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ABSTRACT Utility grids are undergoing several upgrades. Distributed generators that are supplied by
intermittent renewable energy sources (RES) are being connected to the grids. As RES get cheaper,
more customers are opting for peer-to-peer energy interchanges through the smart metering infrastructure.
Consequently, power management in grid-tied RES-based microgrids has become a challenging task. This
paper reviews the applications of reinforcement learning (RL) algorithms in managing power in grid-tide
microgrids. Unlike other optimization methods such as numerical and soft computing techniques, RL does
not require an accurate model of the optimization environment in order to arrive at an optimal solution.
In this paper, various challenges associated with the control of power in grid-tied microgrids are described.
The application of RL techniques in addressing those challenges is reviewed critically. This review identifies
the need to improve and scale multi-agent RL methods to enable seamless distributed power dispatch among
interconnected microgrids. Finally, the paper gives directions for future research, e.g., the hybridization
of intrinsic and extrinsic reward schemes, the use of transfer learning to improve the learning outcomes
of RL in complex power systems environments and the deployment of priority-based experience replay in
post-disaster microgrid power flow control.

INDEX TERMS Electric vehicle charging station, energymanagement, Markov decision process, microgrid,
reinforcement learning.

I. INTRODUCTION
The power grids are experiencing a massive transition due
to several technological advances. For instance, the world is
gearing toward the use of electric vehicles (EVs) for trans-
portation due to the economic, technical and environmental
advantages associated with them [1]. However, the current
global electricity generation mix is still predominated by fos-
sil fuels. This negates the environmental benefits of electric
mobility [2]. The use of renewable energy sources (RES)
to charge EVs would significantly reduce greenhouse gas
emissions [3]–[5]. Nevertheless, RES are intermittent and
non-dispatchable. They may not be sufficient on their own
to meet the power demands of fast charging. The deploy-
ment of grid-tied microgrids (GT-MGs) to supply electric
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vehicles (EVs) would be needed to guarantee continuous and
reliable supply of power [6].

Optimal power control involves management of the power
system variables to supply the load at minimum or reasonable
cost while not violating the system constraints [7]. The main
goals of the power optimization process are to minimize
energy production and delivery costs, minimize power losses,
reduce load shedding, and maximize system performance
in general. The objective function captures the cost mini-
mization while the constraints take care of the system health
and load-generation balance [8], [9]. In particular, optimal
power scheduling encompasses the temporal arrangement of
the system’s generation resources to achieve the system’s
objective and maintain its overall health [10].

Despite the advancement in research on renewable energy
and smart grid control technologies, grid-tied microgrids
still face challenges in the control of their operations.
For instance, power management in modern GT-MGs is
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challenging because of stochasticity in RES and load
demand [11]–[13]. Thus, the current matters of great research
interest in power systems control include: (a) the scheduling
and control of generating units under a stochastic environ-
ment, (b) the development of demand response strategies that
enable customers to cooperate with the grid in energy trading
contracts, and (c) the design of modern voltage and frequency
regulation methods to accommodate the increased in power
conversion stages [11], [14].

There is a lot of published literature that deals with power
systems scheduling. Traditional methods such as dynamic
programming (DP), linear programming (LP), and their
derivatives have been used to perform power scheduling
tasks in GT-MGs for years [15]–[17]. Nevertheless, these
approaches have been found to suffer from the infamous curse
of dimensionality and are unable to adapt to the stochasticity
of the optimization environment that contains unpredictable
load profiles, grid tariff and RES generation. Therefore,
such methods have limited scalability and versatility. Global
search methods such as genetic algorithm (GA) and swarm
intelligence (SI) have also been employed in solving the
power management problems [7], [18]–[20]. However, these
methods are generally slow, thus, they cannot operate online.
Online operation enables more economical use of computing
resources as it does not require a dedicated computer to do
the offline optimization. The above algorithms do not have a
learning component. Thus, optimization iterations are needed
for every new load and generation profile, which is compu-
tationally expensive. Moreover, these approaches require a
separate forecasting algorithm to predict the state variables.

Reinforcement learning (RL) algorithms offer a better
alternative as they can be trained offline for a general load
and generation profile and then be applied online for any load
and generation profiles. Unlike other optimization methods
such as numerical methods and soft computing techniques,
RL does not require an accurate model of the optimization
environment in order to arrive at an optimal solution. Further-
more the application of artificial neural networks (ANN) in
modern reinforcement learning algorithms effectively elim-
inates the need for a separate forecasting model because of
their capability to make more accurate predictions [10], [21].

Reinforcement learning (RL) is a bio-inspired machine
learning technique employed for solving sequential decision-
making problems. In this category of algorithms, a soft-
ware agent is modelled as a decision-maker that learns by
iterative trial and error through a carefully defined reward
scheme [22]. The agent’s key motivation is to maximize
its total reward. The environment is characterized by states
which the agent observes, selects an action from the set of
possible actions and receives feedback on the value of the
actions taken in each of the states [10]. RL algorithms require
that the problem be expressed as a multi-stage decision prob-
lem (MDP). The MDP model offers a formal mathematical
language describing sequential control operations. In such
operations, the outcomes are partly uncertain and partly
informed by the actions of the decision-making agent [23].

An MDP consists of a set of states within a definite state-
space, a set of possible actions within a definite action-space,
a reinforcement function and a state transition function or
probability [21], [24]. The agent’s objective is to maximize
the total reward. The reward is any scalar quantity that can be
used to implicitly communicate the objective of the learning
activity to the agent [25]. Thus, suitable reward shaping is
essential to achieve the desired objective [26].

RL has been applied for solving unit commitment prob-
lems, economic dispatch problems, microgrid energy man-
agement problems, energy trading in microgrids, etc [10],
[27]–[29]. Although it takes longer to train an RL algorithm,
the training can be done offline. After the training, optimal
solutions are retrieved for the whole optimization horizon.
This eliminates the need to iterate during online operations.
Despite the merits, the application of RL in power manage-
ment is still in its infancy.

There are several review papers on the application of
RL in power systems operation and control. However, there
are few reviews on the use of RL in power management
in GT-MGs. The study in [30] focuses on the use of RL in
demand response. Authors in [31] studied the application of
RL to control energy flow in buildings. In [32], deep RL
methods applied to smart grid control are reviewed. However,
the above papers did not capture the recent developments
in the field of RL such as policy optimization, intelligent
reward schemes and the parallelization of learning agents
were not captured. There is a need for a review paper that can
comprehensibly capture recent developments in RL and pro-
vides valuable directions for future research in reinforcement
learning applications in control of power in GT-MGs.

