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ABSTRACT We study models and algorithms for Programmable Matter (PM), that is matter with the ability
to change its physical properties (e.g., shape or optical properties) in a programmable fashion. PM can be
implemented by assembling a system of weak self-organizing computational elements, called particles, that
can be programmed via distributed algorithms to collectively achieve some global task. Recent advances in
the production of nanotechnologies have rendered such systems increasingly possible in practice, thus trig-
gering research interests from many areas of computer science. The most established models for PM assume
that particles: are modeled as finite state automata; are all identical, executing the same algorithm based on
local observation of the surroundings; live and operate in the cells of a hexagonal grid; canmove from one cell
to another by repeatedly alternating between a contracted state (a particle occupies one cell) and an expanded
state (a particle occupies two neighboring cells). Given these elementary features, it is rather hard to design
distributed algorithms even for basic tasks and, in fact, all existing solutions to solve fundamental problems
via PM have resorted to endowing PM systems with various capabilities to overcome such hardness, thus
assuming quite unrealistic features. In this paper, we move toward more realistic computational models for
PM. Specifically, we first introduceSILBOT, a newmodeling approach that relaxes several assumptions used
in previous ones. Second, we present a distributed algorithm to solve, in the SILBOT model, a foundational
primitive for PM, namely Leader Election. This algorithm works inO(n) rounds for all initial configurations
of n particles that are both connected (i.e. particles induce a connected graph) and compact (i.e. without
holes, that is no empty cells surrounded by particles occur). As usual in asynchronous contexts, a round is
intended as the time within which all particles have been activated at least once. Third, we show that, if the
initial configuration admits holes, it is impossible to achieve leader election while preserving connectivity.
Finally, by slightly empowering the robots, we design an algorithm to handle initial configurations admitting
holes that in O(n2) rounds solves the leader election problem while obtaining also compaction.

INDEX TERMS Programmable matter, swarm robotics, self-organizing systems, leader election,
compaction, finite automata, distributed algorithms.

I. INTRODUCTION
Matter having the ability to change its physical properties
(e.g., shape, optical properties, etc.) in a programmable fash-
ion has been recently the subject of many studies in many
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areas of computer science, including robotics and distributed
computing.

The term Programmable Matter (PM, shortly) was first
coined in a seminal work by Toffoli et al. [37] and,
since the beginning, it has been used to denote systems
of weak and small computational elements, called parti-
cles, that can be programmed via distributed algorithms to
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collectively achieve some global task. Particles are weak in
the sense that they are able to perform, in some self-organized
way, very simple actions only, such as establishing and
releasing bonds or moving in geometrically constrained
environments.

Initially, the interest by the scientific community was
mostly theoretical, as in the early 90s the technology for
building computational devices at micro/nanoscale was still
in a nascent state. Nowadays, instead, such devices have
been rendered increasingly possible in practice thanks to the
advancements in the production processes of nanounits that
integrate computing, sensing, actuation, and some form of
motion mechanism (see e.g., [10], [36]). Hence, the inves-
tigation into the computational characteristics of PM sys-
tems has assumed again a central role, driven by the applied
perspective. In fact, such systems find a plethora of natural
applications in various contexts, including smart materials,
ubiquitous computing, repairing at microscopic scale, and
tools for minimally invasive surgery. Chiefly, large part of
such investigation has been dedicated to modeling issues for
effective algorithm design, performance analysis and study of
the feasibility of foundational tasks that are relevant to PM.
Example of robotic approaches related to PM can be found
in [29], [30], [35].

The majority of previous works on models for PM have
been inspired by physical systems or biological colonies [31],
[34]. Among them perhaps the most promising (in terms
of quality of the abstraction, as well documented in the
literature [13], [20]) is the so-called geometric Amoebot
model [19], which is inspired by the behavior of the amoeba.
Such a model, as well as other prominent ones, considers
a swarm of decentralized autonomous self-organizing par-
ticles that: i) are modeled as finite state automata; ii) are
all identical, executing the same algorithm based on local
observation of the surroundings; iii) are displaced in the cells
of a hexagonal grid (represented by a triangular lattice); iv)
can move from cell to cell by repeatedly alternating between
two states, namely contracted (a particle occupies one cell)
and expanded (the particle occupies two neighboring cells).
Given these elementary features, it is rather hard to design
distributed algorithms even for basic tasks (e.g. coating [13],
[18], bridge building [3], shape formation [6], [19], [20], [38],
shape recovery [21], and compression [6]). Very recently,
programmable matter based on the Amoebot model has been
exploited also in the context of recognition and reconfigura-
tion of lattice-based cellular structures tasks related to space
missions [24], [33].

Essentially all existing solutions, to solve foundational
problems in this setting, have resorted to add various features
to overcome the underlying hardness. Examples include:
• presence of a global serialized synchronizer: no two
neighboring particles are assumed to be simultaneously
activated (also known as sequential scheduling, a single
particle activation at the time);

• communication: particles are endowedwith the ability to
explicitly interact with neighboring particles by means

of shared memory, read/write operations or message
passing mechanisms;

• atomicity of actions: particles are assumed to be
able to perform various operations in an atomic step
(e.g. observation of the surrounding, elaboration, and
communication happen simultanously);

• randomization: particles can rely on randomoutcomes to
take decisions and in particular for symmetry breaking.

These additional assumptions appear quite unrealistic,
given the inherently weak and asynchronous nature of PM.
Specifically, theoretical models differ in many aspects from
the real systems that have been deployed and tested in the
laboratories [5], [7], [28] both in terms of particles’ capabili-
ties and in how they interact. Therefore, the provided abstrac-
tion might result in being ineffective for algorithm design
and performance analysis in these scenarios. On a related
line of research, it is worth observing that similar modeling
issues have been encountered by studies on multi-robot com-
puting systems [2], [15]–[17], [25], [27], and metamorphic
robots [32].

In this paper, we try to bridge the gap existing between the-
oretical studies and practice by proposing theSILBOTmodel,
a new modeling approach for systems of programmable
particles. The new abstraction inherits some features of the
most established models for PM but it is closer to real-world
particles systems, since it shares some peculiarities
(e.g. absence of explicit communication or full asynchronic-
ity) of the consolidated Look-Compute-Move model [25] for
robotic swarms, extensively studied in distributed computing
and widely adopted in practice. Although this paper explores
theoretical issues related to the modeling and algorithm
design for PM, we move a step closer to practically imple-
mentable programmable matter. In fact, the fewer capabilities
are assumed the larger is the range of applicability of the
results. Moreover, a weaker model allows to build safer, more
energy-efficient and fault-tolerant systems. Thus, it is impor-
tant to develop algorithms that require as few assumptions
as possible, and to understand the limit below which tasks
become unfeasible.

The main characteristics of the SILBOT model can be
summarized as follows. Particles are silent, that is there is
no explicit means of inter-particle communication. More-
over, they act in a fully asynchronous manner, without any
restriction on simultaneous activations, on when a particle is
activated or on the duration of computations or actions. As
in any asynchronous distributed system we assume that each
particle is activated within finite time and infinitely often.
Note that without such an assumption an adversarial sched-
uler may prevent any algorithm from ever achieving any goal
(see [25] and references therein). Finally, concerning motion,
particles move similarly to the Amoebot model: a particle p
is EXPANDED if it occupies one cell u and one incident edge
(u, v), rather than the two adjacent cells u and v as in the
Amoebot model. Then, pmay switch from the EXPANDED state
to the CONTRACTED one simply by occupying only cell v. The
expansion toward a cell v is seen as a commitment to move
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to v. The move is finalized at any subsequent activation of the
particle, when the particle contracts to v, if v is empty. Clearly,
more than one particle may try to expand toward the same
cell v, along two different edges adjacent to v. In this case
only one succeeds, and this is chosen in a classic adversarial
fashion: the adversary schedules, arbitrarily, a corresponding
movement. In other words, if a particle expands toward an
empty cell and this, in the meantime, becomes occupied,
the movement is not realized and the particle remains in the
EXPANDED state. Note that the personification of an adversary
is a standard tool in distributed computing to represent any
possible execution of an algorithm with respect to parameters
that cannot be controlled by the designed algorithms.

