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ABSTRACT This study develops an intelligent system for home service robots mimicking human brain
function that can manage common knowledge applicable to any environment and local knowledge reflecting
its specific environment. Deep learning is effective for acquiring common knowledge because the perfor-
mance of deep learning relies on the amounts of training and big training data that can be accessed for such
knowledge; however, deep learning is ineffective for acquiring local knowledge because no big training data
for such knowledge exist. Thus, we propose a brain-inspired learning model and system for acquiring local
knowledge using small training data. We focus on the amygdala because its classical fear conditioning is
effective for training using small training data. We propose an amygdala-inspired classical conditioning
model comprising multiple self-organizing maps (lateral nucleus) and a fully connected neural network
(central nucleus), imitating the function and structure of the amygdala. The proposed model is applied to
a task of a waiter robot in a restaurant, and the model can learn customers’ preferences after only a few
human-robot interactions. We accelerate the computation of the model and reduce its power consumption by
proposing a hardware-oriented algorithm for the model and its digital hardware design and implement it in
an XCZU9EG field programmable gate array. The hardware-oriented algorithm reduces the multiplication
operations and exponential functions requiring huge hardware resources. The performance of the hardware
operated at 150 MHz is 1,273 times faster than the software implementation on Arm Cortex-A53, and the
power consumption of the chip is 5.009 W.

INDEX TERMS Amygdala, classical conditioning, field programmable gate array (FPGA), hardware, home
service robot.

I. INTRODUCTION
Recently, due to an aging population and a shrinking work-
force, home service robots [1] have attracted considerable
attention. Such robots should support human memories and
assist human decisions while working and living with their
owners in domestic environments; therefore, a brain-like
intelligent system is necessary. Thus, we developed a sys-
tem that mimics human brain functions. This study focuses
on knowledge acquisition functions in such an intelligent
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system. In general, home service robots must acquire two
types of knowledge, namely, common knowledge, one that
holds in all environments, and local knowledge, one that holds
only in a specific environment.

For example, to respond to an owner’s request to bring
‘‘green tea,’’ the robot must possess common knowledge of
what ‘‘green tea’’ is. Deep learning (DL) [2] is a power-
ful tool for acquiring common knowledge because copious
amounts of training data on common knowledge can be
prepared. Image recognition is a typical example of a task
where common knowledge is acquired. Deep neural networks
have been widely used in image recognition tasks where
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substantial training data are available to furnish state-of-
the-art results [3]–[5]. Thus, previous studies have proposed
the use of DL for home service robots [6]–[8].

Local knowledge, however, is qualitatively different. For
example, if an owner asks a robot to bring ‘‘that,’’ the
robot must understand the local meaning of ‘‘that.’’ DL per-
forms poorly in the acquisition of local knowledge because
its performance relies on the size of the training dataset,
and large datasets of local knowledge cannot be obtained.
In contrast, human beings easily acquire local knowledge
(e.g., the family’s preferences and customs), requiring min-
imal contact with the environment to do so. Similarly,
home service robots should be able to quickly obtain local
knowledge through only a small number of human-robot
interactions. Thus, we propose a brain-inspired system that
can acquire local knowledge, aside from DL, from a few
human-robot interactions.We specifically focus on the amyg-
dala, which is an area of the brain associated with classical
fear conditioning [9]–[13], which is effective for trainingwith
little data.

To construct an intelligent system into home service robots,
we have to consider computational limitations and power
consumption. In the home service robot system, various
software programs run simultaneously; thus, offloading and
accelerating programs are effective. Although graphics pro-
cessing units (GPUs) are often used to accelerate the compu-
tations, they tend to have high power consumption, severely
impairing the use of home service robots, which should con-
sume little power. Thus, modern GPUs are unsuitable for
home service robots.

We provide a system with fast processing and low power
consumption by designing and implementing an intelligent
system into a field programmable gate array (FPGA). The
hardware on FPGAs runs at a lower frequency than software
on central processing units (CPUs) and GPUs. For example,
a convolutional neural network [3] implemented on an FPGA
is faster and consumes less power compared with that imple-
mented on an embedded GPU [14]. Therefore, such hardware
can implement a system with fast processing and low power
consumption.

In this study, we propose a classical conditioning model
imitating the structure and functions of the biological amyg-
dala. Moreover, we propose a very large-scale integra-
tion (VLSI) implementation of our model using an FPGA.
The paper is organized as follows. Section II describes
the theory of the biological amygdala and related studies
of amygdala models, and Section III describes our pro-
posed classical conditioning model and its hardware imple-
mentation. Section IV describes experiments evaluating the
proposed model and the hardware. Section V provides the
discussion, and Section VI concludes this paper.

II. AMYGDALA
A. CLASSICAL CONDITIONING
The amygdala is in the cerebral system of the brain and is well
known as a part processing emotion, particularly associated

with fear conditioning [9]–[13]. Fear conditioning is a type
of classical conditioning, which is famous for the Pavlovian
dog [15] where a dog learns from repeated experience; the
dog receives food whenever it hears the sound of a bell,
and therefore, it associates the sound of the bell with food.
The classical conditioning approach is effective for acquiring
local knowledge from experience.