In this paper, a critical and comprehensive review of rein-
forcement learning (RL) approaches to power management
in grid-tied microgrids is presented. The main contributions
of the paper include:
(1) Providing new insights into the challenges associated

with the control of power in GT-MGs using grid-tied
RES-based EV charging stations as a case study.

(2) Synthesis of the different mathematical formulations
of the power management problem and how each
formulation affects the computational efficiency of
RL solutions.

(3) A critical review of proposed solutions to the issues
associated with current RL techniques such as instabil-
ity in Q-learning type recursions applied to deep RL,
data inefficiency and the bias-overfitting conundrum.

(4) Discussion of possible applications of recent RL tech-
niques such as priority experience replay and transfer
learning to address some of the emerging challenges in
grid-tied microgrid power management.

The rest of this paper is organized as follows. In section II,
the two major mathematical formulations of the power
management problem are reviewed. Section III deals with
the Markov Decision Process Models used to describe
the GT-MGs operational environments. In section IV, the
reinforcement learning solutions to the power management
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problem are reviewed. Section V highlights the emerging
reinforcement learning techniques such as transfer learning,
hindsight experience replay, curiosity driven learning etc.,
and their possible applications in solving modern power man-
agement problems. Section VI discusses the strengths and
limitations of the RL techniques and the possible improve-
ments. In section VII gives the conclusions on contributions
of the paper and future research directions.

II. MATHEMATICAL FORMULATIONS
A typical grid-tied microgrid-based EV CS consists of an
AC or DC bus connected to the grid through an appropri-
ate power converter. The bus is connected to the EV sup-
ply equipment (EVSE) via an appropriate power conversion
apparatus. More details on the EV charger architectures and
design considerations in grid-tied EV CSs can be found
in [5], [33]–[35].

The objectives of optimal power management algorithms
for GT-MGs is to minimize running cost and to maximize
profit from energy sales while supplying the demand on the
microgrid side [7], [18], [36]. For a battery behind meter
systems, the essential variables to solve the problem include
the DG power output, the load profile, the measured battery
storage system (BSS) instantaneous state of charge (SoC)
and the forecasted day-ahead grid tariff profile. The costs
considered include the grid power purchase cost, the cost of
degradation of the BSS as defined in [28], [29], [39] and
the cost of power purchase from auxiliary sources such as
vehicle-to-microgrid (V2M) [6], [40], [41]. In some cases,
the grid tariff is constant like in [41] and in others, a stochas-
tic tariff is considered as in [42], [43]. The two major
mathematical formulations of this optimization problem are
the optimal battery scheduling and unit commitment for-
mulations [31]. The two formulations will be discussed in
subsections II (A) and II (B).

A. OPTIMAL BATTERY SCHEDULING FORMULATION
This is the most common formulation for GT-MG scheduling
tasks. In this formulation, the battery state of charge is the
basis of optimization. The solver is designed to consider the
load, the RES output and the grid tariff at every time step and
find the optimal schedule of BSS SoC. The power balance
equation is defined as given in (1) below:

Pb (t) = PL (t)− Pg (t)−
N∑
i=0

PDGi (t) (1)

where Pb (t), PL (t) and Pg (t) are the instantaneous values of
power delivered to or drawn from the BSS, load demand and
power delivered to or drawn from the utility grid respectively.
PDGi (t) is the instantaneous power generated by DGi and
N is the number of DGs. From (1) above, the instantaneous
state of charge of the BSS is given by [7]:

SoC (t) = SoC (t −1t)−
Pb (t) .1t

Eb
(2)

where 1t is the duration of a time step and Eb is the rated
battery capacity. The solver then finds the optimal SoC
schedule for the BSS as SoC1, SoC2, . . . , SoCT where T is
the optimization horizon [7], [42]. A high-level illustration
of a grid-tied PV powered EV charging station is shown
in Figure 1.

FIGURE 1. A high-level illustration of a grid-connected PV-powered
electric vehicle (EV) charging station. It consists of a battery storage
system (BSS) and vehicle-to-microgrid (V2M) enabled EV supply
equipment (EVSE). The optimizer is embedded in the controller which
makes all the power management decisions and relays control signals to
the relevant power conversion equipment.

The SoC schedule determines the amount of power to be
supplied to or taken from the battery at every time step. The
solver then considers the load and commits the remaining
RES output to supply the load. The excess RES generator out-
put is then sent to the grid whereas if there is a deficit, power
is purchased from the grid. This formulation can be found
in [7], [44] and [45]. A major challenge with this method is
that if there are more than two sources whose costs are to
be considered then resultant schedule may not be optimal.
This is because once the battery power has been optimally
determined, a suboptimal rule-based method is to be used
to determine the schedule for the remaining sources. How-
ever, this formulation performs better where there is just one
DG involved. It is also less computationally intensive than the
unit commitment formulation for the same quantization step
size for the battery SoC.

B. UNIT COMMITMENT FORMULATION
This formulation considers each source as a separate unit with
the battery as a special unit that can absorb or generate power
(prosumer). It is derived from the unit commitment formu-
lation as described in [46]. At every time step, the solver
searches the combination of all the available power from
sources that minimize the objective function while meeting
the constraints. The optimal schedule is determined for all the
units simultaneously as described in [5], [31], [47] and [48].
The advantage of this method is that it can accommodate
more sources than the battery scheduling approach. There-
fore, it allows the combination of several RES to supply the
load as well as the integration of V2M technology. How-
ever, this formulation is computationally expensive. Table 1
shows a summary of themathematical formulations with their
strengths and weaknesses.
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TABLE 1. Summary of mathematical formulations.

III. MARKOV DECISION PROCESS MODELS
AMarkov Decision Process (MDP) is usually expressed as a
tuple of four elements, (S, A, P, R), where S is the state space,
A is the defined action space, P is the state changeover

probability and R is the immediate reward obtained in taking
a given control action in state S. The process is said to be
Markovian if the state space is such that the next state is
determined using the current state variables and without the
need for the memory of previous events that lead to the
current state [18], [19], [21], [22], [38]. Some predictive
Markovian processes are modelled using Markov Chains
where states are represented as nodes and are linked with
directed branches that show the possible transition. EV charg-
ing and discharging process models using Markov chains are
found in [50]–[52]. MDPs are an essential construction for
sequential control problems such as in reinforcement learning
methods [21]. Details on how to develop MDPs and model
problems can be found in [10] and [21].

A. STATE AND STATE SPACE
The state of a reinforcement learning environment is the
set of all information that an agent requires to make the
correct choice of the control action to take [53]. The state
space is the set of all states in the environment. Depending
on the nature of the problem and the amount of accuracy
desired on the solution, the state-space may be continuous
or discrete. A continuous state-space may also be quantized
to make solutions simple and computationally efficient [54].
The question of the amount of discretization required to
achieve the desired efficiency within acceptable correctness
is still an open problem.

