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ABSTRACT Surveillance radar is confronted with serious two-dimensional ambiguity (i.e., range dimension
and velocity dimension) and low signal-to-noise ratio (SNR) problems in the time sensitive (TS) target
detection process, which may result in the deterioration of target detection performance. Combining the
advantages of the intra-frame detection and the inter-frame detection, a novel two-step thresholds track before
detect (TBD) algorithm based on the integration techniques, i.e., two-dimensional ambiguity resolution and
multi-frame joint detection, is proposed in this paper. Firstly, the fusion design strategy, including the pulse
repetition frequency, the carrier frequency and the orthogonal waveform, is adopted in the transmitting
pulse sequence. As a result, not only the range ambiguity number and the spatial filling time are reduced
synchronously, but the decoupling of range-velocity ambiguity is realized, which is conductive to multi-
target detection in low SNR environment. Then, the first level adaptive threshold is obtained by employing
the judgment criterion based on cumulative value function (CVF), and thus the false trajectory number is
effectively eliminated from the perspective of cumulative amplitude. Finally, through analyzing the inherent
relation between the local trajectory characteristics and the global trajectory characteristics comprehensively,
different types of false alarm trajectories are further reduced by means of the polynomial coefficient variance
statistics. Experimental results verify the effectiveness of the proposed algorithm.

INDEX TERMS Pulse sequence, track before detect, two-dimensional ambiguity, cumulative value function,
trajectory characteristics.

I. INTRODUCTION
Due to the super-high speed as well as the small radar cross
section (RCS) of TS targets [1], serious two-dimensional
ambiguity [2], [3] and low SNR [4] problems cannot be
neglected in the detection process for surveillance radar
systems. TBD [5], [6] algorithms improve the target SNR
based on long-term energy accumulation strategy, which is
suitable for detecting weak target with small RCS. However,
the multi-frame temporal-spatial correlation is destroyed as
a result of the serious two-dimensional ambiguity, which
makes it difficult to extract the real target trajectories.

To address the aforementioned issues, many relevant solu-
tions from different perspectives have been presented in
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recent years.MMPHDF-DA algorithm [7], in which the range
ambiguity is fused with the trajectory association procedure,
is consolidated as the probability hypothesis density filter
(PHDF) method and can realize multi-target detection by
employing the mixed filtering model. Trajectory extraction
approach [8] is developed by means of the multiple pulse
repetition frequency (PRF) to estimate the range ambiguity
number, and thus, the multi-frame trajectories are formed
based on Hough transform. For high-resolution radar, weak
target particle filter algorithm [9] based on the measure-
ment model of intensity diffusion function is proposed to
verify the reliability of range ambiguity resolution in the
high PRF situation. In literature [10], the well-known multi-
hypothesis TBD value function under the range ambiguous
condition is demonstrated through constructing the extended
ambiguous measurement set. However, the above algorithms
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only give consideration to one-dimensional ambiguity case.
Also, the false alarm performance has not been qualitatively
evaluated.

For the false alarm trajectory elimination problem, it is
difficult to completely suppress different types of trajectories
via constant false alarm rate (CFAR) methods because the
mixed trajectories, such as the mixed trajectories composed
of noises and targets, are similar to the target trajectories
in terms of the value function [11]. Another type of typ-
ical methods also referred as the trajectory characteristic
approaches [12], are considered as an efficient way to further
reduce the false alarm trajectory number. Trajectory overlap-
ping algorithm [13], in the trajectory backtracking process,
could eliminate the false alarm trajectories induced by target
energy diffusion according to their multi-frame coincidence
feature with the real target trajectory. Note that the multi-
frame echoes of the noise trajectory are always irrelevant,
Li method [14] based on the deviation angle statistics could
eliminate this type of false alarm trajectories effectively.
However, in the aforementioned algorithms, the relationship
between the local trajectory characteristics and the global tra-
jectory characteristics is not adequately exploited, and hence
results in the false alarm performance degradation.

In this paper, a novel dynamic programming-track before
detect (DP-TBD) algorithm based on the extended two-
dimensional ambiguous measurement model is proposed,
where the basic idea is that the intra-frame detection and the
inter-frame detection are combined to obtain the trajectory
set as well as the corresponding two-dimensional ambigu-
ous number. Compared with the recent work, the proposed
algorithm takes the inherent characteristics of TS targets into
account in the two-step thresholds detection process and thus
to achieve a significant detection performance improvement,
which is verified from the experimental results.

