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ABSTRACT Online aerodynamic parameter estimation plays an important role in compensating control
system of aircraft under parameter uncertainties and unknown disturbance. In this paper, stability and control
derivatives of aircraft are estimated online via support vector regression-numerical differential(SVR-ND)
method. Small-sample real-time flight data reflecting real-time aerodynamic characteristics of aircraft is
processed as training samples. For the small-size training samples, SVR technique is used for aerodynamic
modeling. To pursue good performance in both computation efficiency and estimation accuracy, offline
parameter estimation simulations are performed to select training sample size. It is observed that parameter
estimation accuracy is related to the number of training samples and the noise level of samples. After
that, an empirical formula is proposed to select training sample size according to results of simulations.
To adapt the variation of samples, empirical formulas to tune hyper-parameters of SVR are presented based
on the estimation of noise variance of samples. Finally, aerodynamic parameters are obtained by numerical
differential in real-time. In a simulated maneuver, the proposed method is applied to online aerodynamic
parameter estimation, and a Monte Carlo simulation is carried out to validate the robustness of SVR-
ND method. Results indicate that the proposed method could realize accurate and robust estimation of
aerodynamic parameters online.

INDEX TERMS Online aerodynamic parameter estimation, SVR-ND method, online model tuning.

NOMENCLATURE

V = airspeed, m/s
θ = inclination angle, deg or rad
α = angle of attack, deg or rad
ϕ = pitch angle, deg or rad
ωz = pitch rate, deg/s or rad/s
q = dynamic pressure, N/m2

m = mass, kg
g = acceleration of gravity, m/s2

S = reference area, m2

Jz = mass moment of inertia about z-axis of body
reference, kg·m2

L = chord length of aircraft, m
P = body-axis engine thrust, N
δe = elevator input, deg or rad
din = dimension of input vector

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanbo Chen .

nc = number of samples for training
CD = drag coefficient
CL = lift coefficient
Cm = pitch moment coefficient
CD0 = zero-lift drag coefficient
CαD = derivative of drag coefficient with respect to

angle of attack
CδD = derivative of drag coefficient with respect to

elevator
CαL = derivative of lift coefficient with respect to angle

of attack
CδL = derivative of lift coefficient with respect to

elevator
Cmα = derivative of pitch moment coefficient with

respect to angle of attack
Cmδe = derivative of pitch moment coefficient with

respect to elevator
Cmωz = derivative of pitch moment coefficient

with respect to pitch rate
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x = input vector of samples
y = target value
y = vector of target value
R = feature space
Rl = input space of ldimensional, l ∈ Z
ϕ(·) = operator of a mapping from input space Rl to

feature space
w = weighting vector
b = bias term
C = penalty factor
ε = insensitive factor
ξ∗i , ξi = slack variables
K (·) = operator of kernel function
f (·) = operator of regression function
n = number of samples
k = current moment of sampling
Ns = number of sampling
fD(·) = operator of regression function for modeling

CD
fL(·) = operator of regression function for modeling

CL
fm(·) = operator of regression function for modeling

Cm
nx = body axial overload
ny = body normal overload
t = time, s
d = degree of freedom of a high-complexity esti-

mator
σ = standard deviation of noise of target value of

training samples
σ̃ = estimated value of σ
CX ,CZ = body forces coefficients
Y = measurement data sequence for a variable
Up = upper bound of normalization
Low = lower bound of normalization
ymean = mean of the target values of training samples
σy = standard deviation of the target values of

training samples
e = prediction error, or noise of training sample

(they are equivalent in the paper)
λ1, λ2 = critical value to construct confidence interval
a = confidence coefficient
µ = mean of Gaussian distribution
λ = standard deviation of Gaussian distribution
λa/2 = critical value of Gaussian distribution
µp =mean of total distribution of one aerodynamic

parameter
µs = mean of estimates of one aerodynamic

parameter
λp = standard deviation of total distribution of one

aerodynamic parameter
λs = standard deviation of estimates of one aero-

dynamic parameter
ns = total runs of estimation (number of results of

one aerodynamic parameter)