FIGURE 1. Mechanism of fear conditioning.

Fig. 1 shows the mechanism of fear conditioning. During
fear conditioning, input sensory stimuli are classified as either
unconditioned stimuli (US) or conditioned stimuli (CS). US
cause unconditioned responses, whereas CS are neutral and
pass through various areas of the brain: thalamus, neocortex,
and hippocampus. These stimuli are then fed into a part
of the amygdala called the lateral nucleus (LA) via two
pathways [11]. One is a direct pathway from the thalamus
where sensory information is rapidly delivered, and the other
is an indirect pathway through cortexes where information
is slowly delivered. In the direct pathway, the sensory stim-
ulus features are fed into the LA. In the indirect pathway,
the recognition of objects, concepts, and contexts are fed into
the LA. Therefore, the LA is a part that integrates CS from
various brain regions. Moreover, the neurons that react to
certain stimuli are located near each other [11], [16]. The
LA conditions CS to US [17]. Once integrated, the stim-
uli are fed into a part of the amygdala called the central
nucleus (CE). After the conditioning, the CE outputs condi-
tioned responses (CRs) even if CS is fed into the amygdala
without US.

In summary, the processes of fear conditioning in the
amygdala involve sensory stimulus recognition and condi-
tioning CS to US. In sensory stimulus recognition, CS are
classified based on the features of stimuli without super-
vised signals. Therefore, the amygdala can classify unknown
sensory stimuli using its self-organizing recognition system.
In the conditioning process, the amygdala learns the relations
between CS and US. As a result of the process, the amyg-
dala can predict emotional values of sensory stimuli that are
originally neutral.

B. MODELS BASED ON THE BIOLOGICAL AMYGDALA
Several studies on fear and classical conditioning models
based on the biological amygdala have been
proposed [18]–[21]. Armony et al. [18] proposed an amyg-
dala model for fear conditioning by considering the connec-
tions between the amygdala, auditory thalamus, and auditory
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cortex. The model performed fear conditioning between the
auditory inputs as CS and US.

Morén and Balkenius [19] proposed a model of connec-
tions between the amygdala and orbitofrontal cortex that con-
trols the extinction [22]. The orbitofrontal cortex part of the
model inhibits the amygdala part and can achieve extinction
effects in fear conditioning.

Izhikevich [20] proposed a spiking neuron model for
classical and instrumental conditioning. The model imple-
mented by Izhikevich neuron model [23] uses a spike-
timing-dependent plasticity learning rule modulated by
dopamine. This study simulated a model comprising
1,000 neurons and revealed that the model could solve the
distal reward problem [24] where reward was given after
reward-triggering actions.

Li et al. [21] proposed a spiking neuron model for acqui-
sition and extinction of fear memory. The model is based on
fear, persistent, and extinction neurons in the amygdala and
medial prefrontal cortex. This study elucidated that the net-
work involving the amygdala and prefrontal cortex showed
the partial reinforcement extinction effect [25]–[27], in which
fear memory acquired through the partial pairings of CS
and US was more resistant to extinction than that acquired
through full pairings.

Although these studies proposed fear and classical condi-
tioning models, the purposes of these studies are different
from that of ours. They aimed to implement biologically
plausible models, whereas we aim to develop a local knowl-
edge acquisition system for home service robots. From the
viewpoint of robot applications, we need a sensory stimulus
recognition, which is an important process in fear and clas-
sical conditioning. Moreover, we have to consider computa-
tional costs of the system because computational resources
and power in robot systems are limited.

C. MODELS FOR ROBOT APPLICATIONS
Several studies involving amygdala models applied to robots
have been proposed [28]–[30]. Sonoh et al. [28] proposed
an emotional expression model of the amygdala (EMA),
comprising a self-organizing map (SOM) [31] and a fully
connected neural network (FCNN). The SOM is a model of
the LA, while the FCNN is a model of the CE. Neurons in the
SOM with similar reference vectors are proximally located.
The SOM feature is intended to imitate the LA feature. Exper-
iments with the EMA implemented in an FPGA achieved
classical conditioning behavior between signals from a color
sensor (as CS) and signals from a tactile sensor (as US).
For example, when the EMA simultaneously receives ‘‘red’’
and ‘‘slapped’’ from the sensors, it conditions these stimuli.
After the conditioning, the EMA outputs the ‘‘fear’’ response
even if the EMA receives a ‘‘red’’ stimulus without being
‘‘slapped.’’ This model includes the concept of the amygdala
where the LA classifies sensory stimuli and then learns the
relation between CS and US. Owing to the introduction of the
SOM as the LA, the model can predict an emotional response,
even if it receives unknown CS. However, the task is still

simplistic compared to the complex demands placed on home
service robots.