By the above, one could immediately observe that the
SILBOT model is much weaker, computationally speaking,
than other models for PM, since: i) particles have much
less capabilities with respect to previous models; ii) at the
same time, SILBOT captures the fully asynchronous nature
of real-world PM systems. This, on the one hand, can be con-
sidered a positive feature, since it is well known from other
studies on distributed computing that weaker models simplify
performance analysis and lead to more reliable implementa-
tions [25]. On the other hand, as previously remarked, less
computational power usually lead to harder algorithm design
and even impossibility results for basic tasks [20]. However,
we show that this is not the case, since the SILBOT model is
powerful enough to allow the resolution of various problems
that are relevant in the context of PM. In more details, we pro-
vide distributed algorithms to implement, under the SILBOT
model, perhaps the most prominent primitive for PM, namely
Leader Election. The Leader Election problem, besides being
of theoretical interest on its own, can be considered as one
of the foundational problems in systems of programmable
particles [4], [19], [20], [23], [26], as its resolution is often
necessary to solve more complex tasks, e.g. coating or shape
formation.

Several strategies have been used in the past for leader
election: in [14], [19], for instance, particles resort to random-
ization to break symmetries; in [4], [14], [19], [26] chirality
is assumed, that is a globally consistent circular orientation
of the plane shared by all particles; in [23], the scheduler is
assumed so as only one particle at the time is activated. Note
that, unless randomization [14], [19] or sequential schedul-
ing [23] is assumed, the election of one single leader is not
possible. Indeed, in [4] and [20] up to six and three leaders,
respectively, can be elected due to possible symmetries. In
what follows, therefore, we focus on this latter leader election
problem, where up to three mutually neighboring particles
can be elected; these form a team of leaders that may then act
together to lead the other particles.We provide a deterministic
algorithm for solving the problem when the initial configura-
tion is simply connected as in [20]. Indeed we show how to
emulate the erosion process presented in [20] by a simpler
set of rules. Our new algorithm works in O(n) rounds, with n
being the number of particles in the system and a round being

the time within which all particles have been activated at least
once (this concept will be better defined later).

When the initial configuration is not simply connected and
contains holes, that is when there is a region of the lattice
delimited by particles whose interior contains empty cells,
we formally show that leader election is impossible if the sys-
tem needs to maintain connectivity among particles. To deal
also with arbitrary connected configurations we strengthen
the particles with the capability of detecting whether an
empty neighboring cell is part of a hole or it belongs to the
exterior lattice region. In fact, from a practical point of view,
it is possible for PM particles to acquire such a knowledge
by just local sensing of the surroundings (e.g. via light or
pressure sensors), and without any form of global visibility
or any mean for message exchange. We thus provide an
algorithm for achieving compaction of holes, that is to convert
any arbitrary connected configuration to a simply connected
configuration. We also show how to achieve leader election
while performing the compaction within O(n2) rounds.
Our algorithms are deterministic, and require only two

states for the particles. In other words, the particles have no
additional memory, except the ability to be in two (visually)
distinguishable states (either EXPANDED or CONTRACTED).
Finally, we formally prove that all our algorithms are cor-
rect: starting from an arbitrary initial connected configuration
(either simply connected or not), we show that in the system
there are at most three particles elected as leader.

II. THE SILBOT MODEL
In this section, we present the new SILBOT model for
PM, where particles act independently of each other, with-
out explicit communication, in a fully asynchronous way,
based only on local knowledge. The model is built upon the
well established geometric Amoebot model, one of the most
popular in the literature ( [4], [14], [19], [20], [23], [26]).

The Operating Environment. The particles operate on an
infinite triangular lattice (representing the described hexag-
onal grid) embedded in the plane, where each node has 6
incident edges: nodes correspond to hexagonal cells and each
edge represents a boundary shared by two cells, and each
node can contain at most one particle. There are n particles in
the system and at the beginning the set of n nodes containing
particles induces a connected subgraph of the lattice.

Particles andConfigurations. Each particle is an automaton
with two states, CONTRACTED or EXPANDED (they do not have
any other form of persistent memory). In the former state, the
particle occupies a single node of the lattice while in the latter,
the particle occupies one single node and one of the adjacent
edges. Hence, a node may contain at most one particle at any
time.

Each particle can sense its surroundings up to a distance
of 2-hops i.e., if a particle occupies a node v, then it can see
the neighbors of v and the neighbors of the neighbors of v.
Specifically, a particle can determine (i.e. sense) if a node
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is empty or occupied by a CONTRACTED particle, or occupied
by an EXPANDED particle, for each node in its 2-hop visibility
range. Hence nodes occupied by CONTRACTED particles can
be distinguished from nodes occupied by EXPANDED particles.
Similarly, the particle can sense within its visibility if an edge
is occupied by an EXPANDED particle. In our model particles
do not have any explicit means of communication. Thus,
a particle can acquire information about its surroundings only
by its limited vision without communications, rather using
direct sensing, e.g. weak electromagnetic fields or radars.

Any positioning of CONTRACTED or EXPANDED particles that
includes all n particles composing the system is referred to as
a configuration.

Movement and States. Each particle can occupy only one
node v at a time. In order to move to a neighboring node u,
the particle expands on the edge between node v and node u.
Thus, in EXPANDED state, the particle occupies one node and
one edge (the physical interpretation is that the particle is
occupying one hexagonal cell completely and has partially
entered into the adjacent cell). Note that node u may still be
occupied by another particle. If the other particle leaves node
u in the future, the expanded particle will contract into node
u during its next activation. There might be arbitrary delays
between the actions of these two particles, while the connec-
tivity is still maintained. For example, when the particle at
node u has moved to another node, the edge between v and
u is still occupied by the original expanded particle. In this
case we say that node u is semi-occupied. We ensure that the
set of occupied and semi-occupied nodes induces a connected
configuration at all times during the execution of the proposed
algorithms.

A particle commits itself into moving to node u by expand-
ing in that direction, and at the next activation of the same
particle, it is constrained to move to node u, if u is empty.
A particle cannot revoke its expansion once committed.

Interaction between Particles. Our model requires no
explicit communication between the particles. Inspired also
by Cellular Automata systems (see, e.g. [1], [22]), each parti-
cle can sense the presence of other particles (CONTRACTED or
EXPANDED) in its neighborhood. Ideally wewould like the par-
ticles to operate with 1-hop visibility (limited to immediate
neighboring nodes).

However, in order to avoid some well-known deadlock
condition (see [13], [20], this will be better clarified later in
the paper), particles need to acquire information about the
neighbors of their neighbors, so we assume 2-hop visibility.
This means that the particles can sense nodes within 2 hops to
determine the presence of CONTRACTED or EXPANDED particles.
Note that this capability is much weaker than explicit

communication with neighbors (used e.g. by the Amoebot
model) which allows particles to obtain information up to any
arbitrary distance viamulti-hop communication. Indeed some
of the algorithms for Amoebots rely on explicit communi-
cation over long chains of particles [20], [23], which is not
practical due to lack of robustness against failures or faults.