The rest of this paper is organized as follows. The
fundamental of the extended two-dimensional ambiguous
measurement model is introduced in Section II. In Section III,
the proposed two-step thresholds DP-TBD algorithm is
depicted in detail, where the multi-target detection perfor-
mance and the multi-frame false alarm problem are analyzed.
Numerical results are given in Section IV to verify the effec-
tiveness of the proposed method. Finally, a brief conclusion
is drawn in Section V.

II. EXTENDED TWO-DIMENSIONAL AMBIGUOUS
MEASUREMENT MODEL
Suppose that there are M targets in the observation scene.
Radar echo is composed of K frames, each with an interval
of N coherent processing intervals (CPIs),CPIn stands for
the n th coherent processing interval (CPI) during one frame.
In rectangular coordinate system, the m th target motion state
in CPIn can be expressed as

xm,nk = [pm,nx,k , v
m,n
x,k , p

m,n
y,k , v

m,n
y,k ]

T (1)

where m = 1, 2, · · · ,M , k = 1, 2, · · · ,K , n =

1, 2, · · · ,N , pm,nx,k , p
m,n
y,k , v

m,n
x,k and vm,ny,k represent the positions

and velocities along X-axis and Y-axis, respectively. Thus,
multi-target motion equation is given by

xm,nk = Fxm,nk−1 (2)

Here, the transition matrix [12] of the target motion state is
represented by

F =


1

N∑
i=1

CPIn 0 0

0 1 0 0

0 0 1
N∑
i=1

CPIn

0 0 0 1

 (3)

For the pulse-Doppler radar, let variables rm,nk , θ
m,n
k and vm,nk

be the range, the azimuth angle and the radial velocity of
the m th target in CPIn, and thus the relationship with the
two-dimensional positions in rectangular coordinate system
is formulated as

rm,nk =

√
(pm,nx,k )

2 + (pm,ny,k )
2

θ
m,n
k = arctan(pm,ny,k /p

m,n
x,k )

vm,nk =

√
(vm,nx,k )

2 + (vm,ny,k )
2 cos(θ̃m,nk )

(4)

where arctan and cos denote the inverse tangent operation and
the cosine operation, θ̃m,nk is the included angle of the m th
target relative to the antenna’s main lobe direction.

In terms of the two-dimensional ambiguity situation,
the extended ambiguous range-velocity measurement model
can be represented as

r̃m,nk = rm,nk mod (Rm,nw )+ (l − 1)Rm,nw ,

l = 1, 2 · · · ,Rm,namb_num

ṽm,nk = vm,nk mod (vm,nw )+ (s− 1)vm,nw ,

s = 1, 2 · · · , vm,namb_num

(5)

where Rm,nw and vm,nw are the maximum unambiguous range
and the maximum unambiguous velocity, Rm,namb_num and
vm,namb_num are the corresponding ambiguous number in turn.
rm,nk mod (Rm,nu ) and vm,nk mod (vm,nu ) stand for the measured
range and the measured velocity of the radar system.
The K frame trajectory set of M targets in the observation

scene can be described as

X1:K =



(x1,11:K , x1,21:K , · · · , x1,n1:K , · · · , x1,N1:K )

(x2,11:K , x2,21:K , · · · , x2,n1:K , · · · , x2,N1:K )

...

(xm,11:K , xm,21:K , · · · , xm,n1:K , · · · , xm,N1:K )

(xM ,11:K , xM ,21:K , · · · , xM ,n1:K , · · · , xM ,N1:K )


(6)

According to the aforementioned ambiguous measurement
model, the decision criterion of DP-TBD algorithm can be
summarized asX1:K = argmax

X1:T
I(X1:K |Z1:K )

s.t.I(X1:K |Z1:K ) > Threshold
(7)
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where s.t. denotes the constraint function, argmax means
seeking the parameter relative to the maximum function
value. Threshold is the multi-frame accumulation threshold,
Z1:K is the multi-frame measurement echo set. I represents
the CVF under the two-dimensional ambiguity condition, and
its construction strategy will be discussed in section III.

III. PROPOSED METHOD
A. TRANSMITTING PULSE SEQUENCE DESIGN
For the transmitting pulse sequence design, we mainly pay
attention to the problem of the two-dimensional ambiguity
and the spatial filling time [15]. Hence, the pulse repetition
frequency, the carrier frequency and the orthogonal waveform
are merged together in the subsequent process. Suppose that
the cumulative pulse number during CPIn is Tn, and the cor-
responding orthogonal signals can be expressed as Sn(t), t =
1, 2 · · · ,Tn, which meet the orthogonality mutually, namely,

Sn(t) = Sn(t + Num)(1 ≤ t ≤ Tn − Num)∫
Sn(t)S∗n (t + t0)dt = 0(1 ≤ t0 ≤ Num− 1)(8)∫
Su(tu)S∗v (Tv − tv)dt = 0(tu, tv ∈ {1, 2} ,

u− mod(v,N ) = 1)

(8)

where 1 ≤ u, v ≤ N , (·)∗ and mod denote the conjugate
operation and the remainder operation, respectively.