Rizzi et al. [29], [30] proposed a situation-aware fear
learning (SAFEL) model. To predict threatening situations,
the SAFEL model learns whether situations are aversive. The
model comprises the amygdala, hippocampus, and working
memory modules. The amygdala module is used as a trigger
for learning aversive situations; it receives a stimulus from
the environment and judges whether the stimulus is aversive.
If the amygdala module judges that the stimulus is aversive,
themodule outputs an adrenaline signal into the hippocampus
module that buffers sensory stimuli to determine whether
the buffered stimuli are aversive. When the hippocampus
module receives the adrenaline signal from the amygdala
module, the module regards the time-series stimulus (defined
as a situation) right before receiving the adrenaline signal,
as an aversive situation. The aversive situation is then memo-
rized in the working memory module. Thereafter, the SAFEL
model can predict aversive situations by referring to thework-
ing memory module. In this model, the amygdala model is
implemented by a type of FCNN. Estimation of aversiveness
is based on the classical conditioning of aversive stimuli
(as US) and neutral stimuli (as CS). Classical conditioning is
implemented by associative learning. Although the concept
of the amygdala module is based on LeDoux’s research, this
study does not consider the structure of the amygdala shown
in EMA [28]; hence, predicting aversiveness from unknown
stimuli is challenging. Moreover, they do not implement the
model on the hardware.

III. PROPOSED MODEL
In this study, to apply a local knowledge acquisition system
to home service robots, we focus on the amygdala concept
where LA and CE are based on classical conditioning rather
than completely mimicking the biological amygdala. We fol-
low the concept of EMA [28] because it has the sensory
stimulus recognition system implemented by the SOM that
can accept several types of CS. Moreover, we extend the
functions of the model to adapt complex tasks for home
service robots.

A. STRUCTURE
We proposed a novel amygdala-inspired classical condition-
ing model [32], [32]. Fig. 2 shows the structure of the model
(right side of the figure), comprising multiple SOMs as the
LA (two SOMs are shown in Fig. 2) and an FCNN as the CE.
We replaced the single SOM of EMA with multiple SOMs
that can be regarded as a layer of deep SOM networks [33].

The model simultaneously receives a US and multiple CS.
These CS are fed into and classified by the SOMs, and the
classification results are converted as vectors and concate-
nated. The vectors are then fed into the FCNN, learning the
relation between US and the vectors (the training mode).
Thereafter, the model outputs a CR even if the model only
receives CS (the inference mode).
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FIGURE 2. Classical conditioning model and perception parts.

As a test case, we applied the model to a robot work-
ing in a restaurant. For this, we added perception parts for
human-robot interactions (left side of Fig. 2). When the robot
takes an order, it attempts to retrieve the information of the
ordered object via perception parts. The object’s information
is US. Simultaneously, the robot retrieves information about
the customer’s face and the robot’s location via the perception
parts as CS. Themodel learns the relation betweenUS and CS
in the training mode. Following this training mode, the model
can predict what the customer wants using only CS in the
inference mode.

Although, in this study, we use the structure shown
in Fig. 2, which includes two SOMs and three perception
parts, the SOMs and the perception parts can be extended. For
example, in addition to the customer’s face and place, the time
when the customer places the order can be used as CS. If the
model receives the face, place, and time as CS, it can learn
and predict the customer’s preference depending on the place
and time. Compared with EMA [28], the proposed model
is advantageous because it can consider combinations of
multiple factors in the environment. In particular, the model
shown in Fig. 2 predicts what the customer wants based on the
combinations of the face and place. Furthermore, by assign-
ing various factors in the environment as CS, we can use the
model even if we do not know which factor triggers US.

B. ALGORITHM
In this study, the outputs of the perception parts are fed into
the LA and CE models on the hardware.

The inference mode is implemented as described here.
If several vectors of CS xk ∈ RN (k = 1, . . . ,K ) are given,
where K is the number of CS (K = 2 in the case of the
classical conditioning model shown in Fig. 2) and N is a
dimension of the vector, then CS are fed into the SOMs. This
LA module comprises K SOMs. Thus, xk is fed into the kth

SOM. In each SOM, awinning neuronwith a reference vector
most like the input vector is chosen according to the following
equation:

(ic, jc) = argmin
i,j
‖xk − wi,j‖, (1)

where wi,j ∈ RN is one of the reference vectors of the SOM.
The neurons in each SOM are located on a two-dimensional

grid (I × J grid), and the positions of the neurons in each
SOM are represented using indices (i, j) (i = 1, . . . , I ; j =
1, . . . , J ). The indices (ic, jc) represent the position of the
winning neuron. Then, the SOM can output a vector that
depends on the position of the winning neuron. The output
vector of the SOM hk ∈ RI×J is computed as

hi,j = exp(−d2i,j/2σ
2
prop), (2)

di,j =
√
(i− ic)2 + (j− jc)2, (3)

where hi,j is an element of the output vector hk . In other
words, one neuron at position (i, j) in the SOM outputs a
scalar value hi,j. The variable di,j is the distance from the win-
ning neuron to a position (i, j). In addition, σprop indicates the
width of the Gaussian function. All the output vectors of the
SOMs are concatenated as

H = {h1, . . . ,hK }. (4)

The concatenated vector H ∈ RM (M = I × J × K ) is fed
into the FCNN. The FCNN outputs a vector representing a
likelihood of what the customer wants. The output vector of
the FCNN, y ∈ RL , is computed via the following equation:

yl = f (H · v>l ), (5)

where yl is an element of the output vector y. vl ∈ RM is a
weight vector corresponding to a neuron l (l = 1, . . . ,L),
and f is an activation function. As the activation function,
the identity, Sigmoid, and Softmax functions can be used.

