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ABSTRACT Automated infection measurement and COVID-19 diagnosis based on Chest X-ray (CXR)
imaging is important for faster examination, where infection segmentation is an essential step for assessment
and quantification. However, due to the heterogeneity of X-ray imaging and the difficulty of annotating
infected regions precisely, learning automated infection segmentation on CXRs remains a challenging
task. We propose a novel approach, called DRR4Covid, to learn COVID-19 infection segmentation on
CXRs from digitally reconstructed radiographs (DRRs). DRR4Covid consists of an infection-aware DRR
generator, a segmentation network, and a domain adaptationmodule. Given a labeled Computed Tomography
scan, the infection-aware DRR generator can produce infection-aware DRRs with pixel-level annotations
of infected regions for training the segmentation network. The domain adaptation module is designed to
enable the segmentation network trained on DRRs to generalize to CXRs. The statistical analyses made
on experiment results have indicated that our infection-aware DRRs are significantly better than standard
DRRs in learning COVID-19 infection segmentation (p < 0.05) and the domain adaptation module can
improve the infection segmentation performance on CXRs significantly (p < 0.05). Without using any
annotations of CXRs, our network has achieved a classification score of (Accuracy: 0.949, AUC: 0.987,
F1-score: 0.947) and a segmentation score of (Accuracy: 0.956, AUC: 0.980, F1-score: 0.955) on a test
set with 558 normal cases and 558 positive cases. Besides, by adjusting the strength of radiological signs of
COVID-19 infection in infection-aware DRRs, we estimate the detection limit of X-ray imaging in detecting
COVID-19 infection. The estimated detection limit, measured by the percent volume of the lung that is
infected by COVID-19, is 19.43% ± 16.29%, and the estimated lower bound of infected voxel contribution
rate for significant radiological signs of COVID-19 infection is 20.0%. Our codes aremade publicly available
at https://github.com/PengyiZhang/DRR4Covid.

INDEX TERMS COVID-19 diagnosis, infection segmentation, DRRs, X-ray imaging, deep learning.

I. INTRODUCTION
The highly contagious Coronavirus Disease 2019
(COVID-19), caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) virus [1]–[3], has spread
rapidly to most countries in the world. Globally, as of 2:34pm
CEST, 7 July 2020, there have been 11,500,302 confirmed
cases of COVID-19, including 535,759 deaths, reported to
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World Health Organization (WHO) [4]. Rapid detection and
confirmation of COVID-19 infection is critical to prevent the
spread of this epidemic.

Radiological imaging, such as Computed Tomogra-
phy (CT) and Chest X-ray (CXR), is currently used to provide
visual evidence for confirming COVID-19 positive patients
in clinical practice. CT scan provides accurate 3D images of
the lungs that are able to detect very small lesions effectively
such as lung nodule and tumor. However, the workflow of CT
imaging, involving several pre-scan events [5], is relatively
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complex, and meanwhile, CT examinations are costly. As the
number of infected patients rapidly increases, the routine use
of CT brings heavy burden to the radiology department [6].
In contrast, CXR examination is much easier, faster and less
costly, and provides high-resolution 2D images of the lungs
that can detect a variety of lung conditions such as pneu-
monia, emphysema and cancer. CXRs are the typical first-
line imaging modality used for patients under investigation
of COVID-19 [7]. Therefore, automated infection measure-
ment and COVID-19 diagnosis based on CXRs is important
for faster examination, where infection segmentation is an
essential step for assessment and quantification.

Many approaches have been proposed for automated
COVID-19 diagnosis based on CXRs, and have claimed
notable detection accuracy of COVID-19 infection. However,
due to the lack of sufficient CXRs with pixel-level annota-
tions of infected regions, the majority of these approaches
are designed by using classification models rather than seg-
mentation models. The projective nature of X-ray imaging
causes large overlapping of anatomies, fuzzy object bound-
aries and complex texture patterns, thus making it extremely
difficult to delineate infected regions precisely on CXRs
even for experienced clinicians [8]. As an alternative, some
researchers have leveraged the interpretability of classifica-
tion model (e.g., saliency map or attention map) to locate the
infected regions roughly. However, such methods are unable
to produce accurate COVID-19 infection segmentation for
further assessment and quantification. Currently, to our best
knowledge, no effective approaches have been developed for
automated COVID-19 infection segmentation on CXRs as
reviewed by Shen et al. [7].
Digitally reconstructed radiograph (DRR) [9]–[12] is a

synthetic X-ray image that is generated by simulating the
passage of X-rays through a 3D CT volume in specific poses
(position and orientation) within a virtual imaging system.
CXR findings of COVID-19 infection reflect those described
by CT [13] such as bilateral, peripheral consolidation and/or
ground glass opacities (GGOs) [7], [14], [15]. Besides, delin-
eating infected regions in 3D CT scans is much easier than
in heterogeneous 2D CXRs because CT scans can provide
accurate 3D images of the lungs rather than heterogeneous
2D images. Thus, we propose to learn automated COVID-19
infection segmentation on CXRs from labeled DRRs by
leveraging the publicly available CT scans with voxel-level
annotations of infected regions and the correlation between
DRRs and CXRs.

To this end, we propose a novel approach, called
DRR4Covid, which can learn automated COVID-19 infec-
tion segmentation on CXRs from labeled DRRs. We design
DRR4Covid with a modular framework, which consists of
an infection-aware DRR generator, a deep segmentation net-
work, and a domain adaptation module. Given a CT volume
with voxel-level infection annotations, our infection-aware
DRR generator can produce DRRs with adjustable radio-
logical signs of COVID-19 infection, and generate pixel-
level annotations of infected regions that match the DRRs

accurately. Although such synthetic DRRs are photo-realistic,
there is still a gap between synthetic DRRs and real CXRs,
which may lead to a poor segmentation performance on real
CXRs. Therefore, we introduce a domain adaptation module
to train networks on labeled DRRs and unlabeled CXRs
together. In this article, we provide a simple but effective
implementation of DRR4Covid by using a domain adaptation
module based on Maximum Mean Discrepancy (MMD), and
a FCN-based [16] network with a classification header and
a segmentation header. Extensive experiment results have
confirmed the efficacy of our method; specifically, without
using any annotations of CXRs, our network has achieved
a classification score of (Accuracy: 0.949, AUC: 0.987,
F1-score: 0.947) and a segmentation score of (Accuracy:
0.956, AUC: 0.980, F1-score: 0.955) on a test set with
558 normal cases and 558 positive cases. Besides, by adjust-
ing the strength of radiological sign of COVID-19 infection
in synthetic DRRs, we estimate the detection limit of X-ray
imaging in detecting COVID-19 infection. The estimated
detection limit, measured by the percent volume of the lung
that is infected by COVID-19, is 19.43% ± 16.29%, and the
estimated lower bound of the contribution rate of infected
voxels for significant radiological signs of COVID-19 infec-
tion is 20.0%.

