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ABSTRACT Background: Electrocardiogram (ECG) is a routine method for detecting myocardial ischemia
in clinical practice, but more than half of ECGs are without specific ischemic changes. Cardiodynamic-
sgram (CDG) is an effective method to detect ischemia with non-diagnostic ECG. The Lyapunov expo-
nent (LYE) and the Fourier transform coefficient are combined to characterize the spatial and temporal
features of CDG. However, in some cases, the Lyapunov exponent does not accurately enough describe the
degree of irregular morphology of CDG for ischemic patients. In this context, this study aims to improve
the characterization of CDG using the Lempel-Ziv (LZ) complexity instead of the Lyapunov exponent.
Methods: The cardiodynamics information inside ECG is extracted via deterministic learning from the ST-T
segments of ECG and then the CDG is generated by plotting the extracted three-dimensional cardiodynamics
information. The Lyapunov exponent and LZ complexity are calculated from CDG and coupled with the
Fourier transform coefficient respectively to construct the LYEmodel and LZmodel for detectingmyocardial
ischemia. Results: 393 subjects presenting non-diagnostic ECG are enrolled in the study. 312 of them are
ischemic patients selected as the myocardial ischemia group, and the other 81 non-ischemic subjects are
selected as the healthy control group. The average sensitivity, specificity, and accuracy of the LYE model
and the LZ model are 90.7% vs 93.4%, 86.4% vs 86.8%, and 89.0% vs 90.8%, respectively. Meanwhile,
the proposed method achieves better performance on the PTB database than most of the previous studies
in detecting ischemia or infarction. Conclusion: The results indicate that LZ complexity can accurately
characterize the cases that cannot be accurately depicted by Lyapunov exponent, and the corresponding
model is more accurate for the early detection of myocardial ischemia.

INDEX TERMS Cardiodynamicsgram, Lempel-Ziv complexity, myocardial ischemia, deterministic
learning.

I. INTRODUCTION
Early detection of myocardial ischemia is an important
clinical issue, which helps reduce the acute myocardial
infarction, even sudden death, and other malignant cardio-
vascular events caused by myocardial ischemia. Myocar-
dial ischemia can cause electrophysiological changes in
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ventricular repolarization, leading to the heterogeneity of
repolarization [1]. At present, the 12-lead electrocardiogram
(ECG) is themost commonmethod used to trace the electrical
activities of the heart, and the heterogeneity of repolarization
results in irregular changes of ST-T segments in ECG [2]–[4].

Numerous ECG analysis methods have been successively
proposed based on machine learning or deep learning for
the ECG waveform classification, detection, and localization
of myocardial ischemia or infarction, combining features
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extracted by the Fourier transform, wavelet transform, and
other methods with neural networks, support vector machines
(SVM) and other classifiers [5]–[7], or directly using
deep neural networks [8], [9]. Sharma et al. [5] extracted
72-dimensional multiscale energy and eigenspace features
from 12-lead ECG signals and employed SVM for infarction
detection with 96% accuracy, 93% sensitivity, and 99% speci-
ficity on the PTB database. Furthermore, Acharya et al. [8]
implemented a convolutional neural network (CNN) algo-
rithm for the detection of infarction using only lead II of
ECG signals from the PTB database, and it has achieved
95.22% accuracy, 95.49% sensitivity, and 94.19% specificity.
Moreover, Tripathy et al. [6] proposed a multiresolution
analysis approach of the 12-lead ECG signals for the detec-
tion of infarction using Fourier–Bessel series expansion-
based empirical wavelet transform (FBSE-EWT), yielding
the accuracy, sensitivity, and specificity of 99.74%, 99.87%,
and 99.65%, respectively, using the combination of FBSE-
EWT-based entropy features and the deep layer least-square
support vector machine (DL-LSSVM) formulated with the
hidden layers of sparse auto-encoders; and further combined
low-order range sub-band signals and CNN for infarction
location, and obtained higher accuracy value [7]. Besides,
Han et al. [9] proposed a 13-layer multi-lead residual neural
network combining with feature fusion to detect infarction.
The model obtained 95.49% accuracy, 94.85% sensitivity,
and 97.37% specificity based on the PTB database. Although
the above methods have achieved good performance in the
detection of myocardial ischemia or infarction, these studies
are almost based on the PTB database, in which most ECG
with myocardial infarction has significant ischemic changes,
lack of normal or non-specific ECGs. However, the amplitude
of ST-T segments corresponding to the heterogeneity of the
ventricular repolarization is often changed at the microvolt
level, resulting in many patients with myocardial ischemia
without significant specific changes in the ST-T segments of
ECG,which is not easily observed by the naked eye [10], [11].
It is a great challenge to detect myocardial ischemia early
and accurately based on ECG. Therefore, how to effectively
extract the information reflecting the irregular weak electrical
activity of ST-T segments ECG, and to characterize the degree
of the irregular information are the key factors to the early
detection of myocardial ischemia.