In the training mode, the reference vectors of SOMs are
updated via unsupervised competitive learning, which can be
represented as

1wi,j = α(xk − wi,j)exp(−d2i,j/2σ
2
learn), (6)

wnewi,j = woldi,j +1wi,j, (7)

where α is a learning rate and σlearn is the width of the Gaus-
sian function; the weight vectors of the FCNN are updated by
the delta rules.

1vl = −β(yl − tl)f ′(H · v>l )H, (8)

vnewl = voldl +1vl, (9)

where tl is a supervised signal. In other words, tl is an element
of the US vector, t ∈ RL . β is a learning rate.

C. HARDWARE-ORIENTED ALGORITHM
To implement the classical conditioning model into an
FPGA, a hardware-oriented algorithm that reduces hardware
resources is required because of limited FPGA resources.
In particular, a reduction in the multiplication operations
of the algorithm is required because of limited multipliers
in the FPGA (digital signal processor (DSP) slices). In the
case of an XCZU9EG FPGA [34], the target device in this
study, 2,520 DSP slices, 274,080 lookup tables (LUTs), and
548,160 flip flops (FFs) are present. Moreover, exponential
functions should be avoided because they require huge hard-
ware resources. Herein, we developed a hardware-oriented
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algorithm for the classical conditioning model and imple-
mented it using a fixed-point or integer number, because hard-
ware implementation using a floating-point number requires
larger hardware resources than that using the fixed-point and
integer number.

In (1), the distance of vectors ‖xk−wi,j‖ is computed. In the
case of an original SOM algorithm, L2 norm, ‖xk −wi,j‖2 =∑N

n=1(xk,n − wi,j,n)2, is often used for distance. However,
the L2 norm includes multiplication operations that should
be reduced for hardware implementation. Thus, instead of the
L2 norm, we use the L1 norm, ‖xk − wi,j‖1 =

∑N
n=1 |xk,n −

wi,j,n|, which does not require any multiplications. In the
algorithm, we use eight-bit integer numbers as variables for
xk and wi,j.
Equations (2), (3), and (6) use variousmultiplication opera-

tions and exponential functions. We replace these multiplica-
tion operations and exponential functions with bit-shift oper-
ations. The algorithm is operated according to the following
equations:

hi,j = 2−Di,j , (10)

Di,j = |i− ic| + |j− jc|, (11)

1wi,j = 2−(A+Di,j)(xk − wi,j), (12)

wnewi,j = woldi,j +1wi,j, (13)

where A is a positive integer and 2−A is the learning rate
corresponding to α in (6). In (10) and (12), we use the power
of two instead of exponential functions. The power of two can
be represented as an arithmetic bit-shift operation. In (10),
we use an eight-bit fixed-point number with two bits of the
integer part and six bits of the decimal part as a variable for
hi,j. In (3), the Euclidean distance di,j is used. Alternatively,
we use the Manhattan distance Di,j. The critical feature of
these equations is that they do not require multiplication
operations.

Besides the LA part, we do not change the algorithm
of the CE part shown in (5) and (8). We avoid using the
floating-point numbers by using an eight-bit fixed-point num-
ber with two bits of the integer part and six bits of the decimal
part as a variable for vl . In addition, we use an identity
function as the activation function f to avoid exponential
functions, such as in the Sigmoid and Softmax functions.

D. HARDWARE IMPLEMENTATION
Using the proposed hardware-oriented algorithm, we
designed a dedicated hardware for the classical conditioning
model. Fig. 3 shows the entire configuration of the hardware
of the model, comprising K LA modules and a CE module.
Vectors xk as CS are fed into the LA modules. Computations
of the LA modules are simultaneously executed in parallel.
Each LA module outputs hk , and all output vectors are
concatenated asH . The concatenated vectorH is fed into the
CE module. The CE module outputs a vector y as CR. In the
training mode, vector t, as US, is fed into the CE module.
Then, the CE module updates its weight vector, and the LA
modules update the reference vectors.

FIGURE 3. Hardware of the classical conditioning model.

FIGURE 4. Hardware of the LA module.

1) LA MODULE
Fig. 4 shows a configuration of the hardware of the LA
module. The LA module has I × J neurons, and all compu-
tations of the neurons are executed in parallel. The LA mod-
ule includes random access memories (RAMs) for reference
vectors wi,j and several computation units, including norm
computation units (Norm), a winner selection unit (Winner),
distance computation units (Dist), output units (Output), and
update units (Update). The norm computation units compute
the L1 norm ‖xk − wi,j‖1 loading xk from an input port, and
wi,j from the RAMs. The computation results are fed into the
winner selection unit. The winner selection unit selects a win-
ner neuron with the smallest ‖xk −wi,j‖1 and outputs indices
of the winner (ic, jc). The indices of the winner are fed into the
distance computation units. The distance computation units
compute the distances between own neurons and the winner
neuron Di,j = Di + Dj. The distances are simultaneously
fed into the output and update units. The output units com-
pute a vector hk using the distances Di,j. In the case of the
training mode, the update units compute updated reference
vectors. The update units can simultaneously compute several
elements of the vector. The computed results of the update
units are stored in the RAMs for the reference vectors.