SUPERSCRIFT

· = time derivatives
− = normalize
∧ = predict
∼ = estimate

I. INTRODUCTION
A. MOTIVATION
Acquiring accurate aerodynamic characteristic of an aircraft
is crucial for high-performance control system design and
expanding flight envelope [1], which helps verify overall
performance of aircraft via flight simulations and reduces
the risk in flight tests. Three approaches have been devel-
oped to obtain accurate aerodynamic characteristic of an air-
craft, including wind tunnel tests, computational method and
parameter estimation method. Wind tunnel tests and compu-
tational method are always performed before parameter esti-
mation to establish an aerodynamic model and obtain aero-
dynamic parameters. For aircrafts with simple aerodynamic
characteristics, such as axisymmetric aircraft at low speed,
wind tunnel test or computational method can generally
obtain accurate aerodynamic parameters. However, when the
flight condition becomes complex, the parameters obtained
by wind tunnel tests will be deviated from truth value a
lot because wind tunnel tests could not reproduce complex
flight environment with current technology. Moreover, lim-
ited wind tunnel tests can not cover all flight envelopes of
aircraft. Due to the deficiency of aerodynamic methodology,
computational method is prone to lose its efficiency under
complicated environmental flow, too. As a result, real flight
tests involving aerodynamic parameter estimation are often
carried out for verification [2]. Extracting the stability and
control derivatives from flight data is defined as aerodynamic
parameter estimation, which has become a routine step in
aircraft design and system performance evaluation [3]. More-
over, it helps enhance the confidence in the estimates of
the first two approaches. Up to now, a variety of aerody-
namic parameter estimation methods have been developed,
which can be divided into online estimation methods and
offline estimation methods. Offline estimation methods use
historical flight data sampled from flight trials. However,
an extremely limited number of trials are performed for
one-shot aircrafts such as missiles in order to reduce cost.
Therefore, it seems to be impractical to cover all flight
conditions in limited number of flight tests. The challenge
becomes even more serious for supersonic aircrafts due to
a larger velocity range, great uncertainty from aero-elastic
coupling, and transition/turbulence in the hypersonic flow.
To this end, online estimation techniques may be an ideal
approach to solve the problem. Online estimation methods
utilize real-time flight data so that aerodynamic parameters
can be obtained and applied to control system design in
real-time. It is pressing to develop an effective approach to
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estimate aerodynamic parameters online for aircrafts with
complex aerodynamic characteristics.

B. LITERATURE REVIEW
Conventional offline estimation methods include Equa-
tion Error Method (EEM) [4], Output Error Method
(OEM) [5], and various Kalman-type Filter Methods(KFM)
[6], such as unscented Kalman filter (UKF) [7]–[9], cubature
Kalman filter (CKF) [10], [11], and extended Kalman filter
(EKF) [12]. However, they usually need a priori and accurate
knowledge of dynamic model or initial values of the param-
eters. In the past few years, Artificial Neural Network(ANN)
serves a black-box method for aircraft system estimation
with perfect fault tolerant ability. The trained ANN often
acts as the dynamic model or the aerodynamic model. ANN
algorithms have been applied to aerodynamic parameter esti-
mation to avoid the deficiencies of traditional offline estima-
tion techniques. Delta method [13], [14], Zero method [15]
and Neural Partial Differential(NPD) [16] method are typi-
cal methods to extract aircraft aerodynamic parameters from
past flight data, in which ANN is employed to represent the
aerodynamic model. However, training process of ANN is
somewhat time-consuming and the generalization of ANN is
usually poor. Hence, parameter estimation methods based on
ANN are insufficient to realize online aerodynamic param-
eter estimation. With the improvement of flight capability,
the flight envelope of aircraft is becoming larger and the
environment of flight gets more complex. In this situation,
high performance autopilot depends more on accurate and
real-time aerodynamic parameters and the support of online
estimation techniques is increasingly needed.

A method [17] in the frequency domain based on finite
Fourier transform has been proposed to estimate aerodynamic
parameters in real-time. However, the frequency-domain
method requires empirical selection of size of time window
and single-size time window may not produce satisfactory
coherence over the whole frequency range. Least Squares
(LS) [18] and EKF are the most widely used time-domain
online aerodynamic parameter estimation methods, but both
of them require a prior dynamic model [19], [20]. Moreover,
LS only can be utilized to estimate parameters of linear
aerodynamic model, and it is difficult for EKF to obtain a
Jacobian matrix for system with complex nonlinear traits.
Machine learning technique is an effective approach to deal
with complex nonlinear system, two representatives of which
are ANN and Support Vector Machine(SVR) [21]. However,
as aforementioned, ANN has deficiencies in online modeling
of aerodynamics. Instead, SVM has a great potential to fulfill
the goal.

C. LIMITATIONS AND CONTRIBUTIONS
SVM has been widely used in the field of classification
and regression [22], [23]. Similar to ANN, SVR is able
to realize nonlinear mapping from input space to output
space, and shows a superior generalization performance over

ANN especially for small size sample [24]. SVR model is
established by solving quadratic programming and therefore
its solution is single and global minimum, while solution of
ANN may be trapped into local minimum [25]. In addition,
SVR can process high-dimension data and overcome the
‘‘curse of dimensionality’’ compared to ANN. The real-time
aerodynamic characteristics of aircraft are hidden in the
real-time flight data in short time interval, in other words,
current aerodynamic characteristics are reflected in a small
sample of real-time flight data. ε- SVR provides a good
option for real-time aerodynamic modeling based on small
samples. However, the hyper-parameters of SVR have a great
impact on model generalization performance and it is vital
to tune hyper-parameters when using ε- SVR online, there
is no systematic method to provide a guide for selection of
hyper-parameters of ε- SVR.
In the work, a method christened SVR-ND based on

ε- SVR for online aerodynamic parameter estimation is
developed. The contributions of this paper are as follows:

1. there is no need for any knowledge of aircraft dynamic
model or aerodynamic model. SVR-ND achieves real-time
aerodynamic modeling by ε- SVR by taking advantage of
the excellent learning performance of SVR on small size
samples. The SVR model has satisfactory generalization
capability and can be utilized for aerodynamic prediction.
Then numerical differential is adopted to extract aerodynamic
derivatives in real-time from the SVR model.