In BBM schemes, the load, grid tariff, BSS energy or
SoC and the RES generation are the state variables that may
be continuous or discrete. If the agent is provided with all
these variables, then the state is said to be fully-observed
and deterministic [55]. In some cases, the agent is provided
with limited information on the states. The agent uses that
information to approximate the likelihood of the environment
being in the allowable states and treats these probabilities
as the actual state [24]. Such are partially observable MDPs
(PO-MDPs) [56], [57]. An example of this formulation in
BBM systems can be found in [27]. Stochastic models have
also been developed to represent load demand in EV CSs

using the ‘‘Spatio-temporal characteristics’’ of EV driving
and arrivals at the CS [58]. Such models may be essential in
approximating the state transitions in an EV charging station
environment.

B. ACTION AND ACTION SPACE
The control action is chosen and executed in every state the
agent gets to. In BBM systems, the action may be an SoC
value in the battery scheduling formulation. As regards this
formulation, some researchers only model the actions to three
decisions, namely, charge, idle or discharge as given in [59]
and [60]. An action in the unit commitment formulation may
be a vector of power schedules for each unit as modelled
in [48]. The action space is the union of all possible action
sets for all the states in the environment.

C. STATE TRANSITION FUNCTION/PROBABILITY
For deterministic environments, the same action in the same
state will always lead to the same next state [61]. However,
in a stochastic Markovian environment, state transitions are
probabilistic. Thus, they may be represented using a transi-
tion matrix whose elements are the transition probabilities
of various possible next states [62]. Besides, the transitions
can be indicated using expectation operators on state transi-
tion probability distributions [49]. In EV charging stations,
the state transition may include changes in the number of
EV arrivals, the SoCs of their various battery packs, fluctua-
tions in PV generator output with irradiance, the amount of
energy available in the CS’s BSS and the value of the grid
tariff.

D. REWARD FUNCTION
A reward is therefore defined as a scalar quantity that can be
used to implicitly but effectively communicate the objective
of the learning process to the agent [23]. The reward is a
function of the action, the state in which it is taken and the
state it leads to. Suitable ‘‘reward engineering’’ is needed to
link actions with the purposes of the agent in order to learn
the optimal policy, i.e., the rule that maps every state to the
optimal action [26]. Depending on the objective of the power
management algorithm, the reward is defined such that in
maximizing the total reward, the agent meets the objective.
For instance, to minimize cost, the reward may be defined as
the inverse of that cost. The reward may also be expressed as
the negative of the cost. However, care must be taken on the
effect of the sign of the reward on the stability of the learning
process.

IV. REINFORCEMENT LEARNING SOLUTIONS TO THE
POWER MANAGEMENT PROBLEM
A. BRIEF INTRODUCTION TO REINFORCEMENT
LEARNING
Reinforcement learning (RL) is a computerized reward-
directed trial and error method of solving MDPs [63]. In RL,
the agent learns by sequentially interacting with the states in
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the environment. The goal of the agent is to maximize its total
reward. By experience and through a well-designed reward
scheme, the agent acquires the knowledge of a policy that
maps every state to the best action [15], [28]. The reinforce-
ment learning process is shown in Figure 2. A policy is rep-
resented by π (a, s), which is the probability that action awill
be taken in state s and this may be stochastic or deterministic.

FIGURE 2. An illustration of Reinforcement Learning Agent-Environment
interaction. The environment has states that the agent visits sequentially.
When the agent takes an action, the environment returns a reward and
changes to the next state.

If an agent visits a state x, takes an action suggested by
a rule, π , and hence move to next state y, the state-value
function in that state is given by:

V π (x) = r(π (x))+ γ
∑
y

P [π (x) ]V π (y), (3)

where r(π (x)) is the immediate reward, P is the state tran-
sition probability from state x to state y, V π (y) is the value
of state y and γ ∈ (0, 1) is the discount factor that governs
the amount of future returns valued in the current state.
Bellman [54] established that there is at least one optimal pol-
icy which recommends the action that maximizes the value,
V π (x) in the state x, such that [19], [31]:

V ∗(x) = V π
∗

(x) =
max
a

r(a)+ γ∑
y

P [π (x) ]V π
∗

(y)


(4)

is the best value the agent can achieve in the state x, with r(a)
as the recommended action. This finding has been the basis
of most RL algorithms.

B. EXPLORATION EXPLOITATION CONUNDRUM
During learning, the agent needs to balance exploitation and
exploration in its choice of actions to avoid being trapped in

a local extremum. The exploration-exploitation conundrum
poses a challenge because the agent needs to accumulate
experience to take optimal action, and to gather that much
data requires that computational resources must be expended.
The action that gives the most reward is the greedy action,
ag. Strategies for solving the dilemma of exploration and
exploitation have been developed. The strategies include
epsilon-greedy [31], the pursuit algorithm [64], the SoftMax
function [30], random [65] and deterministic selection [45].
In the ε-greedy method, the greedy action is selected by a
probability, 1-ε, for ε ∈ (0, 1), in any state xk , while all other
actions in the action space,Ak , are explored by a probability,
ε [31]. The exploration rate, ε, is typically initialized with
a value close to 1. It is then gradually decreased as the
learning proceeds. That process requires hand tuning of ε,
which may be inaccurate. In the pursuit algorithm, an action
ak in state xk has the probability Pk of being selected. Pk is
initialized by a constant value for all actions and is updated as
given in (5).

Pn+1x (ak) =

{
Pnx (ak)+ β[1− P

n
x (ak)], ak = ag

Pnx (ak)− βP
n
x (ak), ak 6= ag

(5)

where β ∈ (0, 1) is a constant and n is the episode number.
Therefore, in every learning episode, the pursuit algorithm
gradually increases the probability of the greedy action being
chosen while slightly reducing the probability of choosing the
rest of the actions. Thus, if β is very small, as the number of
episodes increases, the probability of choosing ag in every
state will get close to unity while that of choosing all other
actions will collapse to near zero [46]. In the softmaxmethod,
every action has a probability of being chosen expressed
as a function of its Q-value. This is done using the Gibb’s
distribution function as described in [66]. The probability
function is given by (6):

p (a|s) =
exp

{
Q(s,a)
τ

}
exp

{∑
ag∈A

Q(s,a′)
τ

} (6)

where τ ∈ (0, 1) is referred to as the temperature. A low
value of τ increases the probability of selecting ag and high
value gives all actions an equal chance of being chosen.
Tokik [66] hybridized ε-greedy with the softmax method and
came up with a more adaptive method of exploration called
value difference based exploration (VDBE). In this method,
the value of ε was represented as a function of temporal dif-
ference error (TD-error). The author showed that the hybrid
method was more robust than the ε-greedy and softmax
methods.