FIGURE 5. Hardware of the norm computation unit.

Fig. 5 shows the norm computation unit. Sub in the fig-
ure shows a processing element for subtraction, Abs is a
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processing element for absolution, and Add is a processing
element for addition. Rectangles in the figure show registers.
The norm computation unit sequentially receives elements
from the input vector xk and the reference vector wi,j, rep-
resented as xk,n and wi,j,n, respectively, in the figure. First,
a subtraction of those elements (xk,n − wi,j,n) is computed.
Then, an absolute value of the subtraction |xk,n − wi,j,n| is
computed and accumulated to compute the L1 norm ‖xk −
wi,j‖1 =

∑N
n=1 |xk,n − wi,j,n|. Simultaneously, the results of

the subtraction (xk,n − wi,j,n) are stored in registers, and the
values in the registers are fed into the update unit to compute
updated reference vectors.

FIGURE 6. Hardware of the winner selection unit.

Fig. 6-(a) shows the winner selection unit. Comp in
the figure is a comparator that receives the L1 norms with
the indices from two norm computation units and returns the
smaller L1 norm with its indices. The winner selection unit
includes I ×J registers, illustrated as rectangles in the figure,
and (I × J )÷ 2 comparators. The outputs of the comparators
are connected to the first half of the registers. To select a win-
ner, the registers are first initialized with outputs (L1 norms)
of the norm computation units and their indices. Then, com-
putations, using the comparators, are repeated log2(I × J )
times. Note that the number of neurons I × J must be in the
power of two. Otherwise, dummy registers initializedwith the
maximum values of the variables and comparators are added.
Fig. 6-(b) shows the winner selection unit unfolded through
time. As indicated by red in the figure, the smallest L1 norm
and its indices are stored in the first element of the registers.

Fig. 7 shows the distance computation unit that receives the
winner indices (ic, jc). First, subtractions of winner indices
and own indices, ic − i, i− ic, jc − j, and j− jc are computed
simultaneously. To compute the absolute values Di = |ic − i|
and Dj = |jc − j|, either ic − i or i − ic and either jc − j or
j−jc are selected based on the comparators. Then, the distance
computation unit outputs the distance from the winner neuron
Di and Dj.
Fig. 8 shows the output unit; Sat depicts a processing ele-

ment for saturation, and Shift depicts a processing element for
the bit-shift operation. The output unit receives the distance
from thewinnerDi andDj and adds these values. The distance
is saturated in a range from 0 to BIT_WIDTH_H , which is
a bit width of variable hi,j. In this study, BIT_WIDTH_H

FIGURE 7. Hardware of the distance computation unit.

FIGURE 8. Hardware of the output unit.

is 8. Then, 1.0 is right bit shifted by the saturated value to
compute hi,j.

FIGURE 9. Hardware of the update unit of LA.

Fig. 9 shows the update unit of the LA module. The update
unit receives the distance Di, Dj, and a learning coefficient A
and adds these values. Then, the added value is saturated in
a range from 0 to BIT_WIDTH_W , which is a bit width of
variable wi,j. In this study, BIT_WIDTH_W is 8. The update
unit also receives (xk,n − wi,j,n) from the norm computation
unit, and the value is right bit shifted. The shifted value
1wi,j,n is fed into the RAM for the reference vector and
added to wi,j,n.
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FIGURE 10. Hardware of the CE module.

2) CE MODULE
Fig. 10 shows a configuration of the hardware of the CE
module. The CE module has L neurons (L is the dimensions
of US), and all computations of the neurons are executed
in parallel. The CE module includes RAMs for weight vec-
tors vl and several computation units, such as multiplication
operation units (Mult), adder-tree units (Adder), difference
computation units (Diff), and update units (Update). The
multiplication operation units compute elementwise multi-
plications of H and vl . Thus, the computation results are
M (= I × J × K ) elements. The computation results are
fed into the adder-tree units that add the outputs from the
multiplication operation units to compute yl = H · v>l . In
the case of the training mode, the computation results of
the adder-tree units are fed into the difference computation
units that receive yl and supervised signals tl and compute
the differences yl − tl . Finally, the differences are fed into
the update units to compute the updated weight vectors. The
computation results of the update units are stored in the
RAMs for the weight vectors.

FIGURE 11. Hardware of the adder-tree unit.

Fig. 11 shows the adder-tree unit. The adder-tree unit
includes M (= I × J × K ) registers and M ÷ 2 adders. Each
adder receives two values and outputs the addition of the two
values. The outputs of the adders are connected to the first
half of the registers. To compute additional operations of all
values stored in the registers, first, the registers are initial-
ized with the outputs of the multiplication operation units.
Then, computations using the adders are repeated log2M
times. Note that the number of outputs of the multiplication
operation units M must be in the power of two; otherwise,
dummy registers initialized with zero and dummy adders

FIGURE 12. Hardware of the update unit of CE.

will be added. Fig. 11-(b) shows the adder-tree unit unfolded
through time. As indicated by red in the figure, the results
of the additional operation of all values are stored in the first
element of the registers.