Cardiodynamicsgram (CDG) has emerged recently as a
noninvasive method for detecting myocardial ischemia [12].
CDG is the three-dimensional visualization of the cardio-
dynamics information extracted from the ST-T segments
of ECG using deterministic learning (a machine learning
method in the dynamic environment), and it reflects the
subtle cardiac dynamics related to myocardial ischemia [13].
Compared with the existing features based on ECG (such as
time-domain or frequency-domain features), which recognize
limited information of myocardial ischemia [5], [14]–[17],
the dynamical features extracted from the CDG can dis-
tinguish myocardial ischemia from healthy controls more
sensitively [12], [18], [19]. A clinical trial of the detection

of myocardial ischemia was carried out using CDG in Bei-
jing FuWai Hospital of Chinese Academy of Medical Sci-
ences [18], where a spatial heterogeneity index (Lyapunov
exponent, LYE) and a temporal heterogeneity index
(frequency domain index based on Fourier transform) are
utilized to characterize the morphology of CDG. The pre-
liminary results showed that CDG can detect myocardial
ischemia patients with normal or roughly normal ECG.
Nevertheless, in some cases, the Lyapunov exponent does not
accurately enough characterize the irregular degree of CDG
morphology.

In the past few decades, many nonlinearmethods have been
proposed and applied to the complexity analysis of different
waveforms of ECG [20]–[23]. In particular, the Lempel-Ziv
(LZ) complexity is a nonparametric complexity measurement
of the irregular degree of time series. Its physical significance
lies in that it can reflect the rate at which a new pattern appears
with the increase of the length of time series [24]. The greater
complexity reflects the faster rate of new changes, indicating
that the data changes in this period are irregular. On the con-
trary, the lower complexity indicates the slower rate of new
changes and the more regular and periodic changes of data.
Since the LZ complexity has good interpretability and has
been proved to be more suitable for describing the irregular
degree of the quasi-periodic biomedical signals [25], it has
been widely used in the analysis of the irregularity of biomed-
ical signals [26]–[33]. Meanwhile, in [34], the authors show
that the LZ complexity analysis of the dynamic characteristics
of nonlinear dynamical systems can reflect the weak changes
of the system signals more sensitively.

In this study, we sought to improve the characterization
of CDG using the LZ complexity instead of the Lyapunov
exponent.

II. MATERIALS AND METHODS
A. PATIENT POPULATION
393 patients (age, 34 to 84 years, including 87 females and
211 males) with suspicious myocardial ischemia present-
ing with non-diagnostic ECGs were enrolled in this study.
Patients were requested to stay at rest in the supine position
for 20 seconds ECG in a relaxing room prior to any catheter
insertion. In order to obtain enough ECG beats for analyzing
CDG, 20-second 12-lead ECGs [5], [12]–[18] were recorded
using a commercially available electrocardiograph (Mindray
Bene-Heart R12, Shenzhen, China) with a 1,000-Hz sam-
pling rate and 16-bit resolution before coronary angiogra-
phy. Patients with valvular heart disease, old myocardial
infarction, heart failure, ischemic cardiomyopathy, persistent
atrial fibrillation, and severe atrioventricular block were elim-
inated. ECG was analyzed by two experienced cardiologists
blinded to patients. The diagnostic ECG was defined as with
the horizontal or downsloping ST deviation > 0.05 mV in
2 contiguous leads and/or T inversion > 0.1 mV in 2 con-
tiguous leads with prominent R wave. The ECG with incon-
sistencies between two cardiologists was jointly determined
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FIGURE 1. A case of a healthy male subject, 47 years old. A: Normal ECG, B: Regular CDG.