FIGURE 1. TT pulse sequence.

In this paper, through the intra-CPI orthogonal code divi-
sion design as well as the inter-CPI orthogonal code divi-
sion + orthogonal frequency division design, the Two PRFs
& Two carrier frequencies (TT) orthogonal signal sets are
adopted in the transmitting pulse sequence, where four CPI
data are included in each frame, as illustrated in FIGURE. 1.
This approach ensures the orthogonality for adjacent pulses,
also, it is feasible for the project implementation. The trans-
mitting pulse parameters of the four CPIs in one frame are set
to (PRF1, f1) , (PRF1, f2) , (PRF2, f1) and (PRF2, f2), where

PRF1,PRF2, f1 and f2 denote the two PRFs and the two
carrier frequencies in the above TT pulse sequence, f1 and
f2 satisfy |f2 − f1| > B, B is the signal bandwidth.
Compared to the typical coincidence method [16], the TT

method has the following advantages.
1) Different carrier frequencies are employed in the adja-

cent CPIs and hence to separate different CPI data by virtue
of the filters with different center frequencies, which effec-
tively alleviate the cumulative signal-to-noise ratio (SNR)
loss induced by the spatial filling time.

2) For the sake of reducing the false alarm trajectory num-
ber caused by extended two-dimensional ambiguous data, the
two-dimensional ambiguity decoupling is realized using the
TT pulse sequence. That is, the CPI data sets which possess
the same PRF but at different carrier frequencies are firstly
applied to the velocity ambiguity resolution. Then, the CPI
data sets with different PRFs are employed to resolve the
range ambiguity.

3) According to the aforementioned orthogonal signal
model in equation (8), the range ambiguity number can be
reduced to 1

Num degree.

For the TT method, it should be noted that the return
data in the Doppler domain need to be converted to the
velocity domain. In this way, with regard to the same target,
the velocity positions related to different CPI data sets are
coincident in the absence of the measurement error, and thus
the coincidence method is applicable to the velocity ambigu-
ity resolution.

B. FIRST LEVEL THRESHOLD SETTING METHOD BASED
ON THE CUMULATIVE VALUE FUNCTION
For trajectory processing, considering that the accumulation
amplitude formed by targets and strong noises is close to that
totally formed by the real target in the trajectory backtracking
process, so it is difficult for the constant false alarm (CFAR)
algorithms to remove the mixed false alarm trajectories.
Clearly, CFAR criterion is only applicable to eliminate the
false alarm trajectories completely composed of the noise,
which possesses relatively low accumulation amplitude.

In order to improve the rationality of the first level thresh-
old, it is necessary to deeply mine the relationship between
the CVF and the N independent value functions. Hence,
both the two-dimensional ambiguity resolution efficiency
and the multi-frame detection performance are taken into
consideration through judging the trajectory composition
of CVF. Here, there are two ways to generate the CVF,
as depicted in FIGURE. 2. For the first generation mode
of CVF, the ambiguity resolution process based on N CPI
data during one frame is carried out before superposing these
unambiguous data, and the CVF is achieved by associat-
ing the multi-frame data. For the second generation mode
of CVF, however, the N independent value functions and
the corresponding trajectories are obtained before imple-
menting the trajectory ambiguity resolution process. On this
basis, the CVF is generated based on the summation of the

VOLUME 8, 2020 209269



Y. Li et al.: Two-Step Thresholds TBD Algorithm for TS Target

FIGURE 2. Different generation modes of CVF.