The novelties and contributions of our study mainly come
from four major aspects:

1) We propose a novel approach, i.e., DRR4Covid,
to learn automated COVID-19 infection segmentation
on CXRs. To our best knowledge, this is the first
attempt to learn automated COVID-19 infection seg-
mentation on CXRs by using the labeled DRRs that are
generated from Chest CT scans. Owing to the modular
framework, our DRR4Covid can be implemented flex-
ibly with the off-the-shelf segmentation networks and
domain adaptation algorithms. Moreover, DRR4Covid
is a unified approach that can be applied to other lesion
segmentation (e.g., lung nodule and tumor) on X-ray
images;

2) We design an infection-aware DRR generator to syn-
thesize infection-aware DRRs with pixel-level anno-
tations of infected regions for training segmentation
network. The statistical analyses made on experiment
results have confirmed that our infection-aware DRRs
are significantly better than standard DRRs in learning
COVID-19 infection segmentation (p < 0.05);

3) We provide a simple but effective implementation of
DRR4Covid by using a domain adaptation module
based on Maximum Mean Discrepancy (MMD), and
a FCN-based network with a classification header and
a segmentation header. The statistical analyses made
on experiment results have confirmed that the domain
adaptation module can improve the infection segmen-
tation performance on CXRs significantly (p < 0.05);

4) We estimate the detection limit of X-ray imaging in
detecting COVID-19 infection for the first time, which
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is of great significance for the severity assessment of
COVID-19 infection based on X-ray imaging.

II. RELATED WORK
In this section, we review the related work from three aspects,
including DRR, domain adaptation and CXR based screening
of COVID-19 in light of infection segmentation.

A. DRR
A digitally reconstructed radiograph (DRR) [9]–[12] is a syn-
thetic X-ray image that is generated by simulating the passage
of X-rays through a 3D CT volume in specific poses (position
and orientation) within a virtual imaging system. DRRs are
generally used as reference images by the intensity based
2D to 3D image registration algorithms to verify the correct
setup position of a patient for many radiotherapy treatments
[17]–[19]. Each pixel value of DRR is obtained by calculating
the radiological path length (RPL) [20], i.e., the summation
of the length travelled by the ray in each voxel, multiplied
by the relative CT intensity of the voxel that is measured in
Hounsfield units (HUs). Thus, with a high complexity level
of O(n3), the synthesis of DRRs is computationally intensive
by nature [21]. Meanwhile, in the iterative optimization of
2D–3D image registration algorithms, the synthesis of DRRs
is usually performed many times to calculate the similarity
measure [19], which greatly limits the running speed of
2D-3D image registration algorithms [12]. Therefore,
the majority of previous studies have focused on this prob-
lem and have proposed plenty of improved approaches
to accelerate the synthesis of DRRs [11], [12], [19]–[23].
In contrast, we are more concerned with the consistency
between DRRs and the infection annotation masks. Thus,
we directly design our infection-aware DRR generator based
on SiddonGpuPy [24], which combines the serial algorithm
proposed by Jacob [11] to improve the original Siddon’s
algorithm [9], and the parallel implementation proposed by
Greef et al. [20].

The most closely related work is TD-GAN [8] and Deep-
DRR [25], [26]. TD-GAN aims to learn automatic parsing
of anatomical objects in X-ray images from labeled 3D CT
scans by using synthetic labeled DRRs. The pixel-level anno-
tations of anatomical objects are obtained by projecting 3D
CT labels along the same trajectories used in the synthesis
of DRRs. TD-GAN adopts the CycleGAN architecture to
perform unpaired image-to-image translation and unsuper-
vised domain adaptation to enable the segmentation models
trained on DRRs to generalize to real X-ray images. Simi-
lar strategy is also used by X2CT-GAN [27] to reduce the
gap between synthetic DRRs and real X-ray images. Unlike
TD-GAN and X2CT-GAN, DeepDRR attempts to produce
more realistic radiographs and fluoroscopy from 3DCT scans
to enable machine learning models trained directly on Deep-
DRRs to generalize to clinical data without the need for
domain adaptation. DeepDRR has been used in anatomical
landmark detection in pelvic X-ray and to simulate X-rays
of the femur during insertion of dexterous manipulators in

orthopedic surgery. Both TD-GAN and DeepDRR care more
about the anatomical structures than the lesion regions. Given
a CT with COVID-19 infection, the existing DRR generators
may produce a DRR with no findings due to the heterogene-
ity of DRRs. It is tough to keep the consistency between
standard DRRs and annotation masks of lesion regions by
using existing DRR generators. Therefore, we design a new
infection-aware DRR generator to solve this problem through
a category-weighted projection and RPL threshold method.

B. DOMAIN ADAPTATION
Domain adaptation aims at rectifying the distribution discrep-
ancy between the training samples (source domain) and test
samples (target domain) [28] and tuning the model toward
better generalization onto the target domain in a supervised or
unsupervised manner. Numerous domain adaptation methods
have been proposed based on deep models recently as deep
networks can learn more transferable features for domain
adaptation and achieve better performance [29]–[31]. The
main insight behind these approaches is to extract domain-
invariant representations by embedding domain adaptation
modules in the pipeline of deep learning [28], [32]–[38].

Existing deep domain adaptation methods align the dis-
tributions of source domain and target domain mainly from
three perspectives. The first stream is image alignment,
and image-to-image translation models are typically used
to reduce the gap between source domain images and
target domain images [8]. The second stream is feature
alignment [32]–[37], which is the mainstream approach
and aims to learn domain-invariant deep features. The
last stream is output alignment, which is often used to
learn semantic segmentation of urban scenes from syn-
thetic data [28], [38]. Moreover, we recognize that there
are two main approaches to perform feature alignment,
including adversarial approach [34], [35], [39]–[41] and
non-adversarial approach [31], [33], [36], [42]–[44]. The
adversarial approach motivates deep models to extract
domain-invariant features through adversarial training. It is
done by training task-specific deep models to minimize the
task-specific loss and the adversarial loss simultaneously,
thereby fooling the domain discriminator to maximize the
probability of deep features from source domain being classi-
fied as target domain. The non-adversarial approach is statis-
tic moment matching-based approach, involving maximum
mean discrepancy (MMD) [33], [42], [43], central moment
discrepancy (CMD) [44] and second-order statistics match-
ing [36]. The statistic moment matching-based approach
encourages deep models to extract domain-invariant deep
features by minimizing the distance between the statistic
moments of deep features from source domain and from
target domain. MMD [45] is the most representative method,
and has beenwidely used tomeasure the discrepancy between
the source domain and target domain distributions [31].
Compared with the adversarial approaches, MMD-based
methods are simple, stable and are easy to imple-
ment, and thus can facilitate to verify the efficacy of
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DRR4Covid quickly. In our implementation of DRR4Covid,
we directly use an off-the-shelf MMD-based domain adap-
tation approach, i.e., LMMD proposed by Zhu et al. [31],
to enable the deep models trained on DRRs to generalize to
real CXRs.