Several RL algorithms have been developed to solve
MDPs. These include Monte Carlo (MC) learning, tempo-
ral difference (TD) methods, Q-learning and policy gradient
techniques [67], [68], to name but a few. Some of the RL tech-
niques used in solving microgrid scheduling are discussed
below.
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C. Q-LEARNING
Q-learning is a method of learning the decision-making
rule, π , without a model. This method was proposed by
Watkins [63]. It is the most widely used RL algorithm due to
its simplicity [30]. In Q-learning, the action-value function,
Q (x, a), is a measure of the goodness of taking an action a in
state x, such that [25]:

Q (x, a) = rx(a)+ γ
∑
y

P [π (x) ]V π (y). (7)

The optimal Q-value for the optimal policy is such that:

Q∗ (x, a) = Qπ
∗

(x, a), ∀x ∈ χ, ∀a ∈ A (8)

The best Q-value in any state, x, is given by:

Q∗ (x, a) =
min
π
Qπ (x, a), ∀x ∈ χ, ∀a ∈ A. (9)

In every episode, the agent gets into states xk , with an
action space, Ak , and using some strategy, chooses an action
ak and as a result, transits to the next state xk+1, receiving
an immediate reward, r = g(xk , ak , xk+1). Then the Q-values
are updated in the Bellman’s recursive temporal difference
fashion as shown below [25].

Qn+1 (x, a)← Qn (x, a)+ α [g(xk , ak , xk+1)

+ γmaxak+1Q
n (xk+1, ak+1)− Qn (x, a)

]
(10)

where α ∈ (0, 1) is the learning rate determining the extent
of modification of Q-values, Qn (x, a) is the current Q-value,
Qn+1 (x, a) is the next Q-value while γ ∈ (0, 1) is the
discount factor. TheQ-learning algorithm is described in [10].

As shown in (10) above, although the greedy policy rec-
ommends the action that maximizes the action-value func-
tion for the next state, the agent does not have to take that
action. As such, Q-learning is said to be an off-policy method
of learning since the agent is not bound by the policy in
acting [25], [63].

Q-learning is a very common algorithm in grid-tied micro-
grid power management. Kuznetsova et al. [45] implemented
a two-step ahead Q-learning algorithm with a deterministic
exploration method to schedule energy storage in a GT-MG
with wind-powered DG. The study in [47] developed an
asynchronous Q-learning technique to manage power in a
grid-tied PV/battery EV charging station. The study showed
that the asynchronous Q-learning produced a power schedule
with about 14% lower global cost and a showed a more
stable learning behaviour than the conventional Q-learning
method. Leo et al. [69] designed a 3-step ahead learning to
schedule energy in a BSS for a grid-tied PV/battery system.
The authors reported an improvement in the utilization of the
on-site generated PV power and the BSS. Foruzan et al. [70]
developed a multi-agent scheme to manage energy trading
between customers and energy suppliers including the utility
grid, diesel and wind generators. Each entity trading with the
grid was modelled as an agent, with each agent learning to
improve on defined performance parameters. The algorithm
converged to a policy that reduced energy interchange with

the grid by 14%. Other applications of Q-learning in energy
scheduling in microgrids may be found in [65], [71] and [72].

Q-learning methods use a Q-table to track the learning
process. As state-action pairs increase, the Q-table size also
increases, thus, the process suffers from the curse of dimen-
sionality just like dynamic programming methods [23], [73].
Therefore, conventional Q-learning algorithms necessitate
large discretization steps which make the results suboptimal.
Also, Q-learning cannot handle stochastic policies since the
Q-function is deterministically computed.

One of the methods of overcoming this curse of dimen-
sionality is to use artificial neural networks (ANNs) to esti-
mate the Q-function based on statistical regression. There
are several function approximation methods such as deci-
sion trees and multivariable regression techniques, but ANNs
are chosen for reinforcement learning due to the following
reasons [23]:

1) They can deal with time-varying target functions.
2) They can learn effectively using data acquired by incre-

mental means.
Therefore, instead of learning the action-value function

Q (x, a), the algorithm learns the parameterized function
Q (x, a, θ) in a process called fitted Q-iteration. Thus, to get
the optimal value of the Q function, the function approx-
imator finds the parameter θ∗ such that Q (x, a, θ∗) best
estimates Q∗ (x, a) [74]. Then in every state, the action that
maximizes the approximate value function returned by the
ANN is selected during policy retrieval. This learningmethod
is called fitted Q-iteration.

To arrive at the optimal value of the parameter θ∗, a training
algorithm is needed as in the deep learning method. Many
training algorithms have been developed to get the neural
network to arrive at the optimal θ∗, namely, momentum, back
propagation, Levenberg–Marquardt algorithm, etc., [75]. The
most common of them is backpropagation that uses the gra-
dient descent technique to arrive at the optimal weight vector.
The algorithm calculates the gradient of a loss function with
respect to each element in the weight vector θ∗. The objective
of the algorithm is to minimize the loss starting from the
output layer backward [75].

In Q-learning, the Q-value of a state-action pair is substi-
tuted by the old value plus some error in the estimation of
the Q-value. The Q-value estimate is computed by adding the
immediate reward to the maximum possible Q-value that may
be found in the next state if the current policy were obeyed.
This current estimate is called the ‘‘target’’ (TQk ) and the old
value is called the ‘‘prediction’’. Thus, the target is calculated
by (11).

TQ
n

k = g(xk , ak , xk+1)+ γmaxak+1Q (xk+1, ak+1, θn)

(11)

In ‘‘stochastic gradient descent’’, the ANN is trained to min-
imize a squared error (loss) [76] that is given by (12):

L(θ ) =
(
Q(xk , ak , θn)− T

Qn

k

)2
(12)
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Then the weights vector is adjusted using chain rule accord-
ing to the stochastic gradient descent method [76], as given
below:

θn+1 = θn + α
(
Q(xk , ak , θn)− T

Qn

k

)
∇θnQ(xk , ak , θn)

(13)

The update is done iteratively so that the parameters are
modified in the direction that minimizes the loss function
until the parameter vector θ converges to θ∗.

However, as Sutton [74] observed, this method does not
lead to proper convergence and diverge in some cases because
the optimum policy is stochastic rather than deterministic as
stipulated by (7). Therefore, a very small change in the value
function for a particular action may well prevent it from being
chosen. This occurs even in cases where the action itself is
the optimal one for that state. Also, there are instabilities
associated with Q-learning type recursion when it is applied
to neural networks. The instabilities are caused by two issues:
1) Significant correlations within the state transitions,

which is because the state transitions occur sequen-
tially. Therefore, every state has some correlation with
its predecessor and successor states [70].