independent value functions. The advantage of the former one
is that the two-dimensional ambiguity resolution is completed
during one frame, which reduces the multi-frame association
complexity caused by extended two-dimensional ambiguous
data. However, a large number of ghost targets, especially in
the serious two-dimensional ambiguity and low SNR situa-
tion, are generated when conducting the intra-frame ambi-
guity resolution based on the coincidence method, which
greatly increase the false alarm trajectories in the trajectory
backtracking process. While the advantage of the latter one
lies in the generation mode of its value function, which is
formed by the multi-frame trajectory data with the same CPI
parameters rather than the single frame data with different
CPI parameters. In this way, the false alarm issue could be
mitigated by utilizing the multi-frame correlation character-
istics. Also, the false alarm trajectory number can be further
eliminated based on the trajectory ambiguity resolution for
velocity dimension and range dimension in turn. In respect
of the above CVFs, the coincidence method under M0/N0
criterion [17] is employed to resolve the two-dimensional
ambiguity, where the definition of the data coincidence in the
intra-frame ambiguity resolution process is that the measured
data of different CPIs in range-velocity domain is located in
the same resolution cell, and that of the trajectory coincidence
in the trajectory ambiguity resolution process indicates that
the measured data of different CPI within each frame is
located in the same resolution cell. Here, 2/4 criterion is
adopted for the two dimensional ambiguity resolution simul-
taneously based on the 4 CPI data during one frame. While
2/2 criterion is adopted for the velocity ambiguity resolu-
tion and the range ambiguity resolution asynchronously by

means of the multi-frame trajectory data. Based on the afore-
mentioned analysis, the second generation mode of CVF is
applied to the proposed method, in which the judgment crite-
rion of the corresponding trajectory composition is designed
as follows:

¬ If the maximum value of CVF and that of the N inde-
pendent value functions satisfies equation (9), the CVF is
considered to be formed by the noise measurement.

max(
∑
i
ICPI_i)

N
[
max(ICPI_1, ICPI_2, · · · , ICPI_N )

]< (1−10−δ/20) (9)

where the scale factor is set as δ = min[20 log10

(
max(

∑
i
ICPI_i)

η1
), 13]. Herein, log stands for the logarithmic

operation.
 If the maximum value of CVF and that of theN indepen-

dent value functions satisfies equation (10), the CVF is con-
sidered to be formed by the mixed measurement, such as the
noise, the multiple targets and the extended two-dimensional
ambiguous data. Meanwhile, for different CPI data within
each frame, we judge that there exist no coincidence between
the real targets and their mixed measurement.∣∣∣∣∣∣∣
max(

∑
i
ICPI_i)

N −max(ICPI_1, ICPI_2, · · · , ICPI_N )

max(ICPI_1, ICPI_2, · · · , ICPI_N )

∣∣∣∣∣∣∣
≤ 10−δ/20 (10)

® Analogous to the judgment criterion in , the CVF is
considered to be formed by the mixed measurement in case
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of equation (11) holds. The difference is that there exist
several coincidences between the real targets and the mixed
measurement among the multi-frame trajectory data.

max(
∑
i
ICPI_i)

N
[
max(ICPI_1, ICPI_2, · · · , ICPI_N )

]> (1+10−δ/20) (11)

Based on the above judgment criterion, for case ¬, the adap-
tive threshold T1 is equivalent to the CFAR threshold η1,
which is mainly used to eliminate the false alarm trajectories
caused by noises.

In heterogeneous environment, the probability density
function of the amplitude detectable quantity is given by [18]

f (x) =
γ (γ − 1)γ

(γ − 1+ x)γ+1
(12)

where γ = (2m2 − 2)/(m2 − 2) denotes the heterogeneity
degree of the observation scene.m2 is the second-order statis-
tics of the amplitude detectable quantity. Let the false alarm
probability be Pfa, the CFAR threshold can be represented as

η1 =
γ − 1(
Pfa
)1/γ + 1− γ (13)

Considering that the first level threshold is to eliminate the
false alarm trajectories which possess relatively low ampli-
tude for the CVFs. Also, to reduce the undetected probability
of the real targets, a high false alarm probability is allowed.
Therefore, Pfa is set to 10−3 in this section.

For case  and case ®, the adaptive threshold T1 is set
to η1 + (max(

∑
i
ICPI_i) − η1)(1 −

η1
max(

∑
i
ICPI_i)

). It can be

seen that T1 is proportional to the difference between the
maximum value of CVF and the CFAR threshold, which not
only ensures the reliable target detection, but also reduces
the false alarm trajectory number, including the trajectories
composed of the noise measurement and those composed of
the mixed measurement.