C. CXR BASED SCREENING OF COVID-19 IN A VIEW
OF INFECTION SEGMENTATION
Segmentation is an essential step in automated infection
measurement and COVID-19 diagnosis, which can pro-
vide the delineation of the regions of interest (ROIs), e.g.,
infected regions, in the CXRs for further assessment and
quantification. Many approaches have been proposed for
automated COVID-19 diagnosis based on CXRs. However,
the majority of these approaches are based on classifica-
tion models rather than segmentation models as reviewed
by Shen et al. in [7] due to the aforementioned reasons.
Some researchers have leveraged the interpretability of deep
classification models to highlight the infected regions rather
than accurately segmenting the infected regions. Specifi-
cally, Oh et al. [6] introduce a probabilistic Grad-CAM
saliency map to indicate the multifocal lesions within CXRs
in their local patch-based deep classification models for
COVID-19 diagnosis. Such method is derived from a famous
explanation technique, i.e., gradient weighted class acti-
vation map (Grad-CAM), and can effectively locate the
radiological signs of COVID-19 infection, such as the
multifocal ground-glass opacification and consolidations.
Similarly, Karim et al. [46] use a revised Grad-CAM,
i.e., Grad-CAM++, and layer-wise relevance propagation
(LRP) [47] in classifying CXRs as Normal, Pneumonia and
COVID-19 to indicate the class-discriminating regions in
CXRs. Besides, Tabik et al. [48] adopt multiple explanation
techniques, including occlusion [49], saliency [50], input X
gradient [51], guided backpropagation [52], integrated gradi-
ents [53], and DeepLIFT [54], to investigate the interpretabil-
ity of deep classification models and highlight the relevant
infected regions of pneumonia and COVID-19 separately.
To sum up, these approaches based on explanation techniques
are mainly used for the inspection of deep models’ decision,
andmay not be suitable for further assessment and quantifica-
tion. In comparison, our DRR4Covid is able to train deep seg-
mentation models for precise infection segmentation directly
without the need for the pixel-level infection annotations of
real CXRs.

III. METHODS
In this section, we describe the modular framework of pro-
posed DRR4Covid, and analyze the critical elements in the
design of DRR4Covid, followed by an introduction of our
implementation of DRR4Covid.

A. MODULAR FRAMEWORK OF DRR4Covid
Given CT scans with voxel-level infection annotations and
unlabeled CXRs, we aim to learn deep models to per-
form automated COVID-19 infection segmentation on CXRs.

FIGURE 1. The modular framework of proposed DRR4Covid.

We design DRR4Covid with a modular framework as shown
in Fig. 1. DRR4Covid consists of three key components,
i.e., an infection-aware DRR generator, a deep classification
and/or segmentation model, and a domain adaptation mod-
ule. The basic workflow of DRR4Covid involves generating
DRRs with pixel-level infection annotations from CT scans,
and training deep models on synthetic labeled DRRs and
unlabeled CXRs by using the domain adaptation module.

1) GENERATING LABELED DRRs
The DRR generator is responsible for synthesizing photo-
realistic DRRs that resemble real CXRs as much as pos-
sible and producing pixel-level infection annotations that
match the DRRs precisely by projecting 3D CT annotations
along the same trajectories used in synthesizing DRRs. High-
quality labeled DRRs in the context of this article can be
defined by two conditions. One is a good consistency between
DRRs and infection annotation masks; the other one is a
good correlation between the radiological signs of COVID-19
infection in DRRs and in real CXRs. As CXRs are typically
considered less sensitive than 3D CT scans [7], it may happen
that CT examination detects an abnormality, whereas the
X-ray screening on the same patient reports no findings.
DRRs also suffer from such problem, which will lead to the
inconsistency betweenDRRs and infection annotationmasks.
This is the first key point for designing a high-quality DRR
generator. The second key point is the correlation between the
radiological signs of COVID-19 infection in real CXRs and in
synthetic DRRs. Note that the synthetic DRRs and infection
annotation masks are used later to train deep segmentation
models. Thus, a large gap between the radiological signs of
COVID-19 infection in real CXRs and in synthetic DRRswill
make deep models trained on DRRs fail to generalize to real
CXRs even if the domain adaptation module is applied.

2) TRAINING DEEP MODELS WITH THE DOMAIN
ADAPTATION MODULE
Although synthetic DRRs are photo-realistic, there is still
a gap between DRRs and real CXRs. Thus, we intro-
duce the domain adaptation module into the framework of
DRR4Covid. According to the quality of synthetic labeled
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FIGURE 2. Illustration of the synthesis of infection-aware DRRs.

DRRs, the problem of training deep models on labeled DRRs
and unlabeled CXRs for infection segmentation on CXRs by
using the domain adaptation module can be divided into two
categories. One is deep domain adaptation with fully super-
vised learning in the source domain (i.e., synthetic DRRs)
and unsupervised learning in the target domain (i.e., real
CXRs); the other one is deep domain adaptation with weakly
supervised learning in the source domain and unsupervised
learning in the target domain. The condition of the first
category is a good consistency between DRRs and infection
annotation masks. If such condition is not well satisfied,
the problemwill be turned into the second category due to the
inaccurate synthetic infection annotations. Compared with
the second one, the first category of problem is well defined,
and has been extensively studied. In this article, we mainly
focus on solving the first category of problem. Thus, we first
implement a high-quality DRR generator, i.e., the infection-
aware DRR generator.

B. INFECTION-AWARE DRR GENERATOR
We design the infection-aware DRR generator to produce
high-quality DRRs as defined in Section III-A. The standard
DRR generator takes a CT volume or an infection annotation
volume in a specific pose (position and orientation) as input
and outputs a DRR or an infectionmask. In contrast, our DRR
generator takes both a CT volume and its infection annotation
volume as input and produce a labeled DRR as illustrated

in Fig. 2. A ray is casted from the X-ray source through
labeled CT volumes to the center of each pixel of DRR.
Each pixel value of DRR is obtained by calculating the class-
weighted RPL [20], i.e., the class-weighted summation of the
length travelled by this ray within each voxel, multiplied by
the relative CT intensity of the voxel that is measured in HUs.
The calculation of the d-th pixel of DRR pd is formulated as

pd =

∑
(i,j,k)∈�d l(i,j,k)ρ(i,j,k)w(i,j,k)∑

(i,j,k)∈�d w(i,j,k)/|�d |
(1)

where �d is the 3D index set of the voxels in the X-ray
direction, |�d | is the number of voxels in �d , l(i,j,k) repre-
sents the normalized length travelled by the ray within the
(i, j, k)-th voxel, ρ(i,j,k) and w(i,j,k) denote the CT value and
the weight of the (i, j, k)-th voxel, respectively. The weight of
the (i, j, k)-th voxel is defined as

w(i,j,k) =


w2, if m(i,j,k) = 2
w1, elif m(i,j,k) = 1
w0, otherwise

∣∣∣∣m(i,j,k) ∈ {0, 1, 2} (2)

where m(i,j,k) ∈ {0, 1, 2} is the category of the (i, j, k)-th
voxel, 0, 1 and 2 represent the background, lungs and
COVID-19 infection respectively. Note that the infection-
aware DRR generator will produce standard DRRs when
the weights of all categories are equal. On the other hand,
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FIGURE 3. Illustration of the framework of our FCN-based network equipped with a MMD-based domain adaptation
module. GAP denotes global average pooling.

the label of pd , md , is computed as

md =


2, if π2

d > T 2

1, elif π2
d ≤ T

2 and π1
d > T 1

0, otherwise

(3)

where πcd denotes the contribution rate of the voxels of cat-
egory c in calculating pd , and T c represents the contribution
threshold of category c. Specifically, πcd is defined as

πcd =

∑
(i,j,k)∈�cd

l(i,j,k)w(i,j,k)∑
(i,j,k)∈�d l(i,j,k)w(i,j,k)