Moreover, for small nanoscale particles, it would be infea-
sible to have such sophisticated communication primitives.
We envision programmable particle systems where each
particle acts independently based on observation of its
surroundings using a set of simple rules.

Asynchrony and Rounds. The SILBOT model introduces
a fine grained notion of asynchrony with possible delays
between observations and movements performed by the
particles..1 All operations performed by the particles are
non-atomic: that is, there can be delays between the actions
of sensing the surroundings, computing the next decision,
executing the decision (i.e., change of state, movement,
expansion, contraction).

Wemake no assumptions nor restrictions on the scheduling
of these events; thus any possible execution of an actual phys-
ical system can be captured by our model. This has important
consequences for computability of the particle systems and
requires more rigorous techniques for proving correctness
of the algorithms. In particular, algorithms for this model
must be inherently simple with a few rules, since this already
provides an uncountably large number of possible execu-
tion sequences. We call a round the time within which all
particles have been activated and concluded their activation
time at least once. Clearly, the duration of a round is finite
but unknown and may vary from time to time. Moreover,
the duration of different rounds might be completely different
and different rounds might also overlap in time.

We assume the well-established fairness assumption that
each particle would be activated infinitely often in any infinite
execution of the particle system. Due to the asynchronous
nature of the system, it may happen that a particle decides
(or is forced, in case of contraction) at time t to take an
action, and that this action will actually be executed at time
t ′ > t , when other particles might have changed their state; in
other words, the action executed at time t ′ might be based on
the obsolete observation of the surrounding taken at time t .
When this happens, we refer to such an action as a pending
action. The time required to accomplish an action is finite but
unbounded. Hence a round is the shortest time period during
which each particle has performed an action (where the action
could be the null action if a contracted particle decides to
remain contracted).

Orientation and Chirality. We do not make any additional
assumptions about orientation and handedness; the parti-
cles do not agree on chirality, i.e., on the clockwise or
counter-clockwise directions. Some papers on Amoebots
assume chirality (e.g., [4], [18], [19]), while the results in
[20], [23] solve the leader election problemwithout assuming
it. In fact, in the latter paper the authors provide a procedure
for the particles to agree on the clockwise direction. However,
this strategy requires a lot of communication between the
particles and, thus, it is not applicable in the model used here.

1Somewhat similar to the so-called ASYNC model for mobile robots
computing (see, e.g., [8], [9]).
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Overall, our algorithms work without chirality and require no
other forms of orientation.

Randomness. We never assume the possibility of using
randomness: particles take deterministic decisions and do
not have access to random numbers. Previous results on
Amoebots use randomness while some recent papers consider
deterministic Amoebots [4], [20], [23]. Clearly, the determin-
istic model is less powerful. Moreover, practically speaking,
since the individual particles are quite small, it is realistic that
they may not contain any source of randomness. Particles
do not have persistent memory (except for the state infor-
mation) and have no explicit means of communication with
each other. Each particle may be activated at any time inde-
pendently from the others. Once activated, a particle looks
at its surrounding (i.e., at its neighbors and at the neigh-
bors of its neighbors) and, on the basis of such observation,
decides (deterministically) its next action as follows.
1) A particle in CONTRACTED state occupying node v, when

activatedmay change to EXPANDED state thus occupying
node v and one of the edges leading to a neighboring
node w, if the edge (v,w) is unoccupied. In this case,
we say that the particle expands along edge (v,w);

2) A particle in EXPANDED state occupying node v and
edge (v,w), when activated, always contracts to w
(i.e., moves to node w changing its state to CON-

TRACTED), if w is not occupied. If w is occupied, then
the particle does not change state or location. In other
words, a particle in EXPANDED state is obliged to con-
tract as soon as it is activated, if the destination node is
empty at that time.

If two contracted particles decide to expand on the same
edge simultaneously, exactly one of the particles (arbitrar-
ily chosen by the scheduler) succeeds. If two particles are
expanded on two distinct edges incident to the same node w,
and both particles are activated simultaneously, exactly one of
the particles (again, chosen arbitrarily by the scheduler) con-
tracts to nodew, while the other particle does not change state.

Connectivity. An important property we preserve is that
the set of particles never gets disconnected. However, when
particles are moving in a sequence, one following another,
the leading particle must vacate a node before the parti-
cle behind it can move there. Note that in the SILBOT
model there would require a synchronization mechanism
between the particles. Instead we allow the particles to
move asynchronously while maintaining a ‘‘relaxed’’ sense
of connectivity. When a particle is in EXPANDED state occu-
pying node v and edge (v,w), we say that node w is semi-
occupied. Throughout this paper, we say that a configuration
is connected if the set of nodes that are either occupied
or semi-occupied form a connected subgraph of the lattice.
All algorithms in this paper always maintain a connected
configuration of the system of particles.

Given a triangular lattice G, a subgraph of G is simply
connected if the envelope of its standard planar embedding
has only one exterior boundary and no interior boundaries.

A configuration is simply connected if the subgraph of lattice
G induced by the nodes occupied by particles is simply
connected. A configuration is deeply simply connected if it is
simply connected and the nodes occupied by the contracted
particles induce a simply connected graph.

Leader Election and Compaction Problems. We assume
the system is initially in a connected configuration where
all particles are CONTRACTED. We define the problem of
leader election as in [20] where at most 3 particles may be
elected. We remark the election of a single particle is possible
only if either randomization or a sequential scheduler are
employed [23]. We say a particle p recognizes itself to be a
LEADER if it is CONTRACTED and, within its visibility range,
there are at most two other CONTRACTED adjacent particles
that are also adjacent with p. Note that to decide to be LEADER,
particles need to acquire information about the neighbors of
their neighbors [20]. Hence, without communication, 1-hop
visibility is not enough for a particle to decide whether it is a
LEADER or not. A particle recognizes to be NON-LEADER if it is
EXPANDED.
Definition 1 (Particle Leader Election (PLE) Problem):

An algorithm solves the Particle Leader Election (PLE) prob-
lem if the following conditions hold: i) once the algorithm
terminates there are exactly one, two, or three mutually
adjacent particles that are LEADER and ii) all particles are
either LEADER or NON-LEADER.

Initially, all particles are CONTRACTED and represent
potential candidates to become LEADER. Once the elec-
tion algorithm successfully terminates, there are at most 3
mutually adjacent leaders.

In what follows, we denote by 5 the set of simply con-
nected configurations with only one, two, or three contracted
particles such that the nodes occupied by the contracted par-
ticles induce a complete graph. Moreover, given a particle p,
we call N1(p) and N2(p) the set of nodes that are occupied
by CONTRACTED particles at distance 1 and 2, respectively,
from p. Abusing notation we sometimes denote as p the node
occupied by particle p. Given a set of nodes U , we call G(U )
the subgraph of G induced by U .
Finally, we define the following:
Definition 2 (Compaction Problem): Given an initial

arbitrary connected configuration, an algorithm solves the
Compaction (of holes) problem if it brings the particles into
a simply connected configuration.

III. PLE WITH SIMPLE CONNECTIVITY
In this section, we present a solving algorithm for PLE when
the initial configuration is simply connected, i.e., it does
not contain holes. Alternatively, the algorithm works for any
deeply simply connected initial configuration, even if not all
particles are contracted. The pseudocode of the algorithm,
called LESC, is reported in Algorithm 1: it is described from
the point of view of a single particle.

Let us consider the standard planar embedding of the
subgraph of lattice G induced by the nodes occupied by
CONTRACTED particles, and the envelope (concave hull) that

VOLUME 8, 2020 207623



G. D’angelo et al.: Asynchronous Silent Programmable Matter Achieves Leader Election and Compaction

Algorithm 1 Algorithm LESC (PLE With Simple Connectiv-
ity)
Require: Each particle is CONTRACTED, the set of nodes con-

taining particles induces a simply connected subgraph of
G.