2. To ensure both estimation accuracy and computational
efficiency, empirical formulation in terms of dimension of
input and noise level is developed to select training sample
size online. Considering that hyper-parameters of ε- SVR
are difficult to be optimized online, empirical formulas to
tune model parameters are proposed to realize an excellent
generalization performance of ε- SVR model. Based on the
asymptotic estimation of noise variance of training samples,
hyper-parameters of ε- SVR are selected online.
3. The proposed method can estimate aerodynamic para-

meter online accurately and robustly with a low time over-
head. It also has a good scalability and can be used not
only as an offline method, but also an online method to
provide support for online flight ability prediction based on
aerodynamic prediction capability of SVR model.

D. PAPER ORGANIZATION
The paper is organized as follows: Section II presents air-
craft dynamic model and aerodynamic parameters. Method-
ology of ε- SVR is given in Section III. Section IV presents
SVR-ND method and describes the process of aerodynamic
modeling using ε- SVR, including offline parameter estima-
tion simulation analysis. In Section V, online aerodynamic
parameter estimation is implemented using proposed method
and a Monte Carlo test is carried out to examine robustness
of the method, with results and discussions given. Finally,
the last part draws a conclusion of the study.
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II. DYNAMIC MODEL AND POSTULATED AERODYNAMIC
MODEL
To describe the motion of aircraft and generate flight data, a
longitudinal motion of aircraft is considered in this work. The
longitudinal model with 3 degree of freedom(DOF) is given
as follows:

V̇ = (P cosα − qSCD − mg sin θ )/m

θ̇ = P sinα/mV + qSCL/mV − mg cos θ/V

ω̇z = CmqSL/Jz
ϕ̇ = ωz (1)

For the convenience of evaluating the performance of the
proposed method, assuming that the longitudinal aerody-
namic model is linear. The postulated aerodynamic model is
given as:

CD = CD0 + CαD |α| + C
δ
Dδe

CL = CαL α + C
δ
Lδe

Cm = Cmαα + Cmδeδe + Cmωzωz (2)

The unknown parameters to be estimated include CD0, CαD,
CδD, C

α
L , C

δ
L , Cmα , Cmδe , Cmωz .

III. METHODOLOGY OF SVR
In the paper, ε- SVR is used to model aerodynamics of the
aircraft in real-time. A brief introduction of the methodology
of ε- SVR is described as below.

For a set of n training samples

(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xn, yn) x ∈ Rl, y ∈ R

the goal of SVR is to find a regression function

f (x) = wTϕ(x)+ b (3)

such that the training data can be accurately fitted, whereϕ(x)
represents a mapping from input space Rl to feature space, w
and b are weighting vector and bias term, respectively.
According to the principle of structural risk minimization,

SVR yields the following optimization goal:

min
1
2
‖ω‖2 + C

n∑
i=1

(
ξi + ξ

∗
i
)

subject to


yi − f (xi, ω)− b ≤ ε + ξ∗i
f (xi, ω)+ b− yi ≤ ε + ξi
ξi, ξ∗i ≥ 0, i = 1, 2 . . . , n

(4)

whereC is a positive constant called penalty factor, ε is insen-
sitive factor, ξ∗i and ξi are slack variables which guarantee that
there exists a solution under the constraint.

The above optimization problem can be transformed into a
dual problem [26]. In this paper, the sequence minimum opti-
mization (SMO) method is used to solve the dual problem,
and the solution can be rewritten as

f (x) =
n∑
i=1

(
βi − β

∗
i
)
K (xi, x)+ b (5)

where K (xi, x) = (ϕ (xi) · ϕ (x)) is the kernel function, such
as Linear kernel, Polynomial kernel and Gaussian kernel;
βi and β∗i are the solution for the dual problem, which are
called Lagrange multipliers and subjected to constraints 0 ≤
βi, β

∗
i ≤ C .

The generalization performance of SVR depends on the
choice of hyper-parametersC, ε and the kernel parameters.C
adjusts the ratio between confidence interval and the empir-
ical risk, i.e. determining the trade-off between the model
flatness and the training error. ε determines the width of the
ε- insensitive zone, thus affecting the number of support vec-
tors and fitting precision. The bigger the value of ε, the more
complex the model. The choice of kernel parameters can be
neglected, as the linear kernel is selected in the present work.
To minimize the structural risk, the paper mainly focuses on
the tuning of hyper-parameters C and ε.