∣∣∣∣c ∈ {0, 1, 2} (4)

where �c
d denotes the 3D index set of the voxels of category

c in the X-ray direction.
The strength of the radiological signs of COVID-19 infec-

tion in CXRs and DRRs depends on the contribution rate
of infected voxels (CRIV) due to the projective nature of
X-ray imaging. A higher value of CRIV represents a larger
number of infected voxels appear in the X-ray direction, and
the radiological signs of COVID-19 infection, e.g., GGOs,
will be more significant. Such property of X-ray imaging
can be well modeled in ‘‘1’’ and ‘‘4’’ by our infection-aware
DRR generator. Increasing the weight of infected voxels will
improve the value of CRIV and vice versa. Accordingly, our
infection-aware DRR generator can produce DRRs with dif-
ferent strengths of radiological signs of COVID-19 infection

simply by adjusting the weight of infected voxel. The syn-
thetic pixel-level annotations of COVID-19 infection are
also computed based on the CRIV. Therefore, our infection-
aware DRR generator can maintain the consistency between
synthetic DRRs and infection annotation masks easily by
increasing the weight of infected voxels when the value of
CRIV is too small. To sum up, our infection-aware DRR
generator has the following advantages:

1) By setting the weight of infected voxels to a very small
value, our infection-aware DRR generator is able to
produce DRRs with no findings, which are essential
for training deep classification models for COVID-19
diagnosis;

2) By setting the weight of infected voxels to a relatively
large value, our infection-aware DRR generator can
generate high-quality DRRs with pixel-level annota-
tions of infected regions, which are essential for train-
ing deep segmentation models for precise COVID-19
infection segmentation;

3) By adjusting the weight of infected voxels from small
values to large values, our infection-aware DRR gener-
ator will synthesize a serial of labeled DRRs with dif-
ferent strengths of the radiological signs of COVID-19
infection. Such DRRs might be able to be used to esti-
mate the detection limit of X-ray imaging in detecting
COVID-19 infection.
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C. FCN-BASED NETWORK EQUIPPED WITH A
MMD-BASED DOMAIN ADAPTATION MODULE
1) NETWORK ARCHITECTURES
We design a FCN-based network as depicted in Fig. 3. It con-
sists of a backbone network, a classification header and a seg-
mentation header. Compared with FCN [16], our model has
an auxiliary classification header. The classification header
is designed for two purposes. One is to enable our model
to perform both classification task and segmentation task for
automated infection measurement and COVID-19 diagnosis.
The other one is to facilitate the use of MMD-based methods
for domain adaptation. The backbone network is responsible
for extracting deep features by performing the convolution
and spatial pooling operations on DRRs and CXRs. The
extracted deep features are then fed into the classification
header and segmentation header separately. In the classifica-
tion branch, we adopt a very simple structure with a global
average pooling (GAP) layer and a fully convolution (FC)
layer. In the segmentation branch, we use two convolutional
layers followed by an up-sampling layer to generate the seg-
mentation output with the same size as the input DRRs and
CXRs.

2) MMD-BASED DOMAIN ADAPTATION MODULE
As a nonparametric distance estimate between two distribu-
tions, MMD [45] has been widely used in domain adaptation
algorithms to measure the discrepancy between the source
and target distributions. In our implementation, we adopt
an off-the-shelf MMD-based domain adaptation approach,
i.e., LMMD loss proposed by Zhu et al. [31]. LMMD can
measure the discrepancy of local distributions by taking the
correlations of the relevant subdomains into consideration.
By minimizing the LMMD loss during the training of deep
models, the distributions of relevant subdomains within the
same category in the source domain and target domain are
drawn close. As the LMMDmethod is proposed in the context
of object recognition and digit classification tasks, we apply
it to the classification header directly by aligning the deep
features from the GAP layer. The effect of feature alignment
can be propagated to the segmentation branch implicitly
through the input of the GAP layer. The experiment results
have verified the efficacy of our design, whichwill be detailed
in Section IV-D.

3) OBJECTIVE FUNCTION
The training of our model is performed by minimiz-
ing the classification loss lcls, segmentation loss lseg,
and LMMD loss lmmd simultaneously. The total loss is
computed as

ltotal = λcls × lcls + λseg × lseg + λmmd × lmmd (5)

where λcls, λseg, and λmmd denote the weights of the
classification loss, segmentation loss, and LMMD loss,
respectively.

IV. EXPERIMENTS AND RESULTS
A. MATERIALS
1) CHEST CT SCANS
We use the public COVID-19-CT-Seg dataset [55], which
consists of 20 public COVID-19 CT cases with voxel-level
annotations of the left lung, right lung and COVID-19 infec-
tion. The annotations, first labeled by junior annotators, are
refined by two radiologists with 5 years of experience, and are
further verified and refined by a senior radiologist with more
than 10 years of experience in chest radiology. In these 20 CT
volumes, the voxel values of 10 volumes have been normal-
ized to [0, 255], and thus we cannot access their CT values
measured inHUs.We discard these ten cases and use the other
10 CT cases for the synthesis of DRRs in our experiments. For
each CT case, we obtain 40 front-view DRRs and 40 lateral-
view DRRs with pixel-level annotations of infected regions
by using our infection-aware DRR generator, which will be
detailed in Section IV-B. Thus, we build a training set in the
source domain with these 800 DRRs as shown in Table 1.

2) CHEST X-RAY IMAGES
We use two public COVID-19 CXR collections [56], [57],
which are constructed upon Radiopaedia [58], COVID-19
image data collection [59], Chest X-Ray Images (Pneumo-
nia) [60], SIRM [61], Twitter COVID-19 CXR dataset [62],
and Hannover Medical School dataset [63]. The first collec-
tion [56] consists of 219 COVID-19 positive images from
96 patients and 1341 normal images from 1211 patients.
The second collection contains 558 COVID-19 positive
images that are different from the 219 positive images in
the first collection. We randomly select 219 normal images
from 219 different patients in the first collection, and com-
bine them with the 219 COVID-19 positive images in the
first collection to build a training-validation set in the target
domain. Besides, we use the 558 COVID-19 positive images
in the second collection and 558 normal images that are
randomly selected from the remaining 992 patients in the first
collection to build an independent test set in the target domain
as shown in Table 1. We perform 4-fold cross validation
(75% patients for training and 25% patients for testing) on
the training-validation set and perform independent testing
on the test set. Note that these CXRs have no pixel-level
expert annotations of infected regions. We can only use the
image tags (i.e., positive or negative) to evaluate the classi-
fication and segmentation results. Therefore, we also intro-
duce another CXR dataset, i.e., the BIMCV COVID-19+
dataset [64], where a sub-set of 10 CXRs is annotated with
ROIs of the COVID-19 findings (e.g., consolidation/GGOs)
by a team of eight radiologists from theHospital Universitario
de San Juan de Alicante for the first iteration. To our best
knowledge, this is the only COVID-19 CXR dataset that
provides pixel-level annotations of infected regions currently.
Although the sub-set is very small, we use it to provide
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TABLE 1. The Split of Training, Validation and Test Sets.

preliminary insights into the real infection segmentation per-
formance of our method.