In conclusion, the first level threshold can be expressed as

T1 =



η1, situation¬

η1 + (max(
∑
i

ICPI_i)− η1)(1−
η1

max(
∑
i
ICPI_i)

),

situation

η1 + (max(
∑
i

ICPI_i)− η1)(1−
η1

max(
∑
i
ICPI_i)

),

situation®
(14)

Evidently, T1 can be simplified as

T1 =


η1, situation¬

max(
∑
i

ICPI_i)− η1 +
η21

max(
∑
i
ICPI_i)

,

situation,®

(15)

C. SECOND LEVEL THRESHOLD SETTING METHOD BASED
ON TRAJECTORY CHARACTERISTICS
Compared with real targets, the locations of the false alarm
points present a randomness in the inter-frame correlation
gate, hence the distribution characteristics between the real
target trajectories and the false alarm trajectories are sig-
nificantly different. In this section, based on the first level
adaptive threshold, the remaining false alarm trajectories are
further eliminated according to the idea of polynomial regres-
sion. Firstly, the local polynomial fitting method is applied
to the whole trajectories for each K0 frame data set. Thus,
solving the polynomial fitting coefficients is equivalent to
calculating the minimum value in equation (16).

min
β

K−K0+1∑
c=1

c+K0−1∑
k=c

(
Z∑
i=0

βc,i(p
m,n
x,k )

i
− pm,ny,k

)2

(16)

where β =
{
βc,i

}
, c = 1, 2, · · · ,K − K0 + 1, i =

0, 1, · · · ,Z .
For the local trajectories started at the cth frame, the poly-

nomial fitting coefficients β =
(
βc,0, βc,1, · · · , βc,Z

)T can
be obtained based on the least square method [19], as pre-
sented below.

1 pm,nx,c (pm,nx,c )
2

· · · (pm,nx,c )
Z

1 pm,nx,c+1 (pm,nx,c+1)
2
· · · (pm,nx,c+1)

Z

...
...

...

1 pm,nx,c+K0−1
(pm,nx,c+K0−1

)2 · · · (pm,nx,c+K0−1
)Z



×


βc,0
βc,1
...

βc,Z

 =


pm,ny,c
pm,ny,c+1
...

pm,ny,c+K0−1

 (17)

In equation (17), the least square solution is represented as
β = A+b, where A is the coefficient matrix, which sat-
isfies A+ =

(
ATA

)−1
AT. The superscripts (·)+ and (·)T

denote the generalized inverse operation and the transpose
operation, respectively. b is a column vector, namely, b =(
pm,ny,c , p

m,n
y,c+1, · · · , p

m,n
y,c+K0−1

)T
. Owing to the smooth trajec-

tory characteristics of TS targets, Z is set to 2, which meet
the polynomial fitting requirement of local trajectories. The
polynomial fitting vector is given by

β =
(
ATA

)−1
ATb (18)

It can be seen that the local trajectory characteristics are fully
exploited based on the above method by dividing the trajec-
tory into K segments. Then, the global trajectory character-
istics can be extracted by employing the global polynomial
coefficient variance statistic, which is defined as

9(β) =
Z∑
i=0

[
Var
c=1

K−K0+1(βc,i)
]

(19)

where 9(β) reflects the similarity of trajectory segments in
the whole trajectory.
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Thus, the false alarm trajectory elimination criterion is
described as follows:

If 9(β) < η
(Z+1)Ar
SNR , then the candidate trajectory is

regarded as the real target trajectory. Otherwise, it is deter-
mined as the false alarm trajectory. Here, the elastic coeffi-
cient η is set to 0.2, SNR represents the signal-to-noise ratio,
Ar is the resolution cell, which is related to the radar system
parameters.

D. TWO-STEP THRESHOLDS DP-TBD ALGORITHM
In order to improve the detection performance of TS targets,
the two-step thresholds DP-TBD algorithm is proposed in this
section, where the two-dimensional ambiguity resolution, the
TS-target detection and the false alarm trajectory suppression
problems are solved from the perspectives of the transmitting
pulse sequence design, the CVF-based first level threshold
setting strategy and the trajectory-based second level thresh-
old setting strategy. Compared with Li method [14] and
Zhu method [17], the TT pulse sequence is adopted in the
proposed method to alleviate the target SNR loss caused by
the range ambiguity and the spatial filling time. Moreover,
the judgment criterion of the first level threshold setting
procedure is given to adjust the threshold adaptively for dif-
ferent types of trajectories. That is, the false alarm trajectories
are eliminated based on the composition of CVF. Finally,
the false alarm trajectory number can be further reduced in
the second level threshold setting procedure by utilizing the
trajectory distribution characteristic difference between the
local trajectory and the global trajectory. The main steps of
the two-step thresholds DP-TBD algorithm are given below.

Step 1 Design of the transmitting pulse sequence.
Generating K frame echo data according to the TT pulse

sequence.
Step 2 Construction of the extended ambiguous

measurement.
Combined with the two-dimensional ambiguous num-

ber related to different CPIs, the extended ambiguous
range-velocity measurement can be obtained. On this basis,
the trajectory backtracking process is performed to get the
corresponding value function and the candidate trajectory set.