by the two experts according to the above acute ischemia
criteria. The only patient presentingwith non-diagnostic ECG
was included in this study. All patients were scheduled for
coronary angiography. 312 patients withmyocardial ischemia
(MI) were confirmed with severe coronary stenosis (>50%
stenosis) or coronary slow flow phenomenon existed in one
of the 3 main coronary arteries: the left anterior descend-
ing artery, the left circumflex artery, and the right coronary
artery. Besides, 81 patients without obvious coronary artery
lesions or coronary slow flow phenomenon were selected as
the healthy control (HC) group. The study was approved by
the Institutional ReviewBoard of FuWai Hospital and Shihezi
people’s hospital (code number: 2016-780).

B. CARDIODYNAMICSGRAM
CDG is recently proposed as a new method to detect myocar-
dial ischemia. The tiny cardiodynamics information related
to myocardial ischemia is extracted from the ST-T segments
of ECG using deterministic learning, and the CDG is gen-
erated by plotting the extracted three-dimensional cardio-
dynamics information. The 12-lead ECG is reduced to the
3-dimensional vectorcardiography (VCG,V (t)) [35].

It is difficult to detect ST-T segments accurately, due to
the various shapes of ST-T segments during the onset of
the disease in clinical practice. The ST-T segment detection
method in [36] utilizes the convex operator to locate the
R wave and achieves more than 90% accuracy in detecting
the ST-T segment in the European ST-T database using the
dynamic searchwindow and differencemethod. Additionally,
this method only requires little computation and can detect
the ST-T segment accompanied with the giant or inverted
T wave accurately and robustly. Thus, the method proposed
in [36] is adopted to detect ST-T segments in this study.

First, the wavelet transform-based multi-resolution anal-
ysis is performed to modify the baseline drift and filtering
of the original VCG signals. The convex transformation is
applied to the preprocessed VCG signals. Then, the thresh-
old method is used to detect the interval of R wave and
further locate the peak value of R wave. On this basis,
the dynamic search window method is combined with the
difference method to detect the onset of ST-segment and the
endpoint of T wave.

Thus, ST-T segments Vstt (t) are identified and segmented
from the VCG signals by combing the convexity operator and
dynamic search window. For more technical details, please
refer to the reference [36].

CDG represents the dynamic changes in Vstt (t), which can
be described as a 3-th order differential equation

V̇stt (t) = F(Vstt1,Vstt2,Vstt3), (1)

where F(Vstt1, Vstt2, Vstt3) = [f1(Vstt (t)), f2(Vstt (t)),
f3(Vstt (t))] is the unknown nonlinear function vector, rep-
resenting the cardiac dynamic information inside the ST-T
signals. Cardiac dynamics information can be extracted along
the trajectory of the VCG using deterministic learning:

V̇stt (t) = F (Vstt (t))
∣∣t=tend
t=tstart

≈ FNN (Vstt (t)), (2)

where FNN (Vstt (t)) represents a neural network model that
approximates cardiac dynamics. Then, CDG is obtained by
plotting the extracted cardiac dynamics information in the
three-dimensional space. By analyzing CDG morphology,
it is found that the shapes of CDG significantly differ between
myocardial ischemic patients and healthy subjects. Under
normal conditions, repolarization is a homogeneous process
with a regular CDG shape, as shown in Figure 1. Under
pathological conditions, such as myocardial ischemia, repo-
larization is a heterogeneous process with an irregular CDG
shape, as shown in Figure 2.