B. INFECTION-AWARE DRRs
1) GENERATING NORMAL DRRs
DRRs with no findings are important for training deep classi-
fication and segmentation models for COVID-19 diagnosis.
Our infection-aware generator is able to generate such DRRs
with no findings by setting the weight of infected voxels to a
relatively small value to reduce the CRIV in the ray-casting
process. In our experiment, we empirically set the weights of
background, lung, and COVID-19 infection as w0 = 24.0,
w1 = 24.0, and w2 = 1.0. Several synthetic normal DRRs
are depicted in Fig. 4.

FIGURE 4. Illustration of normal DRRs generated by our infection-aware
DRR generator.

2) GENERATING MULTIPLE DRRs FROM A SINGLE
CT VOLUME
It is easy to generate multiple DRRs from a single CT volume
by adjusting the pose (position and orientation) of the CT
volume within a virtual imaging system. In our experiment,
we randomly shift each CT volume between −100 and 100,
and rotate it between −45◦ and 45◦ in 3D directions. Several
DRRs generated from a single CT volume are illustrated
in Fig. 5.

FIGURE 5. Illustration of multiple DRRs from a single CT volume by
adjusting the pose of this CT volume.

3) GENERATING DRRs WITH DIFFERENT STRENGTHS OF
RADIOLOGICAL SIGNS OF COVID-19 INFECTION
Our infection-aware DRR generator is able to generate DRRs
with different strengths of radiological signs of COVID-19
infection by adjusting the weights of background, lung and

COVID-19 infection (w0,w1,w2). In our experiment, we set
(w0,w1,w2) to (12.0, 12.0, 1.0), (6.0, 6.0, 1.0), (3.0, 3.0, 1.0),
(1.5, 1.5, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.5), (1.0, 1.0, 3.0),
(1.0, 1.0, 6.0), and (1.0, 1.0, 12.0) separately. Several samples
are shown in the last column of Fig. 6.

4) GENERATING PIXEL-LEVEL ANNOTATIONS OF
COVID-19 INFECTION
We empirically set the contribution threshold of infected
voxels (CTIV) T 2 as 0.00, 0.01, 0.05, 0.10, 0.15, 0.20, and
0.40 respectively to get the corresponding infection anno-
tation masks. The contribution threshold of the lungs is set
to 0.00. Several infection masks are visualized in the first five
columns of Fig. 6.

5) BUILDING TRAINING SETS IN THE SOURCE
DOMAIN (DRRs)
For each CT volume, we first generate 40 normal DRRs,
including 20 front-view DRRs and 20 lateral-view DRRs
by randomly adjusting its pose. Next, in the same way we
generate 40 DRRs and the corresponding pixel-level anno-
tations of infected regions with given (w0,w1,w2) and T 2.
By this means, we build a training set in the source domain
with 800 DRRs as shown in Table 1. Finally, with given the
63 different combinations of (w0,w1,w2) and T 2, we totally
obtain 63 training sets in the source domain.

C. EXPERIMENT SETTING
1) EXPERIMENT DESIGN
This article aims at learning automated COVID-19 infection
segmentation on CXRs from DRRs. To this end, we pro-
pose DRR4Covid, which consists of an infection-aware DRR
generator, a FCN-based network and a MMD-based domain
adaptation module. To verify the efficacy of our method,
we conduct experiments from four aspects: 1) standard
DRRs versus infection-aware DRRs; 2) using domain adap-
tation versus not using domain adaptation; 3) estimating the
detection limit of X-ray imaging in detecting COVID-19
infection by searching for the best parameters (w0,w1,w2)
and T 2; and 4) evaluation of segmentation performance
on 10 CXRs. Accordingly, in each fold, we first train the
FCN-based network on the 63 training sets in the source
domain without using the domain adaptation module respec-
tively. Next, we train the same network on the 63 training
sets in the source domain and the training set in the target
domain by using the MMD-based domain adaptation module
separately. All of the trained models are finally evaluated on
the same validation set and test set. We report the results of
the 4-fold cross validation in the format of Mean ± Standard
Deviation. Note that the annotations of CXRs in the target
domain are always kept unseen in all training tasks and our
infection-aware DRR generator will produce standard DRRs
when (w0,w1,w2) equals to (1.0, 1.0, 1.0).
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FIGURE 6. Illustration of DRRs with different strengths of radiological signs of COVID-19 infection from a single CT volume and their
corresponding pixel-level annotations of the lungs and infected regions. The weights of background and lungs are set as 1.0, and the
contribution threshold of the lungs T 1 is set as 0.0. The red arrows in the last column highlight the infected regions.

2) TRAINING DETAILS
ResNet-18 is adopted as the backbone of the FCN-based
network in our experiments. We train the network with
100 epochs by using Adam optimizer with the parameters
of β1 = 0.9 and β2 = 0.999. We adopt mini-batch of 16,
and use an initial learning rate of 0.0001 that is linearly
decayed by 2% each epoch after 50 epochs. We initialize
the backbone network with the weights of ResNet-18 that
are pre-trained on ImageNet. Data augmentation, involving
random cropping, horizontal flipping, vertical flipping and
random rotating, are performed. The input image size of our
network is 256 × 256 × 3. Besides, the category-weighted
cross entropy loss is adopted as the segmentation loss to
emphasize the optimization of COVID-19 infection segmen-
tation, where the weights of background, lung and COVID-19
infection are set to 0.1, 1.0 and 5.0. Binary cross entropy
loss is used as the classification loss. The weights of the
classification loss, segmentation loss and LMMD loss are set
as λcls = 1.0, λseg = 1.0, and λmmd = 0.3 respectively.

We use the PyTorch1.4 framework to build the deep models.
The infection-aware DRR generator is designed by using
CUDA10.2, Python3.6, and Cython. All models are trained
and evaluated on a Linux server equipped with four NVIDIA
GTX1080ti GPU cards.

3) EVALUATION METRICS
For the classification output of our model, we adopt the
commonly used classification metrics, including accuracy,
F1-score and area under precision-recall curve (AUC of
PR-curve). As the pixel-level annotations of infected regions
are not available for the validation and test sets in the target
domain (CXRs), we are unable to use the segmentation eval-
uation metrics directly. To enable evaluate the quality of seg-
mentation output of our model, we convert the segmentation
output into classification output by determiningwhether there
exists infected regions in the segmentation output, and then
adopt the same three classification metrics. As for the sub-set
of 10 CXRs in the BIMCV COVID-19+ dataset, we directly
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adopt the commonly used segmentation metric, i.e., Dice
similarity coefficient (DSC), to evaluate the segmentation
results.

4) STATISTICAL ANALYSIS
Statistical tests are conducted to determine the significance in
performance differences of learning infection segmentation
from DRRs between standard DRRs and our infection-aware
DRRs and between using our domain adaptation module and
not using domain adaptation. According to the experiment
design, we perform paired samples t-test to compare the
means of scores. Specifically, we remove the outliers of
the scores and apply Shaprio-Wilk test for normality. If the
variables violate the assumption of normality, we perform
Wilcoxon signed-rank test instead of paired samples t-test.
The SciPy package is used in these analyses.

D. EXPERIMENT RESULTS
We report the evaluation results of our model trained on the
63 training sets with/without MMD-based domain adaptation
module in Table 4-27 of the appendix. We will analyze these
results from the four perspectives as introduced in the exper-
iment design.