There are a number of optimization approaches to choose
C and ε, which can mainly be categorized into unintelli-
gent optimization method and intelligent method. The typi-
cal unintelligent methods include Grid Search method [27],
gradient descent algorithm [28] and Cross-validationmethod.
Intelligent optimization method comprises Particle Swarm
Optimization algorithm [29], Artificial Bee Colony algo-
rithm [30], Sine Cosine algorithm [31], etc. However,
no systematic methodology has been developed for tuning
hyper-parameters of SVR up to now.

The following empirical formula [32] has been proposed
to determine C, ε.

C = max
(∣∣ymean + 3σy

∣∣ , ∣∣ymean − 3σy
∣∣)

ε = 3σ

√
ln n
n

(6)

The variance of noise is estimated according to the following
formula [26]

σ̃ 2
=

n
n− d

·
1
n

n∑
i=1

(
yi − ŷi

)2 (7)

where d is the degree of freedom of a high-complexity
estimator such as polynomial regression. The method has
a simple selection mechanism but may not achieve optimal
choice of C and ε.

IV. THE SVR-ND METHOD
For the purpose of online aerodynamic parameter estimation,
the SVR-ND method combines nonlinear modeling capabil-
ity of SVR with numerical differential principles of Delta
method. SVR avoids the deficiency of overfitting in Delta
method and improves generalization of aerodynamic model.
SVR-NDmethod begins with real-time flight data processing
to obtain training samples. Then ε- SVRmachine is employed
to construct aerodynamic model online based on training
samples.

Given the following real-time flight data
[α(i), δe(i), ωz(i),CD(i),CL(i),Cm(i)] i = k, k−1 . . . , k−

1 − Ns where k represents the current moment of sampling
and Ns is the number of sampling.
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The objective of aerodynamic modeling is to establish the
relationship between target variables (CD,CL ,Cm) and state
variables (α, δe, ωz). Specifically, three multi-input single-
output(MISO) aerodynamic models will be separately con-
structed using ε- SVR, namely

CD = fD(α, δe)

CL = fL(α, δe)

Cm = fm(α, δe, ωz) (8)

The size of samples will be separately selected to model
CD,CL ,Cm and the selection of sample size will be discussed
in subsection IV.B.

Once the aerodynamic modeling is completed, numerical
differential is performed to obtain stability and control deriva-
tives in real-time. The detailed process is as follows: Perturb
one of the input variables by adding a small variable and keep
all other variables constant. The corresponding derivative
equals the output variation divided by the input variation.

To ensure the robustness of themethod, numerical differen-
tiation is performed at each sample point. And the derivative
to be estimated is equal to the mean value of all estimates of
such derivative at different sample points. For instance, CαL is
obtained by

CαL =
1
n

n∑
i=1

(
f̄L(ᾱi +1ᾱ, δ̄ei)− f̄L(ᾱi, δ̄ei)

)
/1α (9)

Eq.(9) can be easily derived by Min–Max normalization. The
normalization of training samples will be discussed later.

However, there exists a special case, where a constant term
CD0 in the expression of CD in Eq.(2) can be obtained by the
following formula

CD0 =
1
n

n∑
i=1

(
yi − CαL αi − C

δ
Dδei

)
(10)

Notate that the SVR-ND method could also be applied
to offline estimation, where the data to be processed in the
procedure of estimation is historical flight data.

A. DATA PROCESSING
Training samples is an essential precondition for aerody-
namic modeling. The remainder of the subsection describes
how to process data to acquire training samples.

The measurable variables include angle of attack α, the
elevator input δe, the pitch rate ωz, the body axial overload
nx , the body normal overload ny and the dynamic pressure q.
Force coefficients and moment coefficients cannot be mea-

sured directly, so following simplified formulas are needed to
acquire them

CD = −CX cos(α)− CZ sin(α)

CL = CX sin(α)− CZ cos(α)

Cm = [Jzω̇z] /qSL (11)

where ω̇z is calculated based on measurement value of the
pitch rate ωz using numerical differential method, the body

forces coefficients (CX ,CZ ) are expressed as:

CX = mnx/qS

CZ = mny/qS (12)

Before training, there is an another problem that needs
to be considered. In present application, different original
variables in sample are obtained in different scale or in vari-
ous range. Thus, normalization is supposed to be performed
on training samples. Studies have proved that normalization
helps improve the generalization performance and the learn-
ing speed [33]–[35].

An alternative and simple choice is the Min–Max nor-
malization. The form of the Min–Max normalization is as
follows:

Ȳ (i) =
Y (i)−min(Y )

max(Y )−min(Y )
· (Up− Low)+ Low (13)

Here we take Low = −1,Up = 1, thus each variable in
samples is separately normalized into [−1, 1].