C. FEATURE EXTRACTION
In this paper, the frequency domain feature, the Lyapunov
exponent, and the LZ complexity are extracted from CDG to
characterize the temporal and spatial heterogeneity of CDG,
respectively. The following sections show a brief process of
feature extraction.

1) THE TEMPORAL HETEROGENEITY INDEX (THI)
The temporal heterogeneity index based on the Fourier trans-
form is used to describe the temporal characteristics of CDG.
First, for each dimension of CDG, the discrete fast Fourier
Transform is applied to calculate the spectrum fi (w) , i =
1, 2, 3,w = 1, 2, . . . ,M , where M is the number of data
points in the spectrum. Then, the negative exponential func-
tion is used to fit the spectral data fi (w) via the least
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FIGURE 2. A case of an ischemic male patient, 35 years old. A: Normal ECG, B: Irregular CDG.

square method. The curve fitting index λi and the THI are
calculated according to the following formula:
λi = min

∑M

w=1

(
fi (w)− k · e−0.1λi

)2
, i = 1, 2, 3

THI =
1
3

2

√∑3

1
λ2i ,

(3)

where ke−0.1λi represents a set of negative exponential func-
tions that fit the spectrum curve, and k is the maximum value
of the |fi (w) |.

2) THE LYAPUNOV EXPONENT (LYE)
In this paper, the maximum Lyapunov exponent of the
multi-dimensional phase space trajectory is computed to
describe the spatial heterogeneity of CDG through the Wolf
algorithm [37],

For multi-dimensional time series Y (k) = {X (1) ,X (2) ,
. . . ,X (N )}, where N represents the length of multidimen-
sional time series, and the distance d11 from the initial point
X (1) to its nearest neighbor is calculated. Then, the distance
d12 between the two points after d step evolution is calculated.
The above process is repeated until the endpoint of the time
series. The number of iterations in the evolutionary process
is N/d , and the maximum Lyapunov index (LYE) is

LYE =
d
N

∑N/d

n=1
ln(

dn2
dn1

), (4)

where dn1 represents the distance between the nth data point
and its nearest data point, and dn2 represents the distance
between the nth data point and its nearest data point after d
steps. The optimal value of d used to calculate the maximum
Lyapunov index is determined by the T-test method in the
above patient population. Figure 3 illustrates the influence of
different d values on the Lyapunov exponent. The evolution
step size d in formula (4) is set as 10 in this study to balance
the calculation speed and accuracy.

3) LEMPEL-ZIV (LZ) COMPLEXITY
The LZ complexity analysis is based on the coarse-graining
of the measurements. Before calculating the LZ complex-
ity measure, the time series must be transformed into a
finite symbol sequence. Generally, an arbitrary time series

FIGURE 3. T-test results of maximal Lyapunov exponent between
myocardial ischemia patients and healthy subjects under different d
values.

{x (i) |i = 1, 2, . . . , n} is converted into a binary series.
By comparing with the threshold, x(i) is converted into a
0-1 series {S (i) |i = 1, 2, . . . , n} as follows:

S (i) =

{
0, x (i) < xave
1, x (i) ≥ xave,

(5)

where xave is the mean of the time series of x(i). The cor-
responding LZ complexity is called binary LZ complexity
(BLZC) and the measurement of complexity is c(n). Under
the assumption of large enough sequence length and the
symbol set consisting of 2 elements [38], it has been proven
that the upper bond of c (n) is

lim
n→∞

c (n) = b (n) =
n

log2n
. (6)

To obtain a complexity measure that is independent of the
series length, c (n) should be normalized via b(n)

0 ≤ C =
c (n)
b (n)

≤ 1, (7)

where the normalized complexity index C is called the LZ
complexity. c (n) can be established only if sample length n
is large enough.

The spatial LZ complexity (SLZC) is proposed to charac-
terize CDG in the following steps:
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FIGURE 4. The box plots for the CDG features between the myocardial ischemia (MI) group and the healthy control (HC) group.