FIGURE 7. Comparison of standard DRRs, infection-aware DRRs, and real
CXRs. The first column represents the infection masks that are generated
with the contribution threshold T 1 = T 2 = 0.00. We use such infection
masks to indicate the infected pixels of DRRs whose corresponding X-rays
pass through the infected voxels of CT volume.

1) STANDARD DRRs VERSUS INFECTION-AWARE DRRs
Firstly, we do qualitative comparison in Fig. 7. As can be
seen, many infected pixels in standard DRRs indicated by
infection masks present no-findings due to the low contribu-
tion rate of infected voxels in the X-ray casting. This obser-
vation is consistent with the heterogeneous nature of X-ray
imaging, and implicates that X-ray imaging has a lower sensi-
tivity than CT imaging. We notice that the radiological signs
of COVID-19 infection in standard DRRs are indistinctive.
The strength of radiological signs of COVID-19 infection
in standard DRRs depends on the severity of COVID-19
infection. Such propertymakes it hard to leverage the publicly
available CT volumes, because there is no guarantee that a
positive CT scan will yield positive DRRs. In contrast, our
infection-aware DRR generator is able to produce DRRs with
different strengths of radiological signs of COVID-19 infec-
tion simply by adjusting the weight of infected voxels w2.
For instance, a CT case with mild COVID-19 infection can

yield DRRs with significant radiological signs of COVID-19
infection; whereas a CT casewith severe COVID-19 infection
can yield normal DRRs. Seen from the last column in Fig. 6,
the radiological signs of COVID-19 infection become more
significant gradually as the weight of infected voxels w2
increases. Such ability of our infection-aware DRR generator
promotes to take full advantages of the publicly available
CT volumes and determine the precise infection annotation
masks for training infection segmentation models. Note that
visual findings of COVID-19 infection in DRRs will be unre-
alistic when the value of w2 is too large, e.g., w2 = 12.0,
which may break the correlation between real CXRs and
synthetic DRRs.

Secondly, we analyze the classification and segmentation
results on the validation and test sets without using domain
adaptation in Table 16-27 of the appendix. To avoid the
influence of the subjective choice of contribution threshold,
we average the performance scores on CTIV, and compare
the average scores of standard DRRs and infection-aware
DRRs visually in Fig. 8 and Fig. 9. Our infection-aware
DRRs achieve significantly higher average scores on both
validation and test sets in the target domain than the standard
DRRs. Such results indicate that the gap between infection-
aware DRRs (e.g., w2 = 3.0) and real CXRs is smaller
than the gap between standard DRRs (w2 = 1.0) and real
CXRs, and thus verify the efficacy of our infection-aware
DRR generator without using domain adaptation.

Next, we analyze the classification and segmentation
results on the validation and test sets with using domain
adaptation in Table 4-15 of the appendix. We compare the
average results of standard DRRs and infection-aware DRRs
visually in Fig. 10 and Fig. 11. Similarly, the infection-aware
DRRs surpass the standard DRRs by a large margin on both
validation and test sets in the target domain. Such results
strongly demonstrate the effectiveness of our infection-aware
DRR generator with using the domain adaptation module.

Finally, we perform statistical tests to compare the means
of scores in Fig. 8, Fig. 9, Fig. 10 and Fig. 11 between stan-
dard DRRs and infection-aware DRRs. We observe statistical
significant difference (p < 0.05) in all of these 96 comparison
items, which indicates our infection-aware DRRs are signif-
icantly better than the standard DRRs in learning automated
COVID-19 infection segmentation on CXRs from DRRs.

2) DOMAIN ADAPTATION VERSUS NO
DOMAIN ADAPTATION
In order to highlight the efficacy of our domain adaptation
module, we compare the average scores of domain adaptation
and no domain adaptation on the validation and test sets
in Fig. 12 and Fig. 13. This intuitive comparison shows that
the using of our domain adaptation module can improve
the classification and segmentation scores of infection-aware
DRRs significantly and consistently, which verifies the effi-
cacy of our domain adaptation module. Besides, seen from
Fig. 8 and Fig. 9, we notice that the average scores of
infection-aware DRRs increase first and then decrease as the
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FIGURE 8. Comparison of average scores on the validation set in the target domain (no domain adaptation). CLS denotes classification results, SEG
denotes segmentation results, and w represents the weight of infected voxels w2. The scores are averaged on CTIV
(T 2 = 0.40, 0.20, 0.15, 0.10, 0.05, 0.01, 0.00).

FIGURE 9. Comparison of average scores on the test set in the target domain (no domain adaptation). CLS denotes classification results, SEG denotes
segmentation results, and w represents the weight of infected voxels w2. The scores are averaged on CTIV (T 2 = 0.40, 0.20, 0.15, 0.10, 0.05, 0.01, 0.00).

FIGURE 10. Comparison of average scores on the validation set in the target domain (domain adaptation). CLS denotes classification results, SEG denotes
segmentation results, and w represents the weight of infected voxels w2. The scores are averaged on CTIV (T 2 = 0.40, 0.20, 0.15, 0.10, 0.05, 0.01, 0.00).

FIGURE 11. Comparison of average scores on the test set in the target domain (domain adaptation). CLS denotes classification results, SEG denotes
segmentation results, and w represents the weight of infected voxels w2. The scores are averaged on CTIV (T 2 = 0.40, 0.20, 0.15, 0.10, 0.05, 0.01, 0.00).

weight of infected voxels w2 increases from 1.0 to 3.0 and
then to 12.0. The peak of average scores of infection-aware
DRRs appears at w2 = 3.0. It suggests that an exces-
sively large weight of infected voxels may make the infected
regions in DRRs unrealistic, thus leading to a decrease in

performance scores without using domain adaptationmodule.
In contrast, there is no significant decrease in the average
scores of infection-aware DRRs with using our domain adap-
tation module as shown in Fig. 10 and Fig. 11 when the
weight of infected voxels w2 increases from 3.0 to 6.0 and
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FIGURE 12. Comparison of average scores on the validation set with domain adaptation and without domain adaptation. The scores are averaged on CTIV
(T 2 = 0.40, 0.20, 0.15, 0.10, 0.05, 0.01, 0.00).

FIGURE 13. Comparison of average scores on the test set with domain adaptation and without domain adaptation. The scores are averaged on CTIV
(T 2 = 0.40, 0.20, 0.15, 0.10, 0.05, 0.01, 0.00).

then to 12.0. It implies that the domain adaptation module
still works well even when infected regions in DRRs become
slightly unrealistic. On the other hand, we observe that the
segmentation scores are relatively lower than the classifi-
cation scores when the domain adaptation module is not
applied. For instance, in the case of infection-aware DRRs

with w2 = 3.0, the average segmentation scores on the test
set in the target domain, including the accuracy, AUC and
F1-score, are 0.581, 0.889, and 0.694 respectively, whereas
the corresponding classification scores are 0.869, 0.934, and
0.874. Such results implicate that the segmentation header
is much more sensitive to the domain discrepancy between
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DRRs and real CXRs than the classification header. By using
the domain adaptation module, both the segmentation scores
and classification scores are greatly improved; specifically,
the improvement in segmentation scores is much more sig-
nificant than the improvement in classification scores. For
instance, in the case of infection-aware DRRs with w2 = 3.0,
the average segmentation scores on the test set are 0.925
(+0.344↑), 0.969 (+0.080↑), and 0.917 (+0.223↑) respec-
tively, whereas the corresponding classification scores are
0.948 (+0.079↑), 0.987 (+0.053↑), and 0.947 (+0.073↑).
Such results indicate that our domain adaptation module
works well not only for classification task but also for seg-
mentation task, thus confirming our claim that the effect of
feature alignment applied in the classification branch can be
propagated to the segmentation branch implicitly. Finally,
we perform statistical tests to compare the means of scores
in Fig. 12 and Fig. 13 between using our domain adapta-
tion module and not using domain adaptation. We observe
statistical significant difference (p < 0.05) in all of these
60 comparison items except for 4 items, i.e., standard DRR’s
classification AUC on the validation set and standard DRRs’
classification AUC, segmentation accuracy and segmentation
F1-score on the test set. It indicates our domain adaptation
module is able to improve the performance of learning infec-
tion segmentation on CXRs fromDRRs significantly and thus
confirms the efficacy of our domain adaptation module.