B. SELECTION OF TRAINING SAMPLE SIZE
Since aerodynamic derivatives are obtained by perturbing
input variable at sample points, the generalization perfor-
mance of SVR model has a great influence on the estimation
accuracy of parameters. Exactly speaking, the generalization
performance of the model is affected by noise level and data
sparsity.

On one hand, the generalization performance of model
depends on the sparseness of training data. As the input
dimension increases, the available data becomes sparse rela-
tively. An accurate and reliable modeling requires more train-
ing samples for machine learning approaches such as SVR.
Since input dimension of model of Cm is larger, modeling for
Cm requires more training samples compared with modeling
for CD or CL .
On the other hand, the noise level is related to the gener-

alization performance of model. Suppose an effective SVR
model has been constructed based on training samples. For
truth target value y and prediction target value ŷ at any input
point x, there is y = ŷ + e, where e is error which can be
considered as the noise of training samples. Assuming that
e obeys Gaussian distribution with zero mean and variance
σ 2, written in the form e ∼ N (0, σ 2). It follows that y ∼
N
(
ŷ, σ 2

)
. Then the following relation can be derived: y−ŷ

σ
∼

N (0, 1). Define a function Z
(
ŷ
)

Z
(
ŷ
)
=
y− ŷ
σ
∼ N (0, 1) (14)

where the distribution of Z
(
ŷ
)
is independent of the distri-

bution of ŷ. For a given confidence coefficient a, there exists
critical value λ1 and λ2 such that

P (λ1 ≤ Z ≤ λ2) = 1− a (15)

where λ1 and λ2 could be obtained by looking up tables of
Gaussian distribution. From Eq.(15), confidence interval of ŷ
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in terms of a can be solved. For a = 0.05, 95% confidence
interval of ŷ is

[
ŷ− 1.96σ, ŷ+ 1.96σ

]
.

Obviously, with the increase of σ , the width of the con-
fidence interval of ŷ increases and the uncertainty of the
predicted value ŷ becomes greater accordingly. In practice,
the noise variance σ 2 is estimated from the sum of square
of fitting error of training samples as Eq.(9). For small-size
samples, the estimate of the variance σ 2 may be deviated from
truth value. In consequence, for reducing the estimation risk
of noise variance caused by small samples, variance estima-
tion should depend on large samples. In addition, the time cost
of SVR-ND method should be considered. Online parameter
estimation using training samples with different sizes will
cost different time. Hence, the relationship between the cost
of estimated time and the sample size needs to be explored.

According to later simulation results, with the increase of
the number of samples, time cost of aerodynamic param-
eter estimation increases. And when a maximum training
sample size (about 250 samples) is adopted, the SVR-ND
takes no more than 180ms running on a computer with a
main frequency of 2.5 GHz, which can satisfy the needs of
online parameter estimation. Hence, we no longer consider
the influence of sample size on computational efficiency
and the influence of the training sample size on accuracy of
aerodynamic parameter estimation will be discussed in detail.

To demonstrate the relationship between accuracy of esti-
mation and noise level and training sample size, the SVR-ND
methodwas firstly applied to off-line aerodynamic estimation
and the Grid search method [27] was used to determine
the hyper-parameters C, ε. The dynamic model Eq.(1) and
aerodynamic model Eq.(2) were used to generate simulated
historical flight data. Relevant parameters of aircraft are listed
in TABLE 1.

TABLE 1. Parameters of aircraft.

To excite the mode of motion of the aircraft, a longitudinal
maneuver was carried out by applying sine elevator input with
a duration of 4 s. The sine elevator input is expressed as

δe (t) = 2 sin(π t) (deg) t ∈ [0, 4]

The historical flight data was recorded with a sampling
time of 0.01 s. Assuming that there was no wind effect on
aircraft.

The time histories of α, δe,wz, nx , ny, q are shown in Fig.1.
ε- SVR was used for aerodynamic modeling. In Fig.2,
the coefficients of force and moment CD,CL ,Cm through
calculation and SVRmodeling based on the first 150 samples
are given. It can be seen that the SVR model outputs in the
first 1.5 seconds (corresponding to the first 150 samples) and
the last 2.5 seconds (corresponding to the last 250 samples)
fit well with the calculated force and moment coefficients.
It is shown that the SVR aerodynamic models have excellent
generalization performance.

FIGURE 1. Simulated flight data(3% noise).

FIGURE 2. The coefficients of force and moment by calculating and SVR
modeling(3% noise, sample size n=150).