Step 1: The directional derivative of the dynamic trajec-
tory of a nonlinear system represented by a data sequence
{y (i) |i = 1, 2, . . . , n} can be approximately calculated and
stored as slope sequence Z .

Zk (r)

=



yk (r + 1)− yk (r)√∑N
i=k+1 (yi (r + 1)− yi (r))2

, k = 1

yk (r + 1)− yk (r)√∑k−1
i=1(yi (r+1)−yi(r))

2
+
∑N

i=k+1(yi(r+1)−yi (r))
2
,

1 < k < D
yk (r + 1)− yk (r)√∑k−1
i=1 (yi (r + 1)− yi (r))2

, k = D,

(8)

where n is the length of each data sequence yk , k ∈
{1, . . . ,D}, D = 3, r ∈ {1, 2, . . . .n− 1}.

Step 2: The normalized complexity SCk of each directional
derivative sequence Zk is obtained by

SCk = ck (m)/
m

log2 m
, (9)

where m = n − 1 is the length of the directional derivative
sequence. Then, the corresponding SLZC of the nonlinear
system dynamic is given by

SLZC =
1
3

2

√∑3

k=1
SC2

k . (10)

The directional derivative sequence reflects the change rate
of the nonlinear dynamic trajectory in the space-domain. The
corresponding normalized LZ complexity SLZC is taken as a
spatial complexity measurement.

D. CLASSIFICATION—SVM
The support vector machine (SVM) is a large margin classi-
fier used to solve the binary classification. It tries to find the
hyperplane with a large margin to distinguish samples of dif-
ferent categories. Where the margin is defined as the distance

between samples of different categories and the classification
hyperplane. In the real world, the training data is linearly sep-
arable rarely and is often approximately linearly separable.
In this case, a linear support vector machine or soft margin
support vector machine is used. The performance of the SVM
is affected by the penalty parameter which determines the
number of support vectors and the maximum margin. The
decision function is

f (x) = sign
(
w∗x + b∗

)
, (11)

where sign is the sign function

sign (x) =

{
+1, x ≥ 0
−1, x < 0.

(12)

The distance from the sample to the classification bound-
ary was calculated as the CDG value. In this study, the train-
ing data is approximately linearly separable, so the soft
margin SVM is used.

III. RESULTS
The box plot (Figure 4) describes the differences between
features of the THI and the spatial heterogeneity index
(including the Lyapunov exponent and the LZ complexity),
which extracted from CDG between patients with myocar-
dial ischemia and healthy controls. The THI in ischemic
patients significantly differs from that of healthy subjects
(p < 0.001), and values are almost completely separating
between the two groups. Although the values of Lyapunov
exponent and LZ complexity largely overlap between nor-
mal individuals and ischemic patients, there are significant
statistical differences in these two features (p < 0.001).
Meanwhile, the recognition performance using only THI,
LYE, or LZ complexity for myocardial ischemia was also
evaluated respectively in the study population, as shown
in Table 1. The THI has a better ability to recognize myocar-
dial ischemia, while the LYE and the LZ show better per-
formance in some indexes. It suggested that both of them
are helpful to distinguish myocardial ischemia from healthy
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TABLE 1. Results of CDG models for detecting myocardial ischemia on the proposed database.

FIGURE 5. Convergence analysis of indices of three regular CDGs.

FIGURE 6. Convergence analysis of indices of three irregular CDGs.

individuals, and can couple with the THI to construct the
ischemia detection model.

At the same time, we also investigate the influence of the
number of beats contained in the 12-lead ECG records on
the accuracy of the LZ complexity and the LYE quantized
CDG. Three CDGs with regular morphologies are randomly
selected to analyze the convergence performance of the LZ
complexity, the LYE, and the THI, as shown in Figure 5.
Meanwhile, three CDGs with irregular morphologies are

also randomly selected to investigate the convergence per-
formance of those indices, as shown in Figure 6. Figure 5
indicates that the convergence of those indices is robust
enough for the regular CDG. However, for the irregular CDG,
Figure 6 indicates that the convergence of the LYE and
the THI is not robust enough. It suggests that the myocar-
dial ischemia detection model based on the LZ complex-
ity and THI may be more effective than that of the LYE
and THI.
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TABLE 2. Results of CDG models for detecting myocardial ischemia on the PTB database.