3) VISUALIZING THE COVID-19 INFECTION
SEGMENTATION RESULTS
We specifically use the case of infection-aware DRRs with
w2 = 3.0 and T 2

= 0.20 as an example to show the
COVID-19 infection segmentation results. The segmentation
scores, including accuracy, AUC, and F1-score, on the val-
idation and test sets are (0.919, 0.977, 0.910) and (0.956,
0.980, 0.959) respectively as listed in Table 7, 8, 9, 13, 14,
and 15 of the appendix. Next, we visualize the infection seg-
mentation results from the first fold. The confusion matrices
of the segmentation results on the corresponding validation
and test sets are shown in Fig. 14. We visualize several true
positive and true negative cases in Fig. 15. Compared with
previous studies that highlight the infected regions roughly by
leveraging the interpretability of deep classification models,
our segmentation model trained on the infection-aware DRRs
is able to segment the infected regions in CXRs directly and
accurately. Besides, we present several failure (false positive
and false negative) cases in Fig. 16.

4) ESTIMATING THE DETECTION LIMIT OF X-RAY IMAGING
IN DETECTING COVID-19 INFECTION
As mentioned earlier, CXRs are generally considered less
sensitive than 3D CT scans [7]. It may happen that CT exam-
ination detects an abnormality, whereas the X-ray screening
on the same patient reports no findings. The significance
level of radiological signs of COVID-19 infection in X-
ray images depends on the severity of COVID-19 infection,
which is typically assessed by the percent volume of the

FIGURE 14. Confusion matrices of segmentation results on the validation
and test sets in the case of infection-aware DRRs with w2 = 3.0 and
T 2 = 0.20.

FIGURE 15. COVID-19 infection segmentation results of the
infection-aware DRRs with w2 = 3.0 and T 2 = 0.20 on the validation and
test sets in target domain. The red overlay is used to indicate the infected
regions.

lung that is infected by COVID-19 (PIV for short). Only
when the PIV reaches a certain level (i.e., detection limit),
X-ray imaging can effectively detect COVID-19 infection.
Therefore, we propose to leverage our infection-aware DRR
generator by searching the best parameters (w0,w1,w2) and
T 2 to estimate such detection limit. The insight behind this
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TABLE 2. Total average (T-Avg.) Scores (Mean ± Standard Deviation) of our Model Trained on 63 Different Training Sets in the Source Domain. Each Item
in This Table is the Average of the Corresponding Items in Table 4-27 of the Appendix. EAPIV Denotes the Equivalent Average Percent Infection Volume of
the Lungs of the 10 CT Cases That are Used for the Synthesis of Infection-Aware DRRs.

TABLE 3. DSC (Mean ± Standard Deviation) Table of Segmentation Results on the sub-set of 10 CXRs.

TABLE 4. Accuracy (Mean ± Standard Deviation) Table of Classification Output on Validation Set in the Target Domain (Domain Adaptation).

TABLE 5. AUC (Mean ± Standard Deviation) Table of Classification Output on Validation Set in the Target Domain (Domain Adaptation).

TABLE 6. F1-score (Mean ± Standard Deviation) Table of Classification Output on Validation Set in the Target Domain (Domain Adaptation).

estimation method is that the DRRs, generated by using the
best parameters, have the smallest gap with real positive
X-ray images, and thus will achieve the highest classifica-
tion and segmentation scores no matter whether the domain

adaptation module is appied or not. Accordingly, we average
the corresponding items in Table 4-27 of the appendix to
obtain the total average (T-Avg.) scores of 63 training sets
to search for the best parameters. Meanwhile, we compute
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TABLE 7. Accuracy (Mean ± Standard Deviation) Table of Segmentation Output on Validation Set in the Target Domain (Domain Adaptation).

TABLE 8. AUC (Mean ± Standard Deviation) Table of Segmentation Output on Validation Set in the Target Domain (Domain Adaptation).

TABLE 9. F1-Score (Mean ± Standard Deviation) Table of Segmentation Output on Validation Set in the Target Domain (Domain Adaptation).

TABLE 10. Accuracy (Mean ± Standard Deviation) Table of Classification Output on Test Set in the Target Domain (Domain Adaptation).

TABLE 11. AUC (Mean ± Standard Deviation) Table of Classification Output on Test Set in the Target Domain (Domain Adaptation).

the equivalent average PIV (EAPIV) of the 10 CT cases that
are used to generate infection-aware DRRs. As can be seen
from Table 2, the peak of T-Avg. scores at each row in Table 2
appears consistently at w2 = 3.0, and the corresponding
EAPIV is 19.43% ± 16.29% (Mean ± Standard Deviation).
When the EAPIV is less than 19.43% (w2 = 3.0), e.g.,

11.77% (w2 = 1.5) and 8.51% (w2 = 1.0), the corresponding
T-Avg. scores drop below 81.0% no matter what the con-
tribution threshold of infected voxels (CTIV) T 2 is. Such
results imply that DRRs generated from a CT case whose
PIV is less than 19.43% cannot be easily distinguished from
normal DRRs. Therefore, we conclude that the detection limit

207750 VOLUME 8, 2020



P. Zhang et al.: Drr4covid: Learning Automated COVID-19 Infection Segmentation From Digitally Reconstructed Radiographs

TABLE 12. F1-Score (Mean ± Standard Deviation) Table of Classification Output on Test Set in the Target Domain (Domain Adaptation).

TABLE 13. Accuracy (Mean ± Standard Deviation) Table of Segmentation Output on Test Set in the Target Domain (Domain Adaptation).

TABLE 14. AUC (Mean ± Standard Deviation) Table of Segmentation Output on Test Set in the Target Domain (Domain Adaptation).

TABLE 15. F1-Score (Mean ± Standard Deviation) Table of Segmentation Output on Test Set in the Target Domain (Domain Adaptation).