Fig. 12 shows the update unit of the CE module, where
Mult in the figure is a multiplier. The multiplier receives two
values and outputs the multiplication of the two values. The
update unit receives yl − tl from the difference computation
unit, and β is the learning rate. Those values are fed into a
multiplier. The update unit also receivesHm and computes the
multiplication operations of Hm and β(yl − tl). The outputs
of the update unit 1vl,m are fed into the RAM for the weight
vector to update.

FIGURE 13. Human-robot interaction in the experiment.

IV. EXPERIMENTS
A. LEARNING PREFERENCES FROM A FEW
HUMAN-ROBOT INTERACTIONS
We verified that the proposed classical conditioning
model could learn customers’ preferences through a few
human-robot interactions. We implemented the model on a
home service robot (TOYOTA HSR [7], [35]) for this exper-
iment. The perception parts of the model were implemented
viaWeb Speech API [36] as voice recognition, YOLOv2 [37]
as object visual recognition, and simultaneous localization
and mapping as place detection. Using a camera and micro-
phone installed on the robot, the model fetched CS and US
(Fig. 13). We prepared two types of vectors for each CS,
namely, face images (64× 64 pixel RGB channel) represent-
ing customers A and B and two vectors (three-dimensional
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TABLE 1. Defined situations.

one-hot vectors) representing placesA andB.We also defined
four situations (Table 1). Using situation A as an example,
whenever customer A is in place A, object A is ordered
(showing that the preference in situation A is object A). The
model received US and CS from the defined situation and
learned the relation between US and CS. First, the model
received the US and CS of situation A ten times, after which
the situation is changed. Then, similarly, the model received
the US and CS of situation B ten times, followed by the same
procedure for situations C and D.

We used software of the model for this experiment. In
this experiment, the hardware-oriented algorithm was not
applied, and all variables were 32-bit floating-point numbers.
The activation function in (5) was Softmax function. Thus,
the outputs of the CE were probabilities.

FIGURE 14. Probabilities of object prediction during human-robot
interactions.

Fig. 14 shows the probabilities of objects estimated by the
model from the situation during human-robot interactions.
In each new situation, three or four interactions were required
by the model to favor the correct ordered object, demonstrat-
ing the capability of the model to adapt to a new situation
through only a few human-robot interactions.

Moreover, to verify the generalization performance of the
model, we prepared 1,000 face images per customer rep-
resenting the faces captured from various directions, which
were divided into 750 images for training and 250 images
for validation. At a human-robot interaction in the training
mode, an image was randomly selected from the 750 train-
ing images. The image and a vector representing the place
were fed into the model. After each interaction, we fed all
250 validation images and place vectors of the situation into
the model to verify its accuracy rate with respect to the
validation images. Figure 15 shows the accuracy rate of the

FIGURE 15. Accuracy rate of the classical conditioning model with
respect to the validation images during the human-robot interactions.

model during the interactions and indicates that the model
adapted all situations within ten human-robot interactions.

B. HARDWARE IMPLEMENTATION
We designed and implemented a dedicated hardware of the
classical conditioning model into an FPGA. The target device
was an XCZU9EG FPGA [34], and the developing environ-
ment was Xilinx SDSoC 2018.3 [38].

We set the hyperparameters of the structure of the model
as follows: the number of SOMs in the LA was K = 2, the
dimension of reference vectors of SOMs was N = 12, 288(=
64×64×3), the size of the SOMs in the LAwas I×J = 8×8,
and the number of neurons in the CE was L = 3.
We designed the hardware using Vivado HLS [39] and

described the computations of the model as a hardware func-
tion and synthesized the hardware function. We measured the
logic utilization of the hardware operated at 150MHz. Table 2
shows the logic utilization of the hardware; the utilization
was less than 100 %. Thus, the proposed hardware of the
model could be implemented on the XCZU9EG FPGA. The
utilization of the BRAM was the maximum in some types
of hardware resources. The worst negative slack and the
worst hold slack of the hardware were 0.568 ns and 0.01 ns,
respectively.

TABLE 2. Logic utilization of the proposed hardware.

Furthermore, we verified the effect of the proposed
hardware-oriented algorithm by designing and synthesiz-
ing hardware functions using the original algorithm of the
model and floating-point numbers. We designed two types
of hardware implementations: sequential and parallel imple-
mentation. In sequential implementation, hardware computa-
tions were sequentially executed. In parallel implementation,
hardware computations were executed in parallel. We set
the clock frequency as 150 MHz in both implementations.
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TABLE 3. Logic utilization and latencies of three types of hardware
implementations.