Step 3 Generation of CVF.
Compared with the intra-frame 2/4 criterion [17], the

multi-frame 2/2 criterion is adopted in the proposed method
to resolve the two-dimensional ambiguity, where the cumu-
lative SNR is applied to the trajectory ambiguity resolu-
tion process, and thus to promote the success probability
of two-dimensional ambiguity resolution. Based on the TT
ambiguity resolution strategy, the candidate target trajectory
set and the corresponding CVFs can be achieved by summing
the overlapped trajectory measurements related to different
CPIs. Here, the ambiguity resolution performance of different
algorithms will be detailedly analyzed in section IV.

Step 4 Setting the first level threshold.
For each backtracking trajectory, the judgment criterion

of the trajectory composition is designed based on the rela-
tionship between its CVF and the corresponding N value

FIGURE 3. Flow chart of the two-step thresholds DP-TBD algorithm.

functions, as a result, the candidate target trajectory set can
be obtained by employing the first level threshold.

Step 5 Setting the second level threshold.
The local trajectory characteristics and the global

trajectory characteristics are combined to form the polyno-
mial coefficient variance statistics, then the candidate target
trajectory set is updated by means of the second level thresh-
old.

Step 6 Extraction of the target trajectory set.
Seeking for the maximum value of CVF in the candidate

trajectory set, which is considered belonging to a real target
trajectory. Meanwhile, those trajectories coincided with the
existing target trajectory for more than L(L = K/3) frame
are eliminated [12].

Step 7 CVF update.
Suppose that the extended ambiguous position measure-

ment can be expressed as
{
Px, Py

}
. Vsum

{
Px, Py

}
and

VCPI_n
{
Px, Py

}
stand for the corresponding trajectory back-

tracking amplitude of CVF and that of the value function with
regard to CPIn, where the update criteria of Vsum

{
Px, Py

}
is

represented as

Vsum
{
Px, Py

}
=Vsum

{
Px, Py

}
−max

n
VCPI_n

{
Px, Py

}
(20)

Based on the above analysis, the updated CVF can be gener-
ated according to equation (20).

Step 8 Judging whether the candidate trajectory set meets
the termination condition.

If the maximum value of the updated CVF and that of the
N independent value functions conform to equation (21), stop
iteration and output the target trajectory set; Otherwise, turn
to step 6 and repeat the searching process for the new target
trajectories.

max(
∑
i

ICPI_i) <
N
[
max(ICPI_1, ICPI_2, · · · , ICPI_N )

]
2

(21)

FIGURE. 3 demonstrates the flow chart of the two-step
thresholds DP-TBD algorithm.

IV. EXPERIMENTAL RESULTS
Considering that there is no published real measured data for
TS targets, without loss of generality, the simulation results of
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multi-target echoes are generated in serious two-dimensional
ambiguity and low SNR environment, and hence the perfor-
mance of the proposed algorithm is evaluated comprehen-
sively from three aspects, i.e. ambiguity resolution, detection
probability and the false alarm trajectory suppression ability.

A. TWO-DIMENSIONAL AMBIGUITY RESOLUTION
PERFORMANCE ANALYSIS
Let K ,Timef and Pfa be the observation frame number,
the spatial filling time and the false alarm probability,
respectively. It is assumed that the SNRs are constant for the
four CPIs in each frame. P1 represents the detection probabil-
ity in one CPI, while P2 stands for that after taking the spatial
filling problem into account.P3 indicates the trajectory detec-
tion probability with regard to one PRF . Obviously, P2 and
P3 can be calculated according to P1,K ,Timef and Pfa [20].
Here, the spatial filling time Timef and Pfa are set as CPI/4
and 10−3, where Timef should be greater than the time delay
caused by range ambiguity. In fact, Timef may be higher as
a result of the wide coverage characteristic for surveillance
radar.

The success ambiguity resolution probability of the above
two ways to generate the CVF are analyzed quantitatively in
this section, in which the first generationmode and the second
generation mode are adopted in TT method and Zhu method
separately. That is, the means of the trajectory ambiguity
resolution and that of the intra-frame ambiguity resolution
are applied to these two approaches in turn. For TT method,
the success probability of the velocity ambiguity resolution
and that of the range ambiguity resolution based on the multi-
frame trajectory data can be expressed by (1 − (1 − P23)

2)
and (1− (1−P3)2)2, and thus the success probability of two-
dimensional ambiguity resolution is given by (1−(1−P23)

