
blue lines) converge faster than fixed thresholds to the correct
number of peaks for all tested M . Fixed threshold 50 (See
red line) converges slowly to the correct number of peaks,

FIGURE 12. Ns and M analysis: (a) two users; (b) three users.

and then overestimates them, while fixed threshold 100 (See
light blue line) converges slower than other thresholds for all
tested sampling reduction factorsM . The same behavior was
observed for a given threshold and with varying M values.
Sample numbers above which zero error were obtained was
considered the minimum number of samples for each sam-
pling rate to obtain an accurate estimation of number of peaks
for a three-user scenario (See Fig. 13). As such, those values
were employed for the final analysis.

D. RESULTS
This analysis aimed to derive an empirical equation for pre-
dicting the number of required samples, given the receiver
sampling rate, for correctly estimating the number of
concurrently transmitting users. Nonlinear regression analy-
sis was adopted as the methodology for deriving the function:
Nusers = f (Ns,M) that best fit data points retrieved and
reported in Section V.C. Fig. 14 demonstrates the number
of detectable users versus the number of samples required
for correct detection when M = 1, 2, and 3 (See red,
blue, and black lines, respectively). Both experimental data
and obtained fitting curves are illustrated therein. Best fit
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FIGURE 13. Absolute error for three users.

FIGURE 14. Fitting.

TABLE 2. Fitting performance.

was obtained for each curve using the following power law:
y = a∗xb+c, where y is the number of users; x is the number
of samples; and a, b, c are coefficients. Hence, each curve can
be mathematically expressed, as follows.

Nusers (Ns,M = i) = ai ∗ N bi
s + ci (9)

where i = 1, 2, 3. Table 2 shows calculated R-square values
for evaluating fitting performance. R-square indicates the
correlation between response values and predicted response
values and also measures the extent of how successful the fit
is in explaining data variation. R2 = 1 was obtained for all
cases, meaning that accurate fitting was performed.

Each fitting curve resulted in different parametersai, bi, ci
for i = 1, 2, 3, indicating each is a function of the sampling
reduction factor M and, consequently, of receiver sampling

FIGURE 15. Fitting of a, b, c.

rate (See Eq. 9). Therefore, curve fitting was applied on
ai, bi, ci to derive the functions a = f (M), b = f (M), and
c = f (M) .Thus, vectors are defined as a = [a1 a2 a3],
b = [b1 b2 b3] , and c = [c1 c2 c3]. Fitting was performed
on these coefficients vectors, as shown in Fig. 15. Power law
equation was employed for fitting so that each coefficient
could be expressed, as follows.

a(M ) = a′ ∗Mb′
+ c′ (10a)

b(M ) = a′′ ∗Mb′′
+ c′′ (10b)

c(M ) = a′′′ ∗Mb′′′
+ c′′′ (10c)

R2 = 1 was obtained for all cases, meaning that accurate
fitting was performed for all coefficients. Fig. 15 also shows
data points and obtained fitting curves for a, b and c vectors.
To obtain a final model for prediction, Eq. 9, 10.a, 10.b,
and 10.c were combined into the single Eq. 11, which—
when provided with receiver sampling rate and number of
received and processed samples—indicates how to predict the
number of successfully detectable users using the proposed
methodology:

Nusers (Ns,M) = a ∗ N b
s + c

=

(
a′ ∗Mb′

+ c′
)
∗ N

(
a
′′
∗Mb

′′

+c
′′

)
s

+ a
′′′

∗Mb
′′′

+ c
′′

(11)

Fig. 16 shows the trend of the predicted Nusers for
M = 1, 2, 3 and for a range of sample numbers [10:10000],
as described in Eq. 11. Since number of users is a discrete
parameter, quantization was performed on the predictedNuser
values. Obtained results will aid in designing preamble signal
length at the head of the packets. For example, if the FSO
receiving system is designed to support four simultaneous
users with a receiver sampling rate of 1 Gsample/s and
required sample size of 5000 samples, then packet length
will be designed with a preamble length of 5 µs. Moreover,
obtained results will be exploited to assist with the design of
the electrical and optical receiver system in terms of memory
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FIGURE 16. Final fitting equation.

requirement and implementation of a cognitive receiver with
adaptive sampling rate. The aim is conserving computational
complexity and reducing power consumption, which further
reduces SWaP system specifications.

VI. MODEL VALIDATION
To validate the derived empirical model, we employed four
users independently and concurrently transmitting into a sin-
gle receiver (i.e., photodetector) with under sampling factor
M = 1, 2, 3. The applicability of the proposed method in
higher data rate communication is presented in this section.
100 Mbps data rate was set for user1; and 150 Mbps for
user2; 200 Mbps for user3; and 250 Mbps for user4. All
steps detailed in sections IV.A and V.C were applied on the
time-series received mixed signals and the minimum number
of samples Ns, which guaranteed accurate peak detection in
the obtained empirical 1-D histogram HL

[
yLF

]
for each M

were identified. The empirical cumulative distribution func-
tion (CDF) was calculated to demonstrate validation results.
CDF is the probability that the number of samples required
to correctly estimate number of communicating users takes
a value less than or equal to a given Ns. Ten acquisitions
were considered in the CDF calculation for each M value;
results are illustrated in Fig. 17. The blue, orange, and yellow
lines represent the empirical CDFs obtained forM = 1, 2, 3,
respectively. Each point in the CDF represents the minimum
number of samples Ns required to correctly identify m =
k = 24 = 16 peaks in the HL

[
yLF

]
. The blue, orange,

and yellow dashed vertical lines represent the upper bound
N ∗s for estimating four users, as predicted by Eq. 11 whose
trend is illustrated in Fig. 16. The upper bound N ∗s is defined
as N ∗s =

{
Ns < N ∗s : m = k

}
, where m is the number of

detected peaks and k number of expected peaks, as explained
in section V.A. Given that all obtained CDF curves are
on the left side of the corresponding dashed lines (e.g.,
Ns < N ∗s ), all tested cases could correctly detect four
users requiring the number of samples Ns of the time-
series received mixed signals within the predicted region
(i.e., Ns < N ∗s = 6200, 3800, 3100 for four users scenario

FIGURE 17. Validation results.