2) Fitted Q-iteration does not employ a true gradient
descent. Instead, the algorithm updates the weights of a
neural network based on a loss with respect to a target
which also depends on the very weights [77], [78].

Since policy is the logic of an agent, an ANN can be
modeled as an agent to directly parameterize and approximate
this policy through the policy gradient theorem [60], [78]. The
policy gradient theorem is defined as:

∂P
∂θ
=

∑
s

dπ (s)
∑
a

∂π (s, a)
∂θ

Qπ (s, a), (14)

where θ is the vector of the parameters of the current pre-
vailing policy, P is the average reward obtained if that policy
is obeyed in every step and dπ (s) is the fixed distribution
of states under the prevailing policy. Since Qπ (s, a) is also
unknown, it may also be estimated or better represented by
an N-step return, i.e., the total expected discounted reward
for N stages (say taking 5 future states). This is possible
because the absolute value of Qπ (s, a) is not needed but a
numerical indication of whether there is progress in reaching
the optimal policy or not [79]. Using (14), the ANN can
be trained to adjust its parameters in the direction of better
policy performance using the gradient ascent method. Thus,
the parameter θ is updated as follows [78]:

θn+1 = θn + α
∂P
∂θn

, (15)

where α is the learning rate. This update increases the
probabilities of selecting actions that give positive rewards
and reduces the probabilities of actions that return neg-
ative rewards. Otherwise, if all the rewards are positive,
then the policy gradient update leads to a faster increase
in the probability of picking actions with higher rewards.

It has been shown that learning a policy in this manner
is easier and converges faster than learning a value func-
tion [74]. In the next subsection, deep reinforcement learning
algorithms which apply either policy gradient theorem or
advanced value-based techniques are discussed. They include
batch reinforcement learning (BRL), actor-critic (AC) algo-
rithms, deep Q-network (DQN), etc., [43], [57], [80].

D. BATCH REINFORCEMENT LEARNING
One of the major challenges experienced with traditional
Q-learning is that it is data inefficient, thus it does not
produce robust performance with stochastic policies [67].
Also, very complex environments with high stochastic-
ity like BBM systems come with complex time series
which may cause instability in training the ANNs [57].
To increase stability and data efficiency, batch reinforcement
learning (BRL) is employed. BRL applies the Q-learning
technique of recursive Q-value updates. However, unlike
Q-learning that updates Q-values every time an action is
taken, it sums up the experiences (or transitions) of the envi-
ronment before updating the values [77], [81]. A single expe-
rience consists of the tuple (state, action, reward, next state).
The agent approximates the optimal policy using a batch of its
earlier experiences in a method called batch gradient descent.
Thus, BRL is said to converge quicker than conventional
fitted Q-iteration and Q-learning that discard observations
after each Q-value update. The data flow diagram for a BRL
algorithm is shown in Figure 3 [77].

Claessens et al., [82] used a combination of BRL and
ANN Q-function estimation to achieve up to 60% peak load
reduction in a grid-tied PV/wind system, using the softmax
function for exploration. Shi et al., [83] used an echo state
neural network (ESN)with BRL and the ε-greedy exploration
strategy to obtain a 71% reduction in energy cost in a grid-
connected PV/battery microgrid.

The other common approach is to randomly sample expe-
riences instead of using an ANN directly [81]. This is called
the ‘‘experience replay’’ technique [30]. In this method, every
transition is saved in a replay buffer or memory as a tuple.
The updates on the Q-values are done using a sample (mini-
batch) from the replay buffer like in Monte Carlo learning.
This is unlike TD-learning where updates are done using
the most recent transition. This technique has been used
by Mbuwir et al., [27] for optimal battery scheduling for
energy trading in a PV/battery/grid set-up. As will be seen in
the following subsections, most modern deep reinforcement
learning techniques apply experience replaymethod in updat-
ing the weights of the deep neural networks. Though BRL is
data-efficient, its accuracy heavily relies on the experiences
gathered. The algorithm cannot learn policies that have not
appeared in its learning history. Also, since BRL algorithms
use ANNs to estimate the Q function, they display instability
in their learning process. The instability comes because the
updates on the ANNs are not true gradient descent. The
training of the ANNs is done by updating their parameters
based on an error with respect to a target which itself depends
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FIGURE 3. A data flow diagram for a batch reinforcement learning
algorithm. A memory location is dedicated to storing transitions from
which policy updates are done [77].

on the very parameters [77], [78]. It is like a dog chasing its
tail.

E. DEEP Q-NETWORK
Deep Q-network is a deep reinforcement learning algorithm
that combines techniques of both supervised learning and
reinforcement learning [57]. In deep learning, ANNs with
several hidden layers are used to approximate functions that
represent data ensembles. DeepQ-network (DQN) is a frame-
work of RL that incorporates the deep learning methods
into Q-learning iterations using batch reinforcement learning
techniques [57].

In the DQN, several experiences are gathered and saved
in a replay buffer. A random sample of the experiences in
the buffer is taken and used to update the deep neural net-
work [84]. TheDQN algorithm employs two neural networks,
namely, the prediction network and the target network. The
prediction network (Q(s, a; θ )) estimates the current Q-value,
while the target network (Q(s, a; θ−) hosts the old param-
eters used to estimate the next Q-value [73]. The current
parameters ( θ ) are updated using a random sample of
experiences (batch) from the replay buffer and after a set
number of episodes. Then, after a given number of prediction
steps, the parameters of the prediction network are copied
into the target network as shown in Figure 4 below [85].
Since the experiences from the replay buffer are randomly
sampled, their sequential occurrence during learning which

FIGURE 4. A data flow diagram for a DQN with a replay buffer and a
target network [85].

makes them correlated is interrupted. As such, the experi-
ence replay technique breaks the correlation between sequen-
tially observed experiences thus reducing oscillations or even
possible divergence of the action values returned by the
Q-network. Besides, the use of a separate target network from
the prediction network helps to achieve stability as opposed
to previous methods where the same network was used. More
details including relevant equations on the DQN algorithm
may be found in [57], [84].