Ensure: A configuration in 5.
1: if (p is CONTRACTED) ∧ (G(N1(p)) is connected) ∧

(G(N1(p) ∪ N2(p) ∪ {p}) 6∈ 5) then
2: if N1(p) = {q} ∨ N1(p) = {q, r} then
3: Expand along (p, q);
4: if N1(p) = {r, q, s} then
5: Let q be the central neighbor;
6: if |N1(r)| > 2 ∧ |N1(q)| > 3 ∧ |N1(s)| > 2 then
7: Expand along (p, q);

contains all the nodes in this embedding. The goal of the
algorithm is to shrink this envelope by expanding the particles
that are on its border toward the interior. Moreover, the algo-
rithm expands the particles toward occupied nodes in such a
way that no EXPANDED particle will contract again. In other
words, once expanded, a particle will not compete anymore
to become a leader. More precisely, the algorithm allows to
expand only CONTRACTED particles p such that G(N1(p)) is
connected and |N1(p)| ≤ 3. In particular, if there exists a
CONTRACTED particle p such that G(N1(p)) is connected and
|N1(p)| ≤ 2, then p expands along edge (p, q), where q is a
CONTRACTED neighboring particle of p (see Line 3).
If there is a CONTRACTED particle p such that G(N1(p)) is

connected and |N1(p)| = 3, then p expands along edge (p, q),
with q being the central neighboring particle of p, only if the
other two neighbors have degree at least 3 and q has degree
at least 4 (see Lines 4–7). This strategy avoids that p expands
while one of its neighboring particles is expanding toward p
itself. We remark that 2-hop visibility is necessary to detect
this special condition (as observed in [20]). Notice that no
contractions are induced by Algorithm 1.

A Run of Algorithm LESC. In Figure 1 we show an example
of an execution of Algorithm LESC. CONTRACTED particles
are represented by black circles, whereas EXPANDED particles
are represented by ellipsoids occupying one node and one
edge. Circled black circles represent CONTRACTED particles
currently activated.

Figure 1 (a) shows an initial configuration where six par-
ticles have been activated: according to Algorithm LESC they
expand as shown in Figure 1 (b). For the ease of reading we
are not providing pending actions in the example. So, from
Figure 1 (c) to Figure 1 (j), we show the evolving of the
configuration according to the scheduled activations of parti-
cles. We did not report any activation of EXPANDED particles
as those would not lead to any change in the configuration
(EXPANDED particles never change state).

In Figures 1 (c), (e) and (g) there are some activated par-
ticles that are not EXPANDED in the subsequent configurations
(d), (f), and (h), respectively. This is due the priority provided

by Algorithm LESC to expand first neighboring particles of
smaller degree (whose direct neighborhood of CONTRACTED

particles is smaller). Figure 1 (j) shows the case where only
one particle remains CONTRACTED: it is the LEADER. Note that,
according to Algorithms LESC, it would have been possible,
with a different activation schedule, to elect up to three
leaders.
Correctness of Algorithm LESC. We show that, in any
deeply simply connected configuration, there always exists
(at least) a particle that can expand, until the leader(s) is
elected. Moreover, during the execution of the algorithm, all
configurations are guaranteed to be deeply simply connected,
while the number of CONTRACTED particles decreases, until a
configuration in 5 is reached.

To show this, we model an execution of Algorithm LESC as
a path in a directed graph H = (V ,E), where the vertices in
V correspond to any deeply simply connected configuration
with at most n CONTRACTED particles, and the edges in E cor-
respond to transitions among configurations as determined by
Algorithm LESC. In particular, each vertex u ∈ V corresponds
to a configurationCu, and there is a directed edge (u, v) ∈ E if
there exists an execution of Algorithm LESC that leads fromCu
to Cv, without generating in between further configurations
different from Cv.
We distinguish two types of edges: (u, v) is an expansion

edge if, considering Cu as the initial configuration, there is a
schedule in which Algorithm LESC leads from Cu to Cv in one
round. Edge (u, v) is a pending edge if it models the transition
from a configuration Cu to another configuration Cv that
may occur not because one or more particles are performing
expansions dictated by the algorithm from Cu, but because
such particles have started their computations from some
configurations different from Cu and, due to asynchrony,
Cu has been generated in the meanwhile. The expansions
that determine, from Cu, a pending edge are called pending
expansions. The next theorem exploits graph H to show that
Algorithm LESC converges to a configuration in 5.
Theorem 1: Starting from a deeply simply connected con-

figuration, Algorithm LESC terminates after O(n) rounds in a
configuration in 5. Moreover, any configuration generated
during the execution of LESC is deeply simply connected.

Proof: Initially there are n CONTRACTED particles that
form a deeply simply connected configuration. Let H =

(V ,E) be the directed graph representing the executions of
Algorithm LESC as defined above. We prove the theorem by
showing the three following properties:
P1. Each vertex in H , excluding those corresponding to

configurations in 5, has at least one outgoing expan-
sion edge. Moreover, vertices in H corresponding to
configurations in 5 are connected only by pending
edges as shown in Figure 2.

P2. Each expansion dictated by Algorithm LESC corre-
sponds to an edge in H , that is the configuration
obtained by any expansion dictated by LESC is deeply
simply connected.

P3. Graph H is acyclic.
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FIGURE 1. An example of execution of algorithm LESC. In this execution, at the end of the run, only one particle
(the red one) is in the state LEADER.

FIGURE 2. A subgraph of graph H used in the proof of Theorem 1. Each
vertex is associated with a set of configurations represented by the
subgraph induced by only contracted particles. Pending edges are drawn
as dashed arrows, while expansion edges are drawn as bold arrows. For
simplicity, the figure does not depicts all the configurations that can be
obtained from configuration C according to Algorithm LESC.

Property P1. We first show that in any deeply simply
connected configuration there exists a CONTRACTED particle
p such that G(N1(p)) is connected and |N1(p)| ≤ 3.
Let us consider the standard planar embedding of the

subgraph of lattice G induced by the CONTRACTED particles
and the envelope containing all the points of this embed-
ding. Since the configuration is deeply simply connected,
the shape of the envelope is a ‘‘tree of polygons’’, that is

FIGURE 3. Example of a simply connected configuration.

a set of polygons that are connected by paths of straight
lines, possibly of length 0 (i.e., connected by one single point
corresponding to a single particle). Moreover, the leaves of
the tree are not single particles since this would imply that
there is at least one particle with only one neighbor and this
would be contradiction (see Figures 3 and 4 for an example).

Now, let us consider a leaf of the tree of polygons, and let us
assume that it has m vertices (corresponding to m particles).
Note that since this polygon is a leaf of the tree, only one of its
vertices is connected to the rest of the tree and any other vertex
of the polygon corresponds to a particle that has a connected
neighborhood.
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FIGURE 4. Example of tree of polygons, corresponding to the
configuration in Figure 3, used in the proof of Theorem 1 for Property P1.

By contradiction, let us assume that each particle
in the polygon, excluding the one that connects the polygon
to the rest of the tree, has at least 4 occupied neighbors. Then
the interior angle of each vertex in the polygon corresponding
to these particles measures at least π . Therefore, the sum
of the interior angles of the polygon is at least (m − 1)π ,
which is a contradiction since it is known that such a sum
equals (m−2)π in any polygon. Hence, we can conclude that
there must exist a CONTRACTED particle p such that G(N1(p))
is connected and |N1(p)| ≤ 3. Furthermore, such a particle
belongs to a leaf of the tree of polygons.