FIGURE 7. The CDG differences of the LYE model (LYE + THI) (a) and the
LZ model (LZ + THI) (b) between the myocardial ischemia (MI) group and
the healthy control (HC) group.

In this part, the Lyapunov exponent and the LZ complexity
are combined with the THI to construct the classification
model for detecting myocardial ischemia, respectively. The
soft margin SVM and 5-fold cross-validation technique for
the detection of myocardial ischemia are employed. Specif-
ically, the entire dataset consisting of 393 12-lead ECG
records is divided into 5 equal parts randomly, which has
almost the same sample distribution from the two classes for
myocardial ischemia detection. 314 records are regarded as
the training set, and the other 79 records are used as the test-
ing set. Furthermore, the 5-fold cross-validation is repeated
10 times, which is called 10-times 5-fold cross-validation,
to reduce the influence of randomness introduced by data
split [39]. Different metrics including accuracy, sensitivity,
and specificity are used as the performance measure criterion
for ischemia detection. These metrics are derived from the
confusion matrix consisting of True Positive (TP, the number
of patients detected correctly), True Negative (TN, the num-
ber of healthy subjects detected correctly), False Positive
(FP, the number of healthy subjects detected incorrectly)
and False Negative (FN, the number of patients detected
incorrectly).

The overall performance of different features is recorded
in Table 1 and Figure 7. Figure 7 shows the differences
in CDG values generated from two different SVM mod-
els between the ischemia patients and the healthy controls.
Figure 7-a represents the CDG values from the LYE model
based on the LYE and THI, and Figure 7-b is the CDG values
from the LZ model based on LZ complexity and THI. It is
shown that the LZ model for detecting myocardial ischemia
based on the LZ complexity and the THI achieves slightly
higher accuracy, sensitivity, and specificity, and the overall
performance is superior to the LYE model based on the

Lyapunov exponent and THI. The average accuracy, sensi-
tivity, and specificity of the LYE model and the LZ model
are 89.0% vs 90.8%, 90.7% vs 93.4%, and 86.4% vs 86.8%,
respectively.

In this subsection, the study for detecting myocardial
ischemia based on CDG is carried out in the PTB database
(https://www.physionet.org/content/ptbdb/1.0.0/). The study
population includes 148 patients with myocardial infarc-
tion and 52 healthy controls (HC) obtained from the PTB
database. A standard 12-lead ECG is selected for each sub-
ject. CDGs are generated by dynamical modeling for all
ECGs, and then the THI, LYE, and LZ complexity are
extracted. Based on THI plus LYE and THI plus LZ com-
plexity respectively, ischemia detection models are learned
and verified using the soft margin and 10-times 5-fold cross-
validation. The results of this study were compared with
those of the existing myocardial ischemia detection methods
in the PTB database, as shown in Table 2. It can be seen
from Table 2 that the ischemia detection model based on
THI and LZ complexity extracted from CDG achieves better
performance, with accuracy 95.0%, sensitivity 95.3%, and
specificity 94.2%.

IV. DISCUSSION
Myocardial ischemia induces a series of electrophysiological
modifications affecting the ventricular repolarization, lead-
ing to a heterogenous repolarization process. It has been
observed that ischemia increases repolarization dispersion
between normal and ischemic fibers, which is a phenomenon
appearing in the ECG as a consistent fluctuation in the
repolarization morphology on an ‘‘every-other-beat’’ basis.
This fluctuation refers to a beat-to-beat variability in the
amplitude of the ST segments. This repolarization alternans
(dispersion) is usually of microvolts in amplitude and cannot
be appreciated visually. CDG is a noninvasive method for
subtle cardiac dynamics information analysis within ECG.
By analyzing the CDG morphology, it is found that signif-
icant correlations exist between CDG and ischemia, even
with normal or roughly normal ECG. Particularly, it is indi-
cated that the shapes of CDG remarkably differ between
ischemia patients (irregular shape) and healthy subjects
(regular shape). Compared with the static features of ECG
signals, CDG represents spatiotemporal variations in the
repolarization phase of cardiac electrical activation, which
is more sensitive than the surface ECG modifications. Two
cases are selected to illustrate this property of CDG as shown
in Figure 8 and Figure 9.
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FIGURE 8. A case of an ischemic male patient with coronary artery stenosis, 50 years old. LEFT: Normal ECG; MIDDLE: The left anterior
descending branch of the coronary artery is with stenosis 80 %; RIGHT: Irregular morphology of CDG.