2)×
(1− (1−P3)2)2. For Zhu method, the two-dimensional ambi-
guity resolution is accomplished synchronously using multi-
ple sets of PRF data. However, considerable spatial filling
time should be reserved between adjacent PRFs to separate
differentCPI data, and the corresponding success probability
of two-dimensional ambiguity resolution is represented as(
1− (1− P2)4 − 4P2(1− P2)3

)K
. With the increase of the

observation frame number, the success probability of two-
dimensional ambiguity resolution related to the second CVF
can be improved as a result of its multi-frame detection
strategy. FIGURE. 4 shows the success probability curves of
two-dimensional ambiguity resolution using different meth-
ods, where P1 is selected as the horizontal coordinate value.
One can see that the success ambiguity resolution probability
of TT method possesses significant performance improve-
ment than that of Zhu method, which is consistent with the
theoretical analysis in section III.

B. DETECTION PERFORMANCE ANALYSIS
Assume that the observation scene is composed of
22500 units (150 range units × 150 velocity units), in which
6 targets move independently with uniform speeds. Let the
initial motion state of the m th target be [pm0 , v

m
0 ]

T ,where

FIGURE 4. Success probability of two-dimensional ambiguity resolution.

pm0 and vm0 stand for the measured range and the measured
velocity, m = 1, · · · , 6. Here, the initial states of these
6 targets are set as [10,30], [54, 60], [70, 105], [80, 65],
[85, 35] and [100, 100]. For each CPI, the relationship
between the SNR and the target amplitude satisfies SNR =
10 lg(A2/σ 2), where A and σ indicate the target amplitude
and standard deviation of noise, respectively.

FIGURE. 5(a) and FIGURE. 5(b) demonstrate the energy
accumulation diagrams with respect to no ambiguity case
and two-dimensional ambiguity case, where the single frame
SNR of each target is 8dB, both the range ambiguity number
and the velocity ambiguity number are set to 8, the total accu-
mulative frame number K is given by 8. Obviously, there are
many false alarm peaks in the observation scene after multi-
frame energy accumulation for two-dimensional ambiguity
case. Meanwhile, there are no evident peaks located in the
real target position. As a result, traditional CFAR detection
methods will inevitably lead to the missing detection of real
targets as well as the increase of false alarm target number.

In order to evaluate the detection performance in seri-
ous two-dimensional ambiguity and low SNR environment,
the detection probability curves versus SNR based on Li
method, Zhu method and the proposed method are com-
pared in FIGURE. 6, in which Monte Carlo simulation
times is selected as 500, the range-velocity ambiguity num-
ber related to the two PRFs in TT method are set to
(7, 5) , (11, 4), while the range-velocity ambiguity number
related to the four PRFs in Li method and Zhu method are
set to (5, 6) , (7, 5) , (11, 4) , (13, 2) in turn. Here, success-
ful detection of a candidate target meets the condition that
the amplitude of CVF exceeds the adaptive threshold, and
its position deviation from the real target in range-Doppler
domain is less than one resolution within each frame.

Compared with Li method and Zhu method, the proposed
algorithm presents excellent detection performance for all
the 6 targets. Among these methods, the missing detec-
tion problem can be avoided by means of Li method as
a result of employing one-step prediction strategy in the
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FIGURE 5. Energy accumulation diagrams.

update process of CVF. However, the renewal process of
the extended ambiguous range-velocity measurement is not
taken into consideration, which leads to the increase of
the first level adaptive threshold as well as the deteriora-
tion of multi-target detection performance. For Zhu method,
the ambiguity-resolved data is achieved based on intra-frame
data rather than inter-frame data, in which the advantage of
4 PRFs combination processing is discarded, and thus result
in the accumulated energy loss, especially for low SNR target.
Meanwhile, the number of false alarm trajectories is greatly
increased in the trajectory backtracking process because a
large number of ghost targets are formed when conducting
the intra-frame ambiguity resolution procedure. Also, this
method could only eliminate part of the ghost targets within
each frame, but not the false alarm trajectories generated from
multi-frame association, which is not suitable for joint TBD
processing. For the proposed method, the TT pulse sequence
is adopted to reduce the range ambiguity number and shorten
the spatial filling time between adjacent PRFs. Moreover,
the generation of CVF is accomplished before the trajec-
tory ambiguity resolution process. In this way, the original
CPI data within each frame can be retained to avoid the
accumulated energy loss. Further, we take target 5, which

has the worst detection probability among the 6 targets, as
an example to verify the reliability of the aforementioned
theoretical analysis. One can see that the detection probability
curve of the proposed method increases faster than those of
other methods, which shows obvious superiority under the
condition of low SNR environment (SNR<8dB), as shown
in FIGURE. 6.