Table 3 shows the logic utilization and latencies of the com-
putation. The logic utilization and latency of the parallel
implementation were estimated values by Xilinx Vivado and
SDSoC because the required hardware resources exceeded
the resources on the target device and the hardware did not
satisfy timing constraints. Therefore, the hardware could not
be implemented on the FPGA. In sequential implementa-
tion, logic utilization, except LUTRAM and BRAM, was
smaller than that for the proposed hardware because a sin-
gle processing unit was implemented on the hardware and
sequentially executed to compute multiple elements of vec-
tors. However, SDSoC estimated the latency of this hardware
as 62,159,985 CLK, whereas the latency of the proposed
hardware was 15,395 CLK. Thus, sequential implementation
was ineffective. In parallel implementation, logic utilization
was larger than that of the proposed hardware. The latency of
this hardware was estimated as 95,426 CLK, which was also
higher than the latency of the proposed hardware.

C. ABILITY OF THE HARDWARE
We executed the proposed hardware on the FPGA. First,
we executed a pre-training mode, feeding CS into the LA for
several iterations to obtain organized reference vectors of the
SOMs. In the pre-training mode, face images used in experi-
ment A were fed into the LA for faces. A three-dimensional
vector, whose elements were random values of eight-bit inte-
gers, was fed into the LA for places. We set A in (12) as 1.
Fig. 16 shows the reference vectors before and after 500 iter-
ations of pre-training. Since we implemented two SOMs in
the hardware, two types of reference vectors (k = 1, 2) are
illustrated in the figure. In Figs. 16-(c) and 16-(d), each
reference vector is represented as an RGB color rectangle
because the RGB color is also a three-dimensional vector
of the eight-bit integer. Figs. 16-(a) and 16-(c) show that
the initial reference vectors were zero, and Figs. 16-(b)
and 16-(d) show that the SOMs in the LAwere self-organized
by the pre-training. Note that owing to the differences in
the data dimension and distribution, the self-organized maps
between the SOMs were significantly different.

Fig. 17 shows the SOM errors between the reference vec-
tors of the winner neurons and data during the pre-training.

FIGURE 16. Measured results of FPGA implementation: Reference vectors
before and after the pre-training.

FIGURE 17. Measured results of FPGA implementation: Error of the SOM
in LA between the reference vectors of the winner neurons and data
during the pre-training.

In the case of the SOM for face, the validation images used in
experiment A were used for data to compute the error. In the
case of the SOM for place, one-hot vectors that represented
places A and B were used for data to compute the error. The
SOM error in k-th LA Lk was computed as follows:

Lk =
1
P

P∑
p=1

1
N
‖xk (p)− wic,jc‖1, (14)

where xk (p) is the p-th validation data and P is the total
number of validation data. During pre-training, the error
decreased and converged. Note that the maximum allowable
value of the error is 255 because both input and reference
vectors were eight-bit integer values.
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FIGURE 18. Measured results of FPGA implementation: Outputs of the CE
during classical conditioning.

After the pre-training, we executed a classical conditioning
test on the FPGA, where we simultaneously afforded US and
CS. The combinations of US and CS are defined in Table 1.
First, the US and CS of situation A were afforded for ten
iterations. Then, the US and CS of situation B were also
similarly afforded for ten iterations. Similar procedure was
followed for situations C and D. We set A in (12) as 4, and
β in (9) as 0.1. Fig. 18 shows the outputs of the CE during
the classical conditioning test on the FPGA. At the beginning
of the test, the output for object A increased, and the other
outputs monotonically decreased. Then, the situation was
changed at the tenth iteration, and the output for object B
increased to adapt to the situation. Similarly, the situation was
changed at the 30-th iteration, and the output for object C
started increasing. This experimental result showed that even
though the hardware was implemented using the simplified
hardware-oriented algorithm, the hardware of the model was
able to learn the combinations of CS and US (also regarded
as the customers’ preferences) with a few training iterations.

FIGURE 19. Measured results of FPGA implementation: Accuracy rate of
the classical conditioning model with respect to the validation images
during the human-robot interactions.

Moreover, to verify the generalization performance of the
proposed hardware, we used the generalization test corre-
sponding to the test in experiment A. Figure 19 shows the
accuracy rate of the model with respect to the validation

images during the interactions and indicates that the hardware
adapted all situations within ten human robot interactions.

TABLE 4. Execution time of the software.

TABLE 5. Measured results of FPGA implementation: Execution time of
the hardware.

TABLE 6. Estimated chip powers.

D. PERFORMANCE OF THE HARDWARE
We measured the processing speed of the hardware. The
XCZU9EG FPGA used in this experiment was a system-
on-chip (SoC) FPGA, integrating a processing system (PS)
and programmable logic (PL). In this experiment, the pro-
posed hardware was implemented on the PL. Software on
the PS passed input data to the PL and received computation
results from the PL. We measured the execution times of
the training mode from the onset of data input until the end
of the receipt of computation results. The operation of the
hardware was repeated 500 times. For comparison between
the processing speed of the hardware and that of software,
we implemented software and executed it on PS in FPGA
(Arm Cortex-A53), Intel Core i5 4670K, and a CPU in
NVIDIA Jetson TX2 (Nvidia Denver and Arm Cortex-A57).
For Arm Cortex-A53 and Intel Core i5, we implemented the
classical conditioning model using C++. For the CPU in Jet-
son TX2, we implemented it using Python and NumPy [40].
Moreover, we replaced the model computations by NumPy
with those by CuPy [41] to execute them on a GPU in
Jetson TX2. We set a mode of Jetson TX2 as Max-N where
all cores in Jetson TX2 were available. Table 4 shows the
average execution times of the software, and Table 5 shows
the average execution times of the hardware. As shown in
these tables, the hardware was faster than the software even in
the GPU. The execution time of the hardware included time
for data transfer. We measured the execution time of only
the logic of the model, by implementing a hardware function
that computed nothing but received dummy CS and returned
dummy CR. We measured the execution time of the empty
hardware, which was measured when the clock frequency for
data transfer was operated at 150 MHz.
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TABLE 7. Comparison of previous studies on the amygdala models for robot applications.