Next we show that, given the existence of such a particle,
in any configuration not in5 there exists at least one particle
that decides to expand according to Algorithm LESC.
In particular, if |N1(p)| ≤ 2, then p will expand

(see Line 3).
If |N1(p)| = 3, then p is allowed to expand only if the

condition at Line 6 is satisfied. Assume that this condition
is not satisfied and let r , q and s be the three neighbors of
p, with q being the central one. If |N1(r)| ≤ 2 (|N1(s)| ≤ 2,
resp.), then r (s, resp.) will expand, as imposed by Line 3.
By referring to Figures 5 (a) and (b), if |N1(r)| > 2 and
|N1(s)| > 2, then r shares neighbor q with p and has a further
neighbor, say tr . Similarly, s is adjacent to p, q, and has a
further neighbor ts. Then two cases can occur: if tr and ts
are not neighbors of q, then we have a contradiction as the
considered polygon is not a leaf of the tree (see Figure 5 (a)).
Otherwise, if at least one among tr and ts is a neighbor of
q, we have that |N1(q)| > 3 and the condition at Line 6 is
satisfied (see Figure 5 (b)), hence p will expand, which is
again a contradiction.

Therefore, we can conclude that there is at least one particle
that decides to expand according to Algorithm LESC. If more

than two particles decide to expand along the same edge,
at least one of them will succeed according to the model.

Finally, it remains to show that the vertices corresponding
to configurations in 5 are connected as shown in Figure 2.
Observe that if there are no pending expansions, and the
configuration is in 5, then no particle is expanded by Algo-
rithm LESC. It follows that edges among vertices correspond-
ing to configurations in5 can only be pending edges. Hence,
Property P1 follows.

Property P2. By contradiction, let us assume that after an
expansion (possibly pending) dictated by Algorithm LESC,
the configuration obtained is not deeply simply connected
anymore. In the following, we denote by N t

1(p) the set N1(p),
as seen by a particle p if it is activated at some time t .
Let t be the first time instant when the subgraph Gt of
lattice G, induced by the CONTRACTED particles, is not simply
connected. We distinguish the two possible cases:

1) Gt has a hole. We first show that an EXPANDED particle
does not contract again. By contradiction, let us con-
sider the first EXPANDED particle p that contracts. Let
(v, u) be the edge where p is EXPANDED, with u being the
node on which p contracts after. According to the algo-
rithm, node u was occupied when p decided to expand,
while it has to be empty when p decides to contract.
Thus, the particle that was occupying node u has been
CONTRACTED between the decision of expansion and the
contraction of p, which is a contradiction as p is the first
particle that contracts after an expansion.
Therefore, to create a hole the only possibility is that a
CONTRACTED particle p has decided to expand at some
time t ′ ≤ t and it is actually EXPANDED at time t , sur-
rounded by 6 CONTRACTED particles. Since EXPANDED

particle do not contract again, function |N t
1(p)| is

non-increasing with respect to the time t . This implies
that |N t ′

1 (p)| ≥ |N
t
1(p)| = 6, and p decided to expand at

time t ′, with |N t ′
1 (p)| = 6. This is in contradiction with

Algorithm LESC that allows a particle p to expand only
if |N1(p)| ≤ 3. Hence, Property P2 follows.

2) Gt is disconnected. If a particle p becomes EXPANDED

at time t andGt becomes disconnected because of such
an expansion, then either G(N1(p)) was disconnected
when p decided to expand or a neighboring particle of
p expanded at a time between the time when p decided
to expand and t .
The former case contradicts Algorithm LESC that allows
p to expand only ifG(N1(p)) is connected. For the latter

FIGURE 5. Configurations used in the proof of Theorem 1.
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case, let us assume that the disconnection at time t is
due to two particles p1 and p2 that are CONTRACTED,
occupy two neighboring nodes at some time before
t , and that are both EXPANDED at time t (they may
expand at different times, in any order, and t is the
time when the second particle is EXPANDED). Let us
denote as t1 and t2 the time when p1 and p2 decided
to expand, respectively, and let us assume without loss
of generality that t1 ≤ t2 ≤ t .
If t ′1 and t ′2 denote the time when p1 and p2 actually
expand, respectively, then we must have that t ′1 ≥ t2 as
otherwise the expansions of p1 and p2 are sequential
(i.e., we are in the former case). Therefore we have
two possible cases: either t1 ≤ t2 ≤ t ′1 ≤ t ′2 = t or
t1 ≤ t2 ≤ t ′2 ≤ t ′1 = t . We also assume that at times
t1 and t2 the configuration is not in 5, as otherwise p1
and/or p2 will not decide to expand according to Algo-
rithm LESC. Since |N t1

1 (p2)| ≥ |N
t2
1 (p2)| and, according

to Algorithm LESC, a particle p is allowed to expand
only if G(N1(p)) is connected and |N1(p)| ≤ 3, we now
analyze the four possible cases:
a) |N t1

1 (p1)| = 1 In this case p1 expands toward
p2, and p2 can decide to expand only after p1
is EXPANDED otherwise G(N1(p2)) is not con-
nected. Therefore, we have t ′1 < t2 which is a
contradiction.

b) |N t1
1 (p1)| = 2 Since, before t , particles p1 and

p2 occupy neighboring nodes and G(N t1
1 (p1)) is

connected, then there must be a third particle
p3 located at a node that is adjacent to both p1
and p2. According to Algorithm LESC, p1 must be
EXPANDED along (p1, p2) or along (p1, p3). Now,
if p3 has two neighbors only (namely p1 and p2),
then p2 can decide to expand only after that both
p1 and p3 are EXPANDED as otherwiseG(N1(p2)) is
not connected. This is a contradiction as it implies
that t ′1 < t2. It follows that the only possible case
is p3 having other neighbors, different from p1
and p2, and hence any expansion of p2 toward any
of its occupied neighbors cannot disconnect Gt .

c) |N t1
1 (p1)| = 3 and |N t1

1 (p2)| ≤ 2 In this
case, p1 cannot expand at time t1 according to
Algorithm LESC.

d) |N t1
1 (p1)| = 3 and |N t1

1 (p2)| ≥ 3 We have two
cases: p2 is the central node in N

t1
1 (p1) (i.e., node

q in Line 6) and there are 2 occupied nodes,
s and t , that are neighbors of both p1 and p2
(see Figure 5 (c)), or p1 and p2 share a common
central neighbor q and have two further different
occupied neighbors, s and r (see Figure 5 (d)).
In the first case, p1 decides to expand along
edge (p1, p2). Since |N

t1
1 (p1)| = 3 and p1 will

not expand before t2, then according to Algo-
rithm LESC, p2 is not allowed to expand until
some other particles expand. Moreover, again
since t ′1 ≥ t2, the only chances for p2 to

decide to expand at time t2 are that {p1, r} ⊆
N t2
1 (p2) = (i.e., particle s is EXPANDED), in which

case p2 expands toward p1 or r ; or, symmetri-
cally, that {p1, s} ⊆ N t2

1 (p2) (i.e., particle r is
EXPANDED), in which case p2 expands toward p1
or s. In either case the expansion of p1 and p2 does
not disconnect Gt .
In the second case, according to Line 7, p1 will
expand along edge (p1, q), while p2 will expand
along one of its neighbors. In any case Gt is
not disconnected as node q in the time interval
between t1 and t can only expand toward one of
the nodes in ({p1, p2}∪N

t1
1 (p1)∪N

t1
1 (p2))∩N

t1
1 (q).