Then stability and control derivatives were estimated
through perturbing each input variable individually, namely,
by adding disturbance variable with amplitude of 0.05 to
each input variable. The results of parameter estimation are
listed in TABLE 2, where results in parenthesis represent the
absolute value of relative deviation of estimated value with
respect to truth value of parameters, given as

|RD| =

∣∣∣∣estimated value− truth valuetruth value

∣∣∣∣× 100% (16)

Under 3% noise, the estimated value is close to truth value,
which verifies the effectiveness of the proposed method.
To further explore the influence of noise on identification
results, Gaussian white measurement noise with zero mean
and intensities of 5% and 7% were added to all motion
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FIGURE 3. |RD| of parameters of drag force for noise of varying intensity.

FIGURE 4. |RD| of parameters of lift force for noise of varying intensity.

FIGURE 5. |RD| of parameters of pitch moment for noise of varying
intensity.

variables. Parameter estimation results with noise of varying
intensity are shown in TABLE 2. The absolute value of RD of
estimated parameter are shown in Figs.3-5. It is observed that
the estimation accuracy decreases with the increase of noise
level. Nevertheless, as the number of samples increases, the
adverse effect of noise on estimation accuracy is decreased.

Specifically, to examine the sensitivity of estimation results
to the number of training samples via experiments, samples
of different size were used to construct aerodynamic model
with 3% noise. The results of offline parameter estimation
are given in TABLE 3. Figs.6-8 show the absolute value of
relative deviation of estimated parameter based on various
number of training samples. It can be clearly seen that the
larger the sample size, the higher the estimation accuracy.

From the above simulation results, it is concluded that
parameter estimation accuracy has a negative correlation with
noise level and has a positive correlation with the number of
training samples or sparsity of data. Selection of the num-
ber of samples to achieve the goal of estimate aerodynamic
parameters accurately (satisfy certain accuracy) under certain
noise level is concerned. And a large number of offline trials
were carried out to find a proper training sample size for

TABLE 2. Offline parameter estimation results with noise of varying
intensity.

FIGURE 6. |RD| of parameters of drag force for training samples of
different size.

FIGURE 7. |RD| of parameters of lift force for training samples of
different size.

FIGURE 8. |RD| of parameters of pitch moment for training samples of
different size.

aerodynamic modeling. The strategy in the paper is to select
the minimum number of samples on the premise of obtaining
accurate aerodynamic derivative (|RD| of estimation is less
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than 10%). Then, the satisfied number of samples in various
simulation conditions can be obtained by changing the noise
level and input dimension. Finally, the relationship between
number of samples and the noise level and input dimen-
sion could be obtained by a fitting formula. The following
empirical formula in terms of dimension of input and noise
level is presented to choose the number of samples for online
modeling.

nc = 40din(1+ τσ ) (17)

where τ is a constant taken as 15∼20. In online use, σ
would be estimated based on real-time flight data and input
dimen-sion din are known. Once σ and din are given, the num-
ber of samples to be used for aerodynamic modeling could be
determined.

C. ONLINE MODEL SELECTION
Flight is a dynamic process, where the characteristics of flight
data and training samples change constantly, so it is neces-
sary to tune hyper-parameters online to adapt the variation
of samples. There has been no completely proper method
to optimize hyper-parameters C and ε online. To this end,
the empirical formula Eq.(6) provides a potential approach to
fulfill the goal.

Due to normalization of the samples, the distribution char-
acteristic of data is changed relative to the original data.
Eq.(6) needs to be modified according to normalized param-
eters. Define mean value of sample errors

υ =
1
n

n∑
i=1

ŷi − yi (18)

The choice of ε depends on the variance of υ [32]. Given the
following theorem of the Gaussian distribution: for a variable
X , if X ∼ N

(
µ, λ2

)
, then cX+d ∼ N

(
cµ+ d, (cσ )2

)
exists

for real numbers c and d . According to the above theorem,
υ ∼ N

(
0, σ̄ 2

)
is could be derived, and σ̄ can be obtained by

σ̄ = Kσ (19)

where K = (Up−Low)
max(y)−min(y) , y is the vector of target value.

Combining Eqs.(6)(17)(19) yields the following equation

ε = 3K σ̄

√
ln (40din(1+ τ σ̄ ))
40din(1+ τ σ̄ )

(20)

In order to reduce the overhead of online computation,
SVR aerodynamic model (estimator) is used to estimate
standard deviation σ instead of selecting other estimators.
In each estimation, σ is estimated based on new training
samples by Eq.(7). The estimated σ is employed to yield
new estimates of standard deviation, which are then applied
to the determination of ε in the later estimations in the
following way

σ̃j−1 =
1

j− 2

j−2∑
p=1

σ̃p, j > 1 (21)

where σ̃j−1 represents the (j− 1)th estimated value of σ .
As the j increased, more and more samples are employed
to estimate σ , which makes σ̃ approximate its truth value
gradually.