We measured the power consumption of the hardware
(both entire hardware and empty hardware). Table 6 shows
the chip powers estimated by Vivado. As shown in the
table, the FPGA, including the proposed hardware, consumed
5.009 W.

V. DISCUSSION
A. MODEL
Table 7 shows the comparison of previous studies on the
amygdala models for robot applications. Compared to the
EMA [28], the proposed model can be applied to more com-
plex tasks. The EMA fetches single information from the
environment for CS; therefore, it cannot deal with combi-
nations of multiple factors in the environment. Furthermore,
the EMA cannot be used if factors that are related to US
are unknown. However, our model fetches significant infor-
mation from the environment for CS. Therefore, our model
can deal with combinations of factors in the environment,
meaning that our model can be used even if we do not know
which factors are related to US.

Compared to the amygdala model in SAFEL [29], [30], our
proposed model is more useful for robot applications because
it includes the functions of LA, CE, and perception parts.
By introducing the LAmodel, our model can accept unknown
stimuli. For example, the model beforehand learns situations
where a young male customer and an old female customer
appear. When a young female customer appears, a neuron
located between a neuron for the young male and a neuron
for the old female, will react. Supposing that a relation exists
between age, gender, and preferences, our model can estimate
the preference of the unknown customer.

B. HARDWARE
Using the proposed hardware-oriented algorithm, the hard-
ware of the LA module does not require any multipli-
ers. If we implement the classical conditioning model
with the same structure as the model in the experi-
ment, by not using the hardware-oriented algorithm, the
LA module requires 6,291,840 multiplication operations:
(1) requires 1,572,864 multiplication operations, (2) requires
128 multiplication operations, (3) requires 256 multiplica-
tion operations, and (6) requires 4,718,592 multiplication
operations. Therefore, the proposed algorithm is effective
for reducing hardware resources (Table 3). Furthermore,
although the hardware was implemented using the simpli-
fied hardware-oriented algorithm, the hardware of the model
could self-organize the reference vectors of the LA module

(Fig. 16) and learn the combinations of US and CS with a
few training iterations (Fig. 18).

Although Xilinx Vitis AI [42] can implement DL
framework-based models, such as Keras, TensorFlow, and
Caffe, into FPGAs replacing the floating-point variables
with fixed-point variables, our proposed hardware-oriented
algorithm is more effective in implementing the model into
FPGAs because replacing multiply operations and exponen-
tial functions with bit-shift operations drastically reduces the
hardware resources. Vitis AI cannot achieve such an effective
algorithm.

Since we used SOMs with 8 × 8 neurons in this study,
the use of eight-bit fixed-point variables is sufficient to com-
pute SOM algorithm and solve the task. Additionally, even if
SOM hardware with more neurons is required in some tasks,
we can easily change the bit width of all variables to adapt to
other tasks because the hardware is parameterized.

Tables 4 and 5 show that the proposed hardware operated
at 150 MHz is 1,273 times, 111.4 times, 214.3 times, and
94.73 times faster than the software executed on Arm Cortex-
A53, Intel Core i5 4670K, CPU of Jetson TX2, and GPU
of Jetson TX2, respectively. These findings reveal that the
computation of the proposed hardware is more effective than
that of the software, even on the GPU. Moreover, SDSoC
estimated a latency of the training mode on the hardware
as 15,395 CLK. Thus, the ideal execution time of the hard-
ware without data transfer is 6.67 ns/CLK × 15,395 CLK =
102.6 µs. In addition, Table 5 also shows that the execution
time of the logic is 197.4 µs - 90.7 µs = 106.7 µs if data
transfer time is ignored.

VI. CONCLUSION
In this study, we proposed a novel amygdala-inspired clas-
sical conditioning model that learns preferences after a
few repeated human-robot interactions. We implemented
the model on an FPGA by proposing a hardware-oriented
algorithm that reduces multiplication operations more than
6,000,000 times. Using the hardware-oriented algorithm,
we designed a dedicated hardware for the model on an
XCZU9EG FPGA that is more than 1,200 times faster
than software on an Arm Cortex-A53 CPU. The hard-
ware can learn preferences through a few training itera-
tions, even though the simplified algorithm is used for the
implementation.

In future studies, we aim to integrate the amygdala-inspired
model with other brain-inspired models. The proposed model
has been integrated with the perception parts, regarded as a
neocortex model. Furthermore, by introducing hippocampus
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and entorhinal cortex models and integrating them with the
model, functions for episodic memory using representation
of place and time can be realized.
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