C. FALSE ALARM PERFORMANCE ANALYSIS
The multi-target detection performance in serious
two-dimensional ambiguity and low SNR environment has
been demonstrated in the last section. Here, different methods
are employed to handle the candidate trajectory set and thus
to evaluate their false alarm performance, where the corre-
sponding CVFs are considered to be formed by three types of
false alarm trajectories, i.e., the noise trajectory, the extended
ambiguous measurement trajectory and those composed of
the mixed measurement. Therefore, the false alarm trajectory
suppressionmethods shouldmeet the inhibition ability for the
above mentioned false alarm trajectories. In order to compare
the false alarm trajectory suppression ability of different
methods intuitively, two-dimensional cartesian coordinate
system is adopted to reveal the trajectory distribution charac-
teristics. According to equation (11), the extended ambiguous
measurement positions of the k th frame, the n th CPI and the
m th target can be expressed as{

p̃m,nx,k = r̃m,nk cos(θm,nk )
p̃m,ny,k = r̃m,nk sin(θm,nk )

(22)

Figure 7 shows the candidate target trajectories using differ-
ent detection methods, where the red curves represent the real
target trajectories, and the blue curves indicate the candidate
trajectories, SNR is set to 6dB. In Figure 7(a), the extended
ambiguous measurement is neglected in the CVF update pro-
cess with regard to Li method, which leads to a large number
of false alarm trajectories in the candidate trajectory set.
In Figure 7(b), ambiguity matrix completion and elimination
strategy is adopted to form the CVF based on Zhu method,
and this method can only suppress the ghost targets generated
within a single frame, but not the false alarm trajectories
formed within multiple frames, so it is not suitable for multi-
frame joint detection. In contrast, the false alarm trajectory
number based on the proposed method reduces significantly
by applying the transmitting pulse sequence design method
combined with the CVF-based first level threshold setting
strategy, as presented in Figure 7(c). This is due to the range
ambiguity number decreases substantially by employing the
transmitting TT method, and hence the adaptive detection
threshold can be obtained through mining the trajectory com-
position of CVF in the first level threshold setting process,
in which the false alarm trajectories can be eliminated more
efficiently under the premise of robust multi-target detection.

Figure 8 contrasts the trajectory processing results with
different algorithms. In Figure 8(a), the trajectory update
technique based on one-step prediction strategy, proposed
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FIGURE 6. Detection probability using different methods.

in Li method, could reduce the target energy loss caused
by adjacent or intersecting jammings, but cannot effec-
tively deal with the false alarm trajectories caused by
the extended ambiguous measurement. Figure 8(b) demon-
strates the extracted trajectories using the joint strategy,

FIGURE 7. The candidate trajectories using different methods.

i.e. trajectory overlapping, direction histogram statistics and
Zhu method, which is simply applicable for suppressing
the noise trajectories as well as those which share several
frame data with the real target trajectory. Therefore, there
still exists a certain number of false alarm trajectories after
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FIGURE 8. The trajectory processing results using different algorithms.

trajectory processing. For the proposed method, the second
level threshold related to the local trajectory characteristics
and the global trajectory characteristics is derived to elim-
inate different types of false alarm trajectories, as shown
in Figure 8(c). One can see that only a few false alarm

trajectories with high similarity to the real target trajectory
are included among the extracted trajectories. Besides, target
6 is not contained in the extracted trajectories in terms of
Figure 8(a) and Figure 8(b). That is, target 6 is not success-
fully detected by means of Li method and Zhu method on
condition that SNR = 6dB, which is consistent with the
numerical results presented in Figure 6.

V. CONCLUSION
A two-step thresholds TBD algorithm based on dynamic
programming is proposed to solve TS target detection prob-
lem in low SNR environment, where the transmitting pulse
sequence, the adaptive amplitude threshold of CVF and the
global polynomial coefficient variance statistic are designed
sequentially. On one hand, the TT pulse sequence is adopted
in the transmitting pulse sequence, which is conductive to
the multi-target detection and the two-dimensional ambiguity
resolution. On the other hand, different types of false alarm
trajectories are effectively eliminated through judging the
trajectory composition of CVF and exploiting the relationship
among the multi-frame trajectory data. Experimental results
indicate that the proposed algorithm improves both the suc-
cess probability of ambiguity resolution and the multi-target
detection performance. However, the final target trajectory
set still contains a few false alarm trajectories, which possess
extremely similar trajectory characteristics to that of the real
target. Therefore, our future work will concentrate on extract-
ing other depth characteristics based on our existing research
to obtain better TS target detection performance.
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