Parameter C is given by

C = max
(∣∣ȳmean + 3σ̄y

∣∣ , ∣∣ȳmean − 3σ̄y
∣∣) (22)

In general, the following formulas are applied to online
selection of hyper-parameters in the jth estimation:

Cj = max
(∣∣ȳmeanj + 3σ̄yj

∣∣ , ∣∣ȳmeanj − 3σ̄yj
∣∣)

εj = 3Kjσ̃j−1

√
ln
(
40din

(
1+ τ σ̃j−1

))
40din

(
1+ τ σ̃j−1

) (23)

In online use, once the samples for modeling are determined,
the mean value of samples ȳmean and the standard devia-
tion σ̄y are then determined. K could also be determined by
nor-malized parameters. Then parameter C is determined.
Input dimension din are known. The standard deviation of
sample noise σ could be estimated by Eqs. (7) (17). Then ε
could be determined.

V. ONLINE PARAMETER ESTIMATION RESULTS AND
DISCUSSION
Online aerodynamic parameter estimation was implemented
during a longitudinal maneuver. Real-time flight data were
generated using dynamic model Eq.(1) and aerodynamic
model Eq.(2). Sine elevator input with a duration of 10s was
applied to the longitudinal maneuver. The expression of sine
elevator input is adopted as

δe (t) =

{
2 sin(π t) (deg) t ∈ [0, 6)
6 sin(π t) (deg) t ∈ [6, 10]

Taking measured noise with intensity of 5% into account,
real-time flight data of α, δe,wz, nx , ny, q is shown in Fig. 9.
Coefficients of force and moment CD,CL ,Cm are computed
online. Fig. 10 shows the variation of the force and moment
coefficients during the maneuver.

During the maneuver, the SVR-ND method was
applied to real-time estimation of aerodynamic derivatives.
Figs.11-13 show the online parameter estimation results. To
ensure the estimation accuracy, parameter estimation should

FIGURE 9. Simulated flight data.
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TABLE 3. Offline parameter estimation for training samples of different size (3% Noise).

FIGURE 10. The calculated coefficient of force and moment.

FIGURE 11. Online parameter estimates for derivatives of CD.

be carried out after a certain number of samples are accu-
mulated. Therefore, one second after maneuver started, esti-
mation of aerodynamic parameters for drag force coefficient
and lift force coefficient was carried out for the first time.
As described in subsection 4.2, more samples are required
to model coefficient of pitch moment. Hence, for derivatives
of pitch moment, the first estimation was carried out at
2.5 seconds during themaneuver. Each subsequent estimation
was performed every 0.5s for all aerodynamic parameters as
there were enough samples in the database. It can be seen
that the results of each estimation are different and scattered
around the truth value.

The estimated value of σ and variation of training samples
size nc for modeling CD, CL and Cm are shown in Figs.14-16.
It can be seen that the size of training sample for pitch

FIGURE 12. Online parameter estimates for derivatives of CL.

FIGURE 13. Online parameter estimates for derivatives of Cm.

moment modeling is greater than that for lift and drag force
modeling due to larger input dimension and larger noise
variance of target value. In addition, the number of samples
nc varies with the noise level. To be specific, training sample
size increases with increase of the noise variance. This adap-
tation to noise and input dimensions makes sense. Generally
speaking, a larger sample size means a higher computational
overhead, while too small samples will lead to a decrease in
estimation accuracy. The online selection of training sample
size avoids the contradiction.

In each estimation, the aerodynamic model was first con-
structed using ε- SVR. The insensitive factor ε and penalty
factor C were given as ε = 0.01,C = 1.0 in the first
identification. Except for the first estimation, the size of
training sample and model hyper-parameters were selected
online based on the estimation of noise variance, as expressed
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FIGURE 14. Online tuning results of model parameters for modeling CD.

FIGURE 15. Online tuning results of model parameters for modeling CL.

FIGURE 16. Online tuning results of SVR model parameters for
modeling Cm.

in Eq.(17) and Eq.(23). Figs.14-16 show online tuning of
hyper-parameters of ε- SVR for modeling CD, CL and Cm,
respectively. The variation process of ε, σ and nc indicates
that a larger σ corresponds to a larger ε and a larger nc.
Adjusting hyper-parameters online avoids possible problems
caused by fixed hyper-parameters, such as poor generaliza-
tion performance and low fitting accuracy.

A. MONTE CARLO TEST
To validate the noise robustness of the proposed method,
a Monte Carlo test was carried out by applying Gaussian
white noise with intensity of 5% on measurable variables.
Considering that the attitude of the aircraft may be dis-
turbed by parameter uncertainties or unknown state input,
online estimation should be performed as soon as possible.
The Monte Carlo test was carried out particularly for the
first estimation during the maneuver. The first estimation
was repeated 200 times. SVR-ND method was used to esti-
mate aerodynamic parameters at each run. Fig.17 shows his-
tograms of estimation results of CD0,CαD,C

α
L for 200 runs,

where the red line represents truth value of aerodynamic
parameters.