In particular, observe that in any time of this
interval, at most one among p1 and p2 can be
EXPANDED, and depending on the way in which
the other nodes in N t1

1 (q) expand, q can expand
because it has one neighbor (either p1 or p2), two
neighbors ({p1, p2}, {p1, s}, or {p1, r}), or three
neighbors ({p1, p2, s} or {p1, p2, r}). In any of
these cases the resulting graph Gt is not dis-
connected. In any other case G(N1(q)) would be
disconnected and so q will not expand.

Hence, Property P2 follows.

Property P3. First observe that, for each directed edge
(u, v) ∈ E , the number of CONTRACTED particles in Cv
is smaller than the number of CONTRACTED particles in
Cu. In fact, when an expansion is performed, at least
one CONTRACTED particle in Cu becomes EXPANDED in Cv
toward an occupied node belonging to the interior of the
configuration.

Moreover, by Property P2, EXPANDED particles cannot con-
tract (they remain EXPANDED toward occupied nodes during
the whole execution). Therefore, we can define a topological
ordering on the vertices of H as a linear extension of the
partial ordering given by the number of CONTRACTED particles
of the corresponding configurations. It follows that H is
acyclic, hence P3 follows.

We are now ready to prove the statement of the theorem.
First, recall that the only sink vertices of H w.r.t. expansion
edges (i.e., the only vertices that have no outgoing expan-
sion edges) are those corresponding to configurations in 5.
Therefore, starting from any configuration Cu, an execu-
tion of Algorithm LESC corresponds to a directed path in H
that starts at u and finishes, after a finite number of edges
(i.e., expansions), in a vertex corresponding to a configuration
in5. Clearly, the final vertex of the path depends on the exact
schedule, which determines the expansions that are pending
and, hence, the pending edges in the path.

Finally, by Property P3, any path in H that starts from the
vertex corresponding to the initial configuration and ends in a
vertex corresponding to a configuration in 5, has a length at
most equal to the number of initially CONTRACTED particles.
Thus, the algorithm converges in at most n rounds, and the
theorem follows.
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FIGURE 6. A connected configuration with a hole, used in the proof of
Theorem 2. Colors identify particles having the same 2-hop
neighborhood.

IV. ARBITRARY CONNECTED CONFIGURATIONS
In this section, we show that, if PLE has to be solved while
preserving connectivity, then the initial configuration must
be simply connected, otherwise further assumptions become
necessary.
Theorem 2: Starting from an arbritrarily connected

configuration, PLE cannot be solved without disconnecting
the set of particles. This holds even if the particles are
endowed with unlimited memory and chirality.

Proof: Consider the not simply connected configuration
of particles shown in Figure 6. For the sake of our analysis,
we assigned the same color to particles having the same 2-hop
neighborhood (colors have no other purpose and all parti-
cles are identical). Since any decision taken by any particle
depends on its local neighborhood, particles having the same
color also behave the same, if activated concurrently.

Clearly, starting from the configuration in Figure 6, PLE
cannot be solved if all particles maintain their positions. This
is evident due to the initial symmetry of the configuration
which is conserved as long as no particle moves. Thus, any
algorithm for PLE must instruct some particles to move (by
expanding toward empty nodes).

We now claim that any algorithm that instructs a particle
to move, based only on local information, may cause the con-
figuration to become disconnected. In the following we will
assume the specific execution (schedule) where any particle
is activated twice in sequence, thereby eliminating any delays
between the expansion and contraction of the particle. In this
particular execution, moves of the particles can be consid-
ered to be atomic. We analyze moves of equivalent particles
(i.e., having the same color) separately. We can do this with-
out loss of generality, since the adversarial scheduler can
force only one group to move, while all the other particles
are not activated.

Let us suppose that the algorithm makes the blue particles
move: any move of a blue particle to any of the four neighbor-
ing empty nodes cause the set of particles to get disconnected
(it is sufficient that the scheduler forces only one particle in
each group of consecutive blue particles to move). For yellow
particles, a similar argument holds: no matter which of the
four neighboring empty nodes is chosen as a destination, if

FIGURE 7. (a) The configuration after one move by green particles. Arrows
depict the performed moves. (b) A connected configuration without
holes. (c) The configuration obtained after one move by red particles.

the scheduler moves all the yellow particles at the same time,
then the configuration is disconnected.

For green particles, the situation is slightly different. They
all have the same view irrespective of chirality, and the
only possible move is toward the neighboring node that is
surrounded by two other particles. Any other move clearly
causes disconnection if all green particles move concurrently.
If such a move is chosen, the scheduler can activate all the
green particles at the same time (twice in a row). After such
moves, the situation would be as shown in Figure 7 (a),
where a portion of Figure 6 is reported. Hence, the resulting
configuration is disconnected. Thus, the last possible choice
for the algorithm is to instruct all red particles to move first to
the neighboring nodes that are inside the hole (see Figure 6);
in fact, this is the only move maintaining connectivity even if
all the red particles are activated simultaneously.

Let us now consider a different initial configuration as
shown in Figure 7 (b). Note that the red particles in this
configuration have the same view as the red particles in the
configuration from Figure 6. Thus, the same algorithm would
instruct the red particles to move in the same way as in the
previous case. Consider any two adjacent red particles: if
they have the same chirality and they are activated simulta-
neously, then they would move in opposite directions. The
resulting configuration, shown in Figure 7 (c), is one where
the set of particles gets disconnected. Hence it is impossible
to solve PLE without disconnecting the set of particles, and
the theorem follows.
Note that it is not straightforward to re-establish a con-

nected configuration once the particles disconnect. In fact,
due the asynchrony of the system, there might be arbitrary
delays before the particles that moved are activated again;
during this time, other particles might move (they might not
be aware of the disconnection). The local vision, the lack of
communication between the particles and the lack of memory
make it difficult to reconnect the particles, and thus achieve
leader election. Furthermore, if the configuration remains
disconnected, it might also be that too many leaders are
elected.

V. COMPACTION AND ELECTION
Theorem 2 does not prove the impossibility of solving
PLE once the configuration disconnects. On the other hand,
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we also observed that it is of practical interest to maintain
connectivity. To this end, we strengthen particles with a very
simple capability, called exterior awareness, that informally
is the power of detecting what is ‘‘outside’’ the configuration
and what is ‘‘inside’’ (that is, holes). Formally, this capability
is defined as follows:
Definition 3 (Exterior Awareness): A particle can distin-

guish whether a node v within its visibility range is either
CONT, EXP, IN or OUT where: a CONT node is a node occupied
by a CONTRACTED particle; an EXP node is a node occupied by
an EXPANDED particle, an IN node is an empty node that is part
of a hole; an OUT node is an exterior empty node (a node that
is not part of any hole).

In what follows we will show that the particles, by just
having this simple capability, are able, starting from any con-
nected configuration (possibly having holes) to achieve com-
paction of holes, while solving PLE at the same time. Notice
that, during the process, the set of particles always forms a
connected configuration, thus overcoming the impossibility
result of Theorem 2.

More formally, we will present an algorithm that, start-
ing from any arbitrarily connected configuration (hence not
necessarily simply), it is possible to obtain a deeply simply
connected configuration (see Section II); at the same time,
it also leads to elect a set of at most three leaders, as done
with Algorithm LESC. This algorithm, called CHLE and whose
pseudocode is reported in Algorithm 2, is again described
from the point of view of a single particle. Before introducing
it, we need the following further notation: given a particle p,
we denote by N1(p,C) and N1(p, I ) the set of CONT and IN

nodes adjacent to p, resp., and byN1(p, IC) the set {N1(p,C)∪
N1(p, I )}.