Minh et al., [86] established that DQN, apart from being
more stable than normal policy gradient techniques, is more
efficient even when used with many input-output nodes of
neural networks. François-Lavet et al., [60] implemented a
DQN-based algorithm to schedule BSS and hydrogen stor-
age for a microgrid. The authors used convolutional neural
networks to learn a general policy for scheduling the storage
under unpredictable demand and generation environment.
Lu et al., [29] used the DQN strategy for energy trading
between a microgrid and a power plant and achieved a 22.
3% improvement in self-consumption of the MG generated
power. Ji et al., [48] describe the use of the DQN method
to schedule microgrid energy generation and consumption
with the inclusion of demand and generation prediction.
The authors found that DQN returned a 20.75% reduction
in energy cost compared to 13.12% obtained using a fitted
Q-iteration.

As observed in the above studies, DQN cannot work with
continuous action spaces. Besides, it still suffers from insta-
bility issues as dimensionality increases. This is because
DQN merely assigns a score to every possible action in the
action space. It then selects the action with the best score
for execution. This is not possible if the action space is
continuous or very large. Also, the algorithm employs the
experience replay techniquewhich is associatedwithmemory
inefficiency, takes a very long time to train and is limited
to off-policy methods like Q-iterations [87]. There is also
the problem of overestimation. This results from using the
same neural network parameters for both estimating policy
and evaluating the policy [88]. Bui et al., [88] proposed a
double-deep Q-network. In this approach, the action selection
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from action evaluation is disassociated by using separate
neural networks. The challenge with training time may be
addressed using parallel learning and asynchronous tech-
niques as reported by Nair et al., [85] and applied in robotics
in [89].

F. ACTOR-CRITIC ALGORITHMS
In the actor-critic (AC) method, two deep neural networks
are involved. The first is the policy network (or the actor).
The actor takes the environment states as inputs and gives a
control action (or a policy). The second neural network is the
value function estimator (or the critic). The critic observes the
environment state and the reward obtained from the actor’s
control action and returns the estimated value of the action.
The actor-network uses a gradient ascent method tomaximize
the objective function P(θ ) according to the policy gradient
theorem in (14). The critic network uses gradient descent to
minimize error in the value function estimation [90]. The
actor takes the environment’s state as input and produces a
probability distribution (policy), π (ω), by which an action is
selected. ω represents the weights of the actor network. The
critic takes the same state and estimates the value function
V (k, θn).θn is the weight matrix for the value function net-
work. The selected action is executed, the next state is gener-
ated from the environment and the reward r(k) is computed.
The next state is forwarded to the critic network to get the
value of the next state V (xk+1, θn). TD error ∂(k) is then
computed using equation (16) and used to update the critic
network [90], [91].

∂(k) = r + γV (sk+1, θn)− V (sk , θn) (16)

γ the discount factor. Figure 5 shows the data flow in an
AC environment [92]. However, this TD learning approach
comes with a high bias that may lead to the agent being
trapped in a local optimum. This is common when the AC
is applied in stochastic environments. Monte Carlo method,
in which updates are done using sampled data from several
episodes are a better alternative. But that will require that
learning waits until the episodes are completed, and it is also
memory intensive. Furthermore, pure Monte Carlo learning
is prone to overfitting (or variance). An N-step return (where
N is the number of transitions) may be used for updates to
reduce variance. N transitions are performed under the policy
estimated by the actor-network and the total discounted return
is used to update the critic network [91], [93].

If the policy is deterministic, the AC method is called
deep deterministic policy gradient (DDPG) [73]. Whether
the policy is stochastic or deterministic, the architecture is
the same except that in DDPG, the state-action-value (Q) is
used to update the critic while in other actor-critic cases, the
state-value (V) is used to update the critic network. AC meth-
ods have attracted significant applications in BBM schemes.
Fuseli et al. [94] implemented an actor-critic algorithm using
ANNs trained using particle swarm optimization (PSO) to
obtain optimal schedules of energy resources in a smart
home with better performance in terms of convergence than

FIGURE 5. Illustration of actor-critic architecture. The actor-network
represents the policy and is updated via gradient ascent to follow a policy
that maximizes the total reward. The critic network represents the value
function and is updated via gradient descent to minimize the value
estimation error [90].

a general PSO. In [95], an AC algorithm is used to opti-
mize power allocation in a heterogenous power network with
wind turbines and PVs, leading to an increase in energy
efficiency. Wan et al., [96], schedule energy storage in a
smart home leading to a significant energy cost reduction.
DDPG is known to perform better with continuous action
spaces than classical AC [97]. Chen et al. [98] used the
DDPG technique for battery scheduling for energy trad-
ing in a grid-tied PV/battery microgrid returning a 55%
profit increment compared to the system without the optimal
scheduling. Odonkor and Lewis [99] developed a DDPG-
based controller for shared energy storage devices for build-
ing clusters to obtain a reduction in the peak demand.
Yu et al., [100] designed and simulated a DDPG algorithm
to control energy storage and heating, ventilation and air
conditioning (HVAC) devices attaining a reduction in energy
cost by 10%. However, DDPG does not work with stochastic
policies.

The other challenge with such policy gradient-based algo-
rithms is that they may not handle more than one action at
a time. The actor may only return one action or the prob-
ability of taking one action at a time in a particular state.
Mocanu et al. [101] developed a novel deep policy gradi-
ent (DPG) technique that was able to deal with more actions
per state and converged faster than normal DDPG. Specif-
ically, the authors used the DPG algorithm for both energy
cost minimization in HVAC devices and peak reduction for
residential application of the devices. It was observed that this
algorithm performed better than DQN in achieving the peak
reduction and energy optimization. A summary of key appli-
cations of reinforcement learning in microgrid technologies
are given in Table 2.
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TABLE 2. Summary of reviewed reinforcement learning algorithms.

V. EMERGING REINFORCEMENT LEARNING TECHNIQUES
AND RESEARCH DIRECTIONS
A. SYNHRONOUS AND ASYNCHRONOUS LEARNING
As previously noted, there are instabilities associated with
the Q-learning type recursions when applied to neural net-
works. To address this, Google DeepMind Technologies
developed the asynchronous advantage actor-critic (A3C)
algorithm [87]. In this method, several neural network agents
(worker networks) are trained with different copies of the
environment (asynchronously). The worker networks then
update a master agent after a given number of steps until the
master converges to the optimal policy. The study showed
that this parallelization of learning and asynchrony in A3C
algorithm performed better than a DQN method in play-
ing standard video games. In 2017, OpenAI (a USA-based
artificial intelligence research company) demonstrated that,
despite its complexity, asynchrony did not produce any spe-
cific advantage. Same or even better results could be achieved
without the complexity of asynchrony. The company there-
fore released an easy to implement and an efficient method
called the synchronous advantage actor-critic (A2C) tech-
nique [102]. The A2C uses the N-step return technique that
ensures a better bias-overfitting balance than conventional
AC and Monte Carlo learning. There was no paper found in
current literature at the time of this study on the use of the
A2C algorithm in solving the power management problem

in BBM schemes. This could be a possible future research
direction.