Since it is difficult to get certain information about the total
distribution of aerodynamic parameter estimates, Central-
Limit Theorem (CLT) is adopted to perform an interval esti-
mation. When the number of estimates for each aerodynamic
parameter is large enough, according to CLT there exists

µs − µp

λp

√
ns ∼ N (0, 1) (24)

And for a given confidence coefficient a, there exists a critical
value λa/2 such that

P
(
−λa/2 ≤

µs − µp

λp

√
ns ≤ λa/2

)
= 1− a (25)

where λa/2 could be obtained by looking up tables of Gaus-
sian distribution. By solving Eq.(26), confidence interval of
µp about confidence 1− a can be derived as(

µs − λa/2
λp
√
ns
, µs + λa/2

λp
√
ns

)
(26)

Since mean of total distribution of aerodynamic parameter
is unknown, λs could be used in place of λp. Then confidence
interval of µp about confidence 1− a is(

µs − λa/2
λs
√
ns
, µs + λa/2

λs
√
ns

)
(27)

TABLE 4 shows the results of interval estimation of param-
eter estimates for 200 runs, where a is taken as 5% (λa/2
equals 0.5199). It is obviously that the mean of parameter
estimates is close to the truth value and the scattering magni-
tude of almost all parameter estimates is small, except for CδD
and Cmωz . The situation is acceptable because CD0 and CαDα
account for a large proportion of CD and Cmωzωz accounts for
a small proportion of the Cm. As shown in TABLE 4, for all
aerodynamic parameters, width of 95% confidence interval
of is small and critical value of confidence interval is close to
their truth values. The results of interval estimation confirm
the effectiveness and robustness of the proposed method in
obtaining real-time parameter estimates, as far as estimation
accuracy and reliability are concerned.

Consequently, it is reasonable to use mean value of
parameter estimates when a great number of flight tests are
performed.

B. COMPUTATIONAL EFFICIENCY
To further evaluate the computational efficiency of the
method, 10 runs of aerodynamic parameter estimation using
SVR-ND method were carried out for entire maneuver pro-
cess (10 s) on a computer with a main frequency of 2.5 GHz.
Other simulation conditions are the same asMonte Carlo test.
The average time overhead of some estimations is demon-
strated in TABLE 5.

The results in Table 5 suggest that with the increase of
the number of samples, time cost of aerodynamic param-
eter estimation increases. And when a maximum training
sample size (264 samples) is adopted, the SVR-ND takes
no more than 181ms, which can satisfy the needs of online
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FIGURE 17. Online parameter estimation results of Monte Carlo Simulation for 200 Runs.

TABLE 4. Online parameter estimation results using SVR-ND method.

TABLE 5. Estimated time of 10 runs for different sample size.

aerodynamic parameter estimation (performed per 0.5s). And
when less samples are used, the estimated time will decrease
accordingly. Therefore, the proposed method is efficient to
estimate aerodynamic parameters in real-time.

VI. CONCLUSION
In this work, SVR-ND method is exploited to estimate sta-
bility and control derivatives of aircraft online. Real-time
flight data is employed to model the aerodynamic force and
moment coefficients by applying ε- SVR technique. Numer-
ical differential is used to estimate aerodynamic parameters.
To demonstrate the relationship between estimation accuracy
and noise level or training sample size, the proposed method
is first applied to offline parameter estimation based on sim-
ulated historical data. Simulations show that the estimation

accuracy is negatively correlated with noise level but posi-
tively correlated with the number of samples. In a simulated
maneuver, SVR-ND method is applied to online parameter
estimation. And the Monte Carlo simulation results indicate
that SVR-ND algorithm is able to accurately estimate stabil-
ity and control derivatives and shows excellent robustness to
unknown measure noises. The aerodynamic model generated
by SVR-NDmethod is proved to have a good fitting precision
and an excellent generalization performance. In the process
of online aerodynamic modeling, variance noise of flight
data is estimated, and empirical formulas are proposed to
tune training sample size and hyper-parameters of model
according to noise level.

Based on the intelligent nonlinear modeling capability of
SVR, the SVR-ND method is a model-independent online
estimation algorithm. Even if a linear aerodynamic model is
adopted in the research, the proposed method based on SVR
can be extended to aerodynamic modeling and parameter
estimation for nonlinear system. For an aircraft with large
flight envelope, such as hypersonic vehicle, flight tests cannot
cover all real flight envelopes. Under this condition, online
aerodynamic estimation method based on real-time flight
data of small sample is required to realize accurate distur-
bance observation and precise compensation for control sys-
tem of aircraft. The method proposed in this paper provides a
promisingway to solve the problem. In addition, the proposed
method has a potential to solve other estimation problems
in engineering, such as estimation of dynamic coefficient of
ship [36], [37].
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