FIGURE 18. Received mixed signals with different dynamic ranges.

FIGURE 19. (a) 2 users 4-QAM; (b) 1 user 16-QAM.

and forM = 1, 2, 3, respectively). Experimental results con-
firm the goodness-of-fit for the derived empirical equation.

VII. SYSTEM LIMITATIONS
The presented methodology is a power-based technique that
uses the amplitude of the received mixed signal to calculate
number of simultaneously communicating users. Notably,
two factors could affect the proposed method’s accuracy and
limit system performance.
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1) Dynamic range of the received mixed signal.
Fig. 18 shows the histogram HL

[
yLF

]
of received

mixed signals for two transmitting users with diverse
SNRs: SNR1 = 26 dB and SNR2 = 20 dB (See
blue histogram); and SNR1 = 16 dB and SNR2 =
10 dB (See green histogram). Dynamic range of the
blue histogram (i.e., ∼7 mV) is wider than the green
histogram (i.e., ∼2 mV). The blue histogram HL

[
yLF

]
can easily accommodate additional users within the
dynamic range (i.e., additional peaks within the his-
togram). Resulting peaks will be clearly separated and
easily detected (i.e., there is enough space between
two peaks∼2 mV). The green histogram HL

[
yLF

]
can

accommodate fewer users within its dynamic range
because additional users will result in an increasing
number of merging peaks. The resulting peaks will be
difficult to distinguish from one another (i.e., space
between two peaks is ∼0.5 mV). The higher the
dynamic range, the higher the number of users that
can be accommodated and detected by the proposed
methodology.

2) Multi-level modulation format. The developed tech-
nique has been validated on experimental data using a
binary modulation format (i.e., OOK). Given the needs
of upcoming optical networks for increased bandwidth
and data-rate, multi-level and coherent modulation for-
mats (i.e., QAM) with high-bandwidth efficiency have
been under consideration [3]. Extension of the pro-
posed methodology to accommodate multiple mod-
ulation formats could consist of applying the tech-
nique separately on the real and imaginary part of the
received mixed signal. However, the diverse number
of users and m-QAM modulation format can result
in constellation diagrams with equal symbol distribu-
tions. The result is an identical, empirical 1D histogram
HL [yLF ] created from the real and imaginary parts of
the received complex signal amplitude. For example,
Fig. 19 illustrates the constellation diagram obtained
with computer simulations for (a) two users employing
4-QAM and (b) one user with 16-QAM modulation.
Given that the modulation format is known at the
receiver side, the number of users could be retrieved as
N = logm (pc), where m is the modulation order and
pc is the number of peaks in the constellation diagram.
In other words, pc = kR ∗ kI , where kR is the number
of detected peaks in HL [Re{yLF }] of the real part of
the complex received signal and kI is the number of
detected peaks in HL [Im{yLF }] of the imaginary part.
It is important to note that if the modulation format is
not known, the proposed methodology fails to correctly
estimate the number of users.

VIII. CONCLUSION
Cognitive FSOC networks offer a significant solution for
tackling increased system complexity due to heterogeneity
of supported services, applications, devices, and transmission

technologies while also guaranteeing high-data rate and
bandwidth. In this paper, we proposed a novel methodology
for introducing intelligence at the PHY of FSOC networks to
estimate number of concurrently transmitting users sharing
time, bandwidth, and space resources. The proposed tech-
nique leverages unsupervised ML on the amplitude informa-
tion of the receivedmixed signals. Four clustering techniques,
namely K -mean, hierarchical, K -medoid and fuzzy cluster-
ing, were experimentally validated in a setup composed of
a fiber-bundle receiver, in which one, two, and three inde-
pendent transmitting users were tested. Moreover, a weighted
clustering analysis was proposed to correct for underestima-
tion when users with the same power values are received.
Experimental results proved that the proposed technique can
successfully estimate the number of transmitting users, even
under moderate atmospheric turbulence.
Large data set scalability has become a challenging issue

for clustering algorithms. Existing clustering algorithms
require scalable solutions to manage large datasets in order
to avoid high computational complexity. A further investi-
gation aimed to identify minimum data size and a receiver
sampling rate for successfully estimating the number of users
leveraging the proposed methodology. Effect of sample size
and receiver sampling rate on the estimation accuracy were
experimentally tested and evaluated. Finally, an empirical
equation for successfully predicting the number of detectable
users, given the number of samples and receiver sampling
rate, was derived and validated with data collected from four
communicating users.
Future work will aim at investigating and implementing

new cognitive capabilities for OWC applications, as follows.
1) Implementation of the presented methodology to pro-
cess non-synchronous transmissions (new signal arrival and
departure); 2) Method modification to overcome limitations
described in section VI; 3) Investigation of a supervised-
ML analysis to estimate QoT parameters (e.g., SNR, SINR,
BER, etc.).
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