The rationale of Algorithm CHLE is similar to that of
Algorithm LESC: the goal is to shrink the envelope of the stan-
dard planar embedding of the subgraph of lattice G induced
by the nodes occupied by contracted particles until we obtain
a configuration in 5; the difference here is that we have
to take also into account IN nodes in the envelope. In more
detail, we consider the standard planar embedding of the
subgraph of lattice G induced by CONT and IN nodes, and we
take the envelope that contains all the nodes in this embed-
ding (that is, the nodes occupied by contracted particles plus
the holes).

To this aim, following the approach of Algorithm LESC,
Algorithm CHLE allows to expand only particles p such
that G(N1(p, IC)) is connected and |N1(p, IC)| ≤ 3.
However, when a node in N1(p, IC) is an empty internal node
(i.e.|N1(p, I )| = 1) and p is allowed to expand, then p always
expands toward the internal node.

In particular, if there exists a contracted particle p such that
|N1(p, IC)| = |N1(p, I )| = 1, then p expands toward the
only internal node, while if |N1(p, IC)| = |N1(p,C)| = 1
it expands toward the only contracted particle (see Line 3).

If |N1(p, IC)| = 2 and G(N1(p, IC)) is connected, instead,
then: i) if there is a node q in N1(p, I ), p expands along edge

Algorithm 2 Algorithm CHLE (Compaction of Holes and
PLE)
Require: A connected configuration where each particle is

CONTRACTED.
Ensure: A configuration in 5.
1: if (p is CONTRACTED) ∧ (G(N1(p, IC)) is connected) ∧

(G(N1(p,C) ∪ N2(p) ∪ {p}) 6∈ 5) then
2: if N1(p, IC) = {q} then
3: Expand along (p, q);
4: if N1(p, IC) = {q, r} then
5: if q ∈ N1(p, I ) then
6: Expand along (p, q);
7: else
8: Expand along (p, r);
9: if N1(p, IC) = {r, q, s} then
10: if {r, q, s} ∩ N1(p, I ) = {x} then
11: Expand along (p, x);
12: else if |N1(r,C)| > 2 ∧ |N1(q,C)| > 3 ∧

|N1(s,C)| > 2 then
13: Expand along (p, q);

(p, q) (Line 6); ii) otherwise, it expands toward any contracted
particle (Line 8).

Finally, if |N1(p, IC)| = 3 and G(N1(p, IC)) is connected,
then we have two cases: either there is one empty internal
node or all the three neighbors in N1(p, IC) are occupied by
contracted particles. In the former case, p expands toward
the internal node (Line 11), otherwise it expands along the
central contracted neighbor only if the condition at Line 12 is
satisfied. Note that a particle p with connected G(N1(p, IC)),
|N1(p, IC)| = 3, and |N1(p, I )| ≥ 2 cannot exist.
Notice that, differently from Algorithm LESC which forces

particles to expand toward occupied nodes only, here it may
happen that a particle is expanded toward an internal empty
node. For instance, let us consider a particle p that was
contracted on node u and then expands along an edge (u, v),
where v is an internal empty node. If the scheduler activates p
when it is expanded, then p is forced to contract in v. If more
then one particle tries to contract on the same internal node,
only one of them (decided by the scheduler) will succeed and
the other ones will remain expanded. In two steps, particle
p moved from u to v and, by repeating these movements,
the hole containing v is eventually filled with contracted
particles.

Finally, we observe that in simply connected configu-
rations Algorithm CHLE is equivalent to Algorithm LESC.
The next theorem uses arguments similar to those used
in Theorem 1 to show that Algorithm CHLE converges to
a configuration in 5 in a finite number of rounds. The
main difference is that now the vertices of graph H rep-
resent all (not necessarily simply) connected configurations
(including semi-occupied nodes) with at most n contracted
particles.
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FIGURE 8. An example of execution of algorithm CHLE. Three particles in state LEADER are elected according to the
schedule at hand.

A Run of Algorithm CHLE. In Figure 8 we report a possible
execution of Algorithm CHLE. Differently from the example
related to Algorithm LESC, here we highlight the behav-
ior of EXPANDED particles. This is done by means of blue
arrows. As shown in Figure 8 (c), (d) and (e), when two
EXPANDED particles compete to move toward a same empty
node, then the scheduler decides who wins. We do not show
all possible configurations that from (h) lead to the final con-
figuration (i) where three mutually neighboring leaders are
elected.

Correctness of Algorithm CHLE. In what follows, we show
the correctness of Algorithm CHLE, i.e. that it terminates in
finite number of rounds in one of configurations of 5.
Theorem 3: Starting from any connected configuration of

contracted particles, Algorithm CHLE terminates after O(n2)
rounds in a configuration in 5. Moreover, any configuration
(including semi-occupied nodes) generated during the execu-
tion of CHLE is connected.

Proof: We assume that, in the initial configuration,
there are n CONTRACTED particles that form a (non sim-
ply) connected configuration, that is there is at least one
IN node. Otherwise, the claim follows by Theorem 1:
indeed, Algorithm CHLE does not need exterior awareness and
behaves as Algorithm LESCwhenever the initial configuration
is simply connected.

We will use an argument similar to that used in the proof
of Theorem 1: we model an execution of Algorithm CHLE as
paths in a directed graph H = (V ,E). However, in this case,
the vertices of the graph represent the connected configura-
tions with n CONTRACTED or EXPANDED particles, and edges

correspond to actions induced by Algorithm CHLE. Therefore,
each node u ∈ V corresponds to a configuration Cu, and and
there is an edge (u, v) ∈ E if there exist a schedule and an
action of Algorithm CHLE that lead from Cu to Cv, without
any intermediate configurations.

First, let us show the following three properties:
P1. Each node in H , but those corresponding to

configurations in 5, has at least one outgoing expan-
sion edge. Moreover, nodes in H corresponding to
configurations in 5 are connected only by pending
edges as shown in Figure 2.

P2. Each action of Algorithm CHLE corresponds to an edge
in H , i.e., the configuration obtained by any action of
CHLE is connected.

P3. Graph H is acyclic.

Property P1. The difference with Property P1 proven
in Theorem 1 is that here we consider the tree of poly-
gons as induced by both IN and CONT nodes. In particular,
from the proof of Theorem 1, we replace the neighborhood
N1(p) of nodes occupied by CONTRACTED particles with the
neighborhood N1(p, IC) made of IN or CONT nodes.
Also, let us consider the standard planar embedding of the

sub-graph of grid G induced by IN or CONT nodes, and the
envelope containing all nodes of such embedding in which
the external nodes are connected by straight lines: the shape
of the embedding is again a tree of polygons and the leaves
of the tree are not straight lines as this would imply that there
is at least a particle having only one IN or CONT neighbor.

It follows that there exists a CONTRACTED particle p such
that G(N1(p, IC)) is connected and |N1(p, IC)| ≤ 3 and
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that such a particle belongs to a leaf polygon of the tree.
Given this condition, we can use the same arguments of
Theorem 1 to show that one particle expands (note that here
the condition for a particle to expand is relaxed w.r.t. Algo-
rithm LESC as a CONTRACTED particle with three connected
IN or CONT neighbors, one of which is a IN node, always
expands). Finally, the last part of Property P1 again follows
by the same argument used in the proof of Theorem 1.

Property P2. We first observe that initially the sub-graph
Gt of grid G induced by IN and CONT nodes is simply con-
nected (otherwise, by contradiction, sub-graph Gt of grid G
induced by CONT nodes would not be connected). Therefore,
showing that each action of Algorithm CHLE corresponds to
an edge in H , i.e., that the configuration obtained by any
action of CHLE is connected, is equivalent to showing that the
sub-graph of grid G induced by IN and CONT nodes is simply
connected.