FIGURE 16. Failure cases of the segmentation results of the
infection-aware DRRs with w2 = 3.0 and T 2 = 0.20 on the validation and
test sets. The red overlay is used to indicate the infected regions.

of X-ray imaging, measured by the percent volume of the
lung that is infected by COVID-19, is 19.43% ± 16.29%.
Moreover, to examine the function of CTIV, we plot the his-
tograms of the CRIV of the pixels in infection-aware DRRs

in Fig. 17. Note that only the pixels whose corresponding
X-rays pass through the infected voxels of CT volume are
counted. These histograms show the effectiveness of our
infection-aware DRR generator in changing the distribution
of CRIV of the pixels in infection-aware DRRs. For the best
parameters w0,1 = 1.0 and w3 = 3.0 (the 8-th column
of Table 2 ), the peak of T-Avg. scores (87.9%) appears at
T 2
= 0.20. Increasing the CTIV T 2 from 0.2 to 0.4 makes a

large numberof pixels (more than 600,000) whose CRIVs are
between 0.2 and 0.4 be treated as negative pixels, thus leading
to a significant drop in T-Avg. score (-6.9%↓). Meanwhile,
decreasing the CTIV T 2 from 0.2 to 0.15 makes the pixels
(less than 200,000) whose CRIVs are between 0.15 and 0.2
be treated as positive pixels, thus leading to a minor drop
in T-Avg. score (-0.9%↓). Therefore, we conclude that the
estimated lower bound of CRIV for significant radiological
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FIGURE 17. Histograms of infected voxel contribution rates of the pixels in infection-aware DRRs.

TABLE 16. Accuracy (Mean ± Standard Deviation) Table of Classification Output on Validation Set in the Target Domain (No Domain Adaptation).

TABLE 17. AUC (Mean ± Standard Deviation) Table of Classification Output on Validation Set in the Target Domain (No Domain Adaptation).

TABLE 18. F1-Score (Mean ± Standard Deviation) Table of Classification Output on Validation Set in the Target Domain (No Domain Adaptation).

signs of COVID-19 infection in DRRs is 20.0%. It means
that the pixels whose CRIVs are lower than 20.0% can-
not be easily distinguished from the pixels of the lungs
in CXRs.

5) EVALUATION OF SEGMENTATION PERFORMANCE
ON 10 CXRs
We simply use the 4-fold cross validation models trained by
using our domain adaptationmodule to segment the 10CXRs.
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TABLE 19. Accuracy (Mean ± Standard Deviation) Table of Segmentation Output on Validation Set in the Target Domain (No Domain Adaptation).

TABLE 20. AUC (Mean ± Standard Deviation) Table of Segmentation Output on Validation Set in the Target Domain (No Domain Adaptation).

TABLE 21. F1-Score (Mean ± Standard Deviation) Table of Segmentation Output on Validation Set in the Target Domain (No Domain Adaptation).

TABLE 22. Accuracy (Mean ± Standard Deviation) Table of Classification Output on Test Set in the Target Domain (No Domain Adaptation).

TABLE 23. AUC (Mean ± Standard Deviation) Table of Classification Output on Test Set in the Target Domain (No Domain Adaptation).

The average DSC scores of these segmentation results are
reported in Table 3. As can be seen, our infection-aware
DRRs (w2 = 3.0 or w2 = 6.0) have achieved an aver-
age DSC score of ∼40%, which are much better (>20%)
than the standard DRRs. Besides, we also observe the same

pattern as in Table 2: the peak of average DSC scores of
our infection-aware DRRs appears at w2 = 3.0. It provides
more evidence for confirming the validity of the estimated
detection limit of X-ray imaging in detecting COVID-19
infection.
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TABLE 24. F1-Score (Mean ± Standard Deviation) Table of Classification Output on Test Set in the Target Domain (No Domain Adaptation).

TABLE 25. Accuracy (Mean ± Standard Deviation) Table of Segmentation Output on Test Set in the Target Domain (No Domain Adaptation).

TABLE 26. AUC (Mean ± Standard Deviation) Table of Segmentation Output on Test Set in the Target Domain (No Domain Adaptation).

V. LIMITATIONS OF THE STUDY
This study still has a variety of limitations. Firstly, the syn-
thetic annotation masks of infected regions for DRRs are
only investigated experimentally, and are not evaluated by
the radiologists. The expert annotations of infected regions
for DRRs may provide evidence to determine more accurate
contribution threshold of infected voxels. Secondly, this study
uses publicly available CT and CXR datasets from various
sources. The variability in expert annotations of CT scans and
CXRs is not assessed, which may introduce implicit biases
to the training and evaluation. Thirdly, the evaluation for
the segmentation performance of our method in this study
is incomprehensive due to the lack of sufficient CXRs with
pixel-level annotations of infected regions. The evaluation
results on ten CXRs may be biased and unable to give guid-
ance to optimize our method. A comparison between learning
infection segmentation from CXRs straightway and learning
from DRRs may provide key insights on how to realize
high-quality automatedCOVID-19 infection segmentation on
CXRs efficiently. Lastly, this study uses only ten COVID-19
positive CT cases for synthesizing DRRs. The performance
of our DRR4Covid and the validity of the estimated detection
limit of X-ray imaging in detecting COVID-19 infection can
be improved by involving more CT scans from patients in
various stages of COVID-19 infection. Nevertheless, the find-
ings of this article provide promising results that encourage

the use of DRR4Covid for learning automated COVID-19
infection segmentation onCXRs fromDRRswithout the need
for any expert annotations of CXRs.

VI. CONCLUSION
We propose a novel approach, called DRR4Covid, to learn
automated COVID-19 infection segmentation on CXRs from
DRRs. DRR4Covid consists of three key components, includ-
ing an infection-aware DRR generator, a classification and
segmentation network, and a domain adaptation module. The
infection-aware DRR generator is able to produce DRRs
with adjustable strength of radiological signs of COVID-19
infection, and generate pixel-level infection annotations that
match the DRRs precisely, thus enabling deep segmentation
networks to be trained directly for automated infection seg-
mentation. The domain adaptation module is introduced to
reduce the domain discrepancy between DRRs and CXRs by
training networks on unlabeled real CXRs and labeled DRRs
together.We provide a simple but effective implementation of
DRR4Covid by using a domain adaptation module based on
MaximumMean Discrepancy (MMD), and a FCN-based net-
work with a classification header and a segmentation header.
Extensive experiment results have confirmed the efficacy
of our method; specifically, without using any annotations
of real CXRs, our network has achieved a classification
score of (Accuracy: 0.949, AUC: 0.987, F1-score: 0.947)
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TABLE 27. F1-Score (Mean ± Standard Deviation) Table of Segmentation Output on Test Set in the Target Domain (No Domain Adaptation).

and a segmentation score of (Accuracy: 0.956, AUC: 0.980,
F1-score: 0.955) on a test set with 558 normal cases and
558 positive cases. Besides, we estimate the detection limit of
X-ray imaging in detecting COVID-19 infection by adjusting
the strength of radiological signs of COVID-19 infection in
synthetic DRRs. The estimated detection limit, measured by
the percent volume of the lung that is infected by COVID-19,
is 19.43% ± 16.29%, and the estimated lower bound of the
contribution rate of infected voxels is 20.0% for significant
radiological signs of COVID-19 infection.

To our best knowledge, this is the first attempt to realize the
automated COVID-19 infection segmentation base on CXRs
by using the labeled DRRs that are generated from Chest
CT scans. Future work can be carried out by extending the
DRR4Covid to DRR4Lesion to enable multiple lung lesion
segmentation on CXRs.

APPENDIX
MORE EXPERIMENTAL RESULTS
See Tables 4–27.
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