B. MULTI-AGENT REINFORCEMENT LEARNING
Conventionally, reinforcement learning techniques involves
the modelling of a single agent to learn an optimal con-
trol policy. A multi-agent reinforcement learning algo-
rithm (MARLA) has more than one learning agent interacting
with the environment, i.e., both the environment’s state occur-
rences an the emergence of the reward signals are occasioned
by the combined actions of all the agents [103]. Although
the MARLA concept is not new, the recent advancements in
single-agent systems have brought them into greater focus.
In the recent times, microgrid powermanagement systems are
becoming more decentralized. Thus, single-agent algorithms
are becoming less popular. Particularly, MARLA has been
applied with visible success in demand response, real-time
demand response and management of distributed energy stor-
age systems [104]–[106]. The multi-agency technology is
such an attractive research area that can be implemented
for microgrid power management schemes. These include
interconnected microgrids, peer-to-peer energy trading and
optimal grid-tied microgrid power scheduling to enhance sys-
tem healing in the post-disaster or post-cyber-physical attach
scenarios.
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C. TRANSFER LEARNING AND ITS APPLICATION IN
REINFORCEMENT LEARNING
Transfer learning is the process of using the knowledge
acquired by a model in performing a task in solving another
problem that is not exactly related to the previous task.
Conventionally, this technique was used in deep learning
models where historical data is limited [107]. The study
in [108] used transfer learning technique to forecast a PV
generator output profile. Also, transfer learning has been
applied to fasten learning in classical reinforcement learning
algorithms [109].

Transfer learning would significantly improve the modern
deep reinforcement learning (DRL) based microgrid power
management algorithms. This is because most of the DRL
techniques have been more successful in playing computer
games than in solving most power systems problems. The
knowledge acquired by a DRL agent in gaming may eas-
ily be transferred to microgrid power management environ-
ments. However, to apply this technology, the tasks being
dealt with must have some reasonable similarity. In [110]
the authors explored the application of transfer learning
in a DQN algorithm and demonstrated that task similarity
increases the probability of success in transferring learned
policy.

However, the application of this technique in grid-tied
microgrid power management is still open to research.

D. PRIORITY EXPERIENCE REPLAY
The advantages of experience replay in enhancing stability in
BRL and DQN algorithms has been explored in [70], [84].
The other advantage of experience replay is that it allows
for retrieval of highly beneficial experiences to increase
the speed of learning. The biased sampling of the past
experiences of an RL agent to achieve a given learning
objective is called ‘‘priority experience replay’’. Authors
in [111] applied a priority experience replay method to
improve the performance of a DQN. The results of the study
showed that the DQN with priority experience replay per-
formed better than a DDPG in terms of both speed and
convergence.

Also, some experiences are very rare to come by, thus,
it is important to have a buffer for such experiences for
future reuse. Prioritized sampling of experiences may be
applicable in scheduling microgrid power in post-disaster
response scenarios. The experiences of an agent when a disas-
ter strikes may be saved and replayed to the agent to improve
its reaction when the disaster strikes again. Furthermore,
actor-critic algorithms do not make use of this significant
technique. In the development of the A2C algorithm, experi-
ence replay was introduced to AC algorithm with significant
success [102]. The combination of the stability enhancement
by experience replay and the robustness of the actor-critic
methods significantly improved the global convergence and
the speed of the A2C method. However, this research is still
open to exploration.

E. EXTRINSIC AND INTRINSIC MOTIVATION IN LEARNING
Classical RL techniques reward an agent for performing cor-
rect transitions toward the goal of the learning process [23].
Such rewards are called immediate rewards. They elicit
extrinsic motivation, i.e., a motivation to earn rewards or
avoid punishment external to the agent. The rewards are
developed from the dynamics of the environment by means
of hard coding through reward functions. Thus, they are
not scalable. Furthermore, in some environments, the impact
of actions may not be immediately clear. In more complex
environments like modern power networks, reward functions
generated by the agent itself independent of the state tran-
sitions in the environment may be more appropriate [92].
Such a reward scheme generates an intrinsicmotivation, i.e., a
motivation to achieve goals without external signals. There
are two learning methods that produce intrinsic motivation
in the agent, namely, curiosity-driven learning and hindsight
experience replay [92].

1) CURIOSITY-DRIVEN LEARNING
Curiosity is defined as the error in the agent’s prediction
of the state transition or the consequences of the agent’s
actions [112]. Such a reward is defined to motivate the agent
to reduce the uncertainty in the prediction of its actions. The
upshot is that the uncertainty is higher in the parts of the
environment that has not been visited by the environment.
Actions that lead to predictable transitions get higher intrinsic
rewards [113]. Although this concept is becoming popular in
robotics and computer gaming environments, it has not been
implemented in power management algorithms.

2) HINDSIGHT EXPERIENCE REPLAY
Hindsight experience replay (HER) is an improvement of
experience replay used with off-policy RL algorithms. In this
technique, the reward function is a function of the current
state, the action (derived from the current policy) and a goal
state (instead of the next state) [114]. The reward is detached
from the state transitions in the environment. Thus, the agent
learns beneficial policies from both bad and good transitions.
The learning mechanism is built on the fact that even bad
policies can produce experiences that are beneficial to the
learning process [114].

F. POLICY OPTIMIZATION METHODS
Normally, an AC algorithm has a policy that changes accord-
ing to the gradient descent-based updates. However, defining
the step size of these updates is a major challenge. Large steps
poses the risk of going too far in the wrong direction that the
agent may not correct regardless of the amount of experiences
gathered [115]. This is more detrimental if there is a high
probability of the agent gathering misleading experiences
(bad data). Policy optimization methods are advancements of
the AC algorithms that have been developed to overcome this
challenge. Two optimization methods have been developed,
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namely, trust-region policy optimization (TRPO) and proxi-
mal policy optimization (PPO).

1) TRUST-REGION POLICY OPTIMIZATION
In TRPO, a ‘‘surrogate’’ objective is optimizedwith respect to
a boundary in the step size of the updates. Thus, the updates
are limited to a ‘‘trust region’’ to avoid accumulating mis-
leading experiences [116]. The surrogate objective is linear
while the approximation to the constraint on the policy update
step sizes is defined using a quadratic function. A recent
study implemented a multi-agent TRPO algorithm to perform
real-time dynamic demand response [105]. There is still need
for further studies on this algorithm in microgrid power man-
agement.