The proof follows similar lines of the proof of Property
P2 in Theorem 1: the difference is that in Algorithm CHLE

a particle with two CONT and one IN neighbors is allowed to
expand towards the single IN neighbor without restrictions.
We will now show that this degree of freedom does not
disconnect the graph.

Let us assume, by contradiction, that after an action of
Algorithm CHLE (possibly a pending action), the sub-graphGt
of grid G induced by such nodes is not simply connected. Let
us consider the first time instant t when this occurs. We have
two possible cases:
1) Gt has a hole. Therefore, at time t , there exists either

an OUT node or an EXP node surrounded by 6 IN or CONT
nodes. Thus, either a CONTRACTED particle expanded
toward a OUT node, which is in contrast with Algo-
rithm CHLE that allows a particle p to expand only
toward IN or CONT nodes, hence having a contradiction;
or a CONTRACTED particle surrounded by 6 CONTRACTED

particles decided to expand, which is again in con-
trast with Algorithm CHLE that allows a particle p to
expand only if |N1(p, IC)| ≤ 3, hence having again a
contradiction. In both cases, Property P2 follows.

2) Gt is disconnected. If only one particle p is EXPANDED

at time t and Gt becomes disconnected because of
such expansion, then G(N1(p, IC)) was already dis-
connected before t . This would be a contradiction,
since Algorithm CHLE allows p to expand only if
G(N1(p, IC)) is connected.
Therefore, there must exist at least two nodes p1 and p2
such that: i) they are either IN or CONT nodes; ii) they
are neighboring nodes before t; iii) they are EXP nodes
at time t .
According to Algorithm CHLE, a particle p is allowed
to expand only if G(N1(p, IC)) is connected and
|N1(p, IC)| ≤ 3. We distinguish five possible cases:
a) |N1(p1, IC)| = |N1(p2, IC)| = 3. In this case,

if p2 is the central node in N1(p1, IC) and it is
a CONT node, then p1 either is IN node or is a

CONT node and the corresponding particle does
not expand (condition at line 12 is not satisfied,
since |N1(q, IC)| = 3).
Otherwise, p1 and p2 are both CONT nodes,
the corresponding particles share a common cen-
tral neighbor q, and they will expand along edges
(p1, q) and (p2, q) without disconnecting Gt .

b) |N1(p1, IC)| = 3 and |N1(p2, IC)| = 2. In this
case, only the particle at p2, if any, is allowed to
expand according to Algorithm CHLE.

c) |N1(p1, IC)| = |N1(p2, IC)| = 2. Since, before
t , nodes p1 and p2 are neighboring and both
G(N1(p1, IC)) and G(N1(p2, IC)) are connected,
then there is a third node p3, adjacent to both p1
and p2, with p3 a CONT node.
According to Algorithm CHLE, at time t , p1 is an
EXP node whose particle is EXPANDED along either
(p1, p2) or (p1, p3). Similarly, p2 is an EXP node
whose particle is EXPANDED along either (p2, p1)
or (p2, p3). In any case, Gt is not disconnected.

d) |N1(p1, IC)| = 2 and |N1(p2, IC)| = 1. In this
case G(N1(p1, IC)) is not connected, since the
other occupied node is not adjacent to the one
occupied by p2. Therefore p1 does not expand
according to CHLE.

e) |N1(p1, IC)| = |N1(p2, IC)| = 1. In this case the
configuration before t is made of only two CONT

neighbors, hence it belongs to 5.

Hence, Property P2 follows.

Property P3. Let us associate to each vertex u of H a pair
(αu, βu), where αu is the sum of the number of CONT and the
number of IN nodes in Cu, while βu is the number of IN nodes
in Cu. We observe that, for each edge (u, v) of H , (αv, βv) is
lexicographically smaller than (αu, βu): in fact, after an action
is performed, either at least a CONTRACTED particle in Cu is
EXPANDED in Cv (hence the number of CONT nodes decreases)
or at least an EXPANDED particle is contracted back (hence
the number of IN nodes decreases by at least k ≥ 1 but the
number of CONT increases of the same amount k). Therefore,
it is possible to define a topological ordering of the nodes of
H as a linear extension of the partial ordering given by the
pair (αi, βi) of the corresponding configurations Ci. Hence,
H is acyclic.

Moreover, each path in H that starts from the node cor-
responding to the initial configuration and ends in a node
corresponding to a configuration in 5 has a length bounded
by the sum of the initial number of CONTRACTED particles and
the initial number of IN nodes. Since the former is n and the
latter is bounded by n2, the theorem follows.

VI. CONCLUSION AND EXTENSIONS
In this paper we considered a weaker variant of the
well-known Amoebot model, where particles have limited
visibility, do not have any means of direct communication
(i.e., sending of messages), can rely on just one bit of private
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and persistent memory, and each particle can sense its sur-
roundings up to a distance of 2-hops. Moreover, the system
is totally asynchronous, and the actions of the particles can
be executed at each particle’s pace. Finally, particles can
only decide on expansions, and contractions are automatic
and depend on the activation schedule as decided by the
adversary.

Despite the weakness of this scenario, we showed that it
is indeed possible to solve the Leader Election problem: we
presented two algorithms that solve the problem by deter-
ministically electing either one, two or three leaders, in both
simply connected (i.e., with no holes) and arbitrary but con-
nected initial configurations. More specifically, for arbitrary
but connected initial configurations, we presented a solution
that uses Exterior Awareness capability to solve PLE without
disconnecting the configuration.

First, we note that the 2-hops sensing assumption, despite
being much weaker than any direct communication capa-
bility, cannnot be further relaxed to the ideal 1-hop sensing
(sense only direct neighbors): in fact, to decide to be LEADER,
particles need to acquire information about the neighbors of
their neighbors [20].

Moreover, given the extreme simplicity of the kind of
actions that can be taken by particles (either expand or con-
tract), it is clearly necessary to endow the particles with some
extra-power, in order to allow them to perform some other
non-trivial task. First of all, in our model particles cannot
‘‘undo’’ an expansion move; i.e., once a particle is EXPANDED

along edge (u, v), it cannot become CONTRACTED back on
node u. Thus, an obvious strengthening of the model is that to
add an explicit contraction move decided by the particle (and
not by the scheduler, as assumed in this paper).

Also, given the asynchrony of the system, the limited
visibility, and the presence of just one bit of memory, in order
to be able to perform a new task after leader election it is
necessary to communicate somehow the fact that a leader has
been elected to all particles in the systems; i.e., adding an
explicit termination phase. This can be achieved by strength-
ening the particles with other visible states (beside EXPANDED

and CONTRACTED). In particular, once a particle recognizes
itself as a leader, it might switch to a LeaderElected state,
and wait until all its neighbors at distance one become
either LeaderElected or EXPANDED (that is, non-leader). Note
that these visible states can be modeled as visible lights,
as done in other models investigated in literature, such
as [12].

Once the leaders realize that all their neighbors success-
fully completed the leader election task, a new task can be
thus initiated. For instance, if the initial configuration had
holes, the leaders might ask all particles to contract again
(starting from the ones closest to the leaders, to the furthest
ones): hence, starting from a not simple (but connected) initial
configuration, we can reach a simple configuration with all
particles contracted. Then, from here, the leader(s) status
might be ‘‘transferred’’ to the external border of the (simple)
configuration, and from there the particles might start moving

in lines (either one, two or three) following the just appointed
leaders in order to form some pattern.

In conclusion, despite the extreme simplicity of the basic
model introduced here, it is possible to perform a not trivial
task such as the leader election; also, by adding a few of
extra capabilities (such as a constant number of visible lights),
the particles might be able to perform other interesting and
non-trivial tasks, that we aim at studying in the future.
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