2) PROXIMAL POLICY OPTIMIZATION
Proximal policy optimization (PPO) is a simpler version of
TRPO that linearizes both the surrogate objective and the
step sizes approximation. PPO has been shown to perform
better than most algorithms with the actor-critic architecture
in solving multi-dimensional continuous environments [116].
The linearization of both the surrogate objective function and
the step sizes makes PPO simpler and more robust. It also
makes the algorithm easier to tune.

Since most of the smart grid power management problems
have such characteristics of multidimensionality and conti-
nuity of the state space, TRPO and PPO techniques will be
of significant application in microgrid and the modern utility
grids.

VI. DISCUSSIONS
Reinforcement learning is a powerful tool that can be used for
power systems scheduling in highly stochastic environments
such as grid-tied RES with BBM architecture. RL has been
used for battery energy scheduling, MG power dispatch, con-
trol of HVAC, energy management in smart homes, manage-
ment of multi-level energy storage, control of shared energy
storage devices in building clusters, etc. It has been observed
that the efficiency of the RL-based method depends on the
way the problem is formulated. There is a need to develop a
formulation that produces better optimality with considerable
efficiency.

One major challenge in RL application is the development
of anMDP that best represents the optimization environment.
In the development of deterministic MDPs, the stochastic-
ity of the environments being modelled are ignored. Such
assumptions have been found to adversely affect the accuracy
of the solutions obtained. Furthermore, deterministic MDPs
occupy a large memory space. Moreover, in the case of
PO-MDPs, it is difficult to provide adequate observations
that can permit the learning agent to estimate the states
correctly. Current methods incorporate aspects of supervised
learning in which simulated environments are used to train
ANNs that make a better approximation of states than sim-
ple Markov Chains and occupy less memory space than
deterministic MDPs.

The reviewed literature has revealed that traditional chal-
lenges experience with RL algorithms such as the curse of
dimensionality and exploration-exploitation conundrum have
been competently addressed. It has been noted that the meth-
ods used to address these challenges introduce new issues
such as instability in the DQN and pure policy gradient
techniques. Although experience replay has been applied to
improve stability in value-based methods, it introduces vari-
ance in policy-based techniques. The reviewed literature has
pointed out that the separation of the policy and the value
function networks produces better results. This separation
is the major reason for the success of AC algorithms. The
fact that AC architecture hybridizes policy gradients with
value-based methods is a major reason why it is more robust
in microgrid power management. It has been noted that mod-
ern RL algorithms take the form of this architecture in one
way or the other.

Recently, some grid-tiedmicrogrids are equipped with new
technologies such distributed power dispatch, decentralized
energy storage system, intelligent real-time load schedul-
ing and demand response, interconnection of microgrids
and peer-to-peer power sharing. Such technologies call for
more advanced power management algorithms. There have
been improvements to the reinforcement learning techniques
to adapt to the new challenges in the area of microgrid
power management. Multi-agent RL is seen as a one of the
most powerful RL technologies for power management in a
distributed dispatch scheme and interconnected microgrids.
Also, increased dimensionality in networked microgrids can
be handled by policy optimizationmethods such as TRPO and
PPO techniques due to their ability to seamlessly optimize
objectives more efficiently in highly uncertain, continuous
and multi-dimensional environments. It has been observed
that the policy optimization algorithms are also easier to
implement and tune. Moreover, the application of transfer
learning in DRL methods may help to effectively bring the
success of DRL methods in gaming to modern power man-
agement environments. Furthermore, new emerging issues
such as smart grid vulnerability to cyber-physical attacks and
natural disasters could be addressed using priority experi-
ence replay. Replaying previous high impact low probability
events to an agent may better adapt it to react to them more
appropriately when they recur. Also, transfer learning may
be implemented to maximize the performance of the agent in
cases where the task has high similarity with one that has been
solved by the agent before. Additionally, intrinsic motivation
methods of learning such as curiosity driven learning and
hindsight experience replay have the potential of reducing the
complexity of reward engineering in complex systems. This
is because these methods detach environment’s transitions
from the reinforcement function. The main objective of intro-
ducing intrinsic motivation in RL is to improve scalability
of the algorithms by detaching the environment’s dynamics
from the reward function. While this is desirable, it is still
important to take advantage of the existing knowledge of
the system dynamics to improve the performance of the
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algorithms. Therefore, hybridization of extrinsic and intrinsic
motivation techniques may produce more stable learning in
complex power systems environments. Such a hybrid reward
scheme may benefit from both the designer’s knowledge of
the environment’s dynamics and the agent’s own experiences
during the learning process. Table 3 shows a summary of
the emerging reinforcement learning technologies and their
possible applications in microgrid power management.

TABLE 3. Summary of emerging reinforcement learning technologies and
their possible applications in microgrid power management.

VII. CONCLUSION
In this paper, RL approaches applied to the scheduling of
power and energy in grid-tied microgrids has been reviewed.
The use of RL has been found to optimize energy in smart
homes, heterogenous power networks and to maximize profit
in peer-to-peer energy trading schemes. It has been observed
that the drawback of RL techniques such as the curse of
dimensionality and the exploration-exploitation dilemma has
significantly been overcome using themodern techniques that
combine RL and supervised learning. The current methods
such as AC and DDPG can be used online because of their
high efficiency and speed. However, modern deep RL tech-
niques still experience challenges such as data inefficiency
and instability. The application of BRL, experience replay
and target neural networks have been proposed in various
literature to address such difficulties with visible success.

Nonetheless, there are still outstanding issues in the appli-
cation of RL in control of power systems that require more
research attention. First, practicality and scalability are major
challenges especially when RL is applied in dynamic set-
tings. Practicality of RL in power systems control is severely
affected by the switching speed of the power conversion

equipment. Furthermore, most RL algorithms are developed
and tested using computer games, thus, adapting and scal-
ing them to the large power systems environment is still a
challenge. Finally, the difficulty in the tuning of RL algo-
rithmic hyperparameters affects reproducibility, reusability
and versatility of the developed algorithms. The issue of
complex balancing and tuning of algorithmic hyperparame-
ters is a significant limiting factor in the design of the RL
algorithms. Hand-coded tuning of intelligent algorithms may
limit the extent of learning the algorithms could achieve.
If the reinforcement learning algorithms are to be trained
to perform more complex tasks such as power management
in modern and future power systems, it would be important
that the tuning of their core hyperparameters be learnt by
the algorithms too. Also, conventional ways of reward engi-
neering assume the human designer understands the system
dynamics. However, that is not the casewith complex systems
such as modern and future power systems. In order to scale
the current RL algorithms to handle the complexity of power
systems, intrinsic reward mechanisms such as curiosity and
hindsight experience replay will be instrumental. It is this
authors’ view that such methods could be hybridized with the
current reward design techniques to produce better algorith-
mic learning outcomes in the future.
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