FIGURE 9. A case of an ischemic male patient with the slow coronary flow, 48 years old. LEFT: Normal ECG; MIDDLE: The left anterior descending
branch of the coronary artery is with the coronary slow flow; RIGHT: Irregular morphology of CDG.

TABLE 3. Comparison of the proposed method based on LZ plus THI with previous studies for detecting myocardial ischemia.

The complexity analysis is a promising way to describe
the morphology of CDG. To achieve the quantitative analysis
of CDG in detecting myocardial ischemia, a temporal het-
erogeneity index (the frequent index based on the Fourier
transform) and two spatial heterogeneity indices (the Lya-
punov exponent and LZ complexity) are used to characterize
the CDG morphology. However, the number of ST-T cycles

available in the 20 second period is not too much, resulting
in the incompletely converged Lyapunov exponent (there is
still a trend to continue to increase), which may lead to the
inappropriate characterization of the CDG morphology. The
LZ complexity, on the other hand, has a faster convergence
speed and strong robustness, and it can accurately describe
the spatial heterogeneity of the CDG morphology.

VOLUME 8, 2020 207901
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FIGURE 10. CDG (Left) and the detection results of the LYE model (Middle) and LZ model (Right). The red area represents positive, and the green area
represents negative.

Table 3 summarizes previous studies regarding myocar-
dial ischemia/infarction detection based on the PTB
database. Note that most of the studies used a single ECG
beat [8], [42] or a frame consisting of multiple beats [9], [41],
rather than a complete ECG record [40]. Although most of
the studies achieved good results in detecting patients with
myocardial ischemia, these studies adopted high-dimensional
features or deep networks generally. In this paper, the pro-
posed method achieves better performance than most of the
previous studies in detecting ischemia or infarction only
using two features extracted from CDG. More importantly,
results based on a small number of features are easier for
clinicians to understand and explain to patients the basis of
diagnosis.

It can be seen from Table 1 that the LYE-based and
LZ-base models in this paper achieve good performance in
detecting myocardial ischemia with normal or roughly nor-
mal ECG. However, compared with the LYE-based model
for myocardial ischemia detection, the LZ-based ischemia
detection model achieves slightly improved performance.
The weak changes in ST-T segments reflect the heterogeneity
of ventricular repolarization: the disorder morphology of
CDG reflecting the more serious heterogeneity of ventricu-
lar repolarization, whereas the regular morphology of CDG
reflecting the less heterogeneity of ventricular repolarization.
Compared with the LYE, LZ complexity can more accu-
rately characterize the order or disorder CDG (as shown in
Figure 10-a and 10-c). However, in some cases, it is not easy
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to evaluate which of the two characteristics of the LYE and
LZ complexity is more accurate in describing CDG, as shown
in Figure 10-b. Meanwhile, the results of the proposed
method for myocardial ischemia detection in the self-built
database with normal or roughly normal ECG are signifi-
cantly lower than the results obtained in the PTB database.
It demonstrates that it is more difficult and challenging to
detect myocardial ischemia with normal ECG. Therefore,
combining the LYE and LZ complexity may be better, since
they can complement each other in quantifying CDG.

This study focuses on myocardial ischemia patients with
normal or roughly normal ECG, which is clinically common
but frequently overlooked. This completely differs from the
previous studies on ischemia detection using significantly
abnormal ECG from the PTB database, and the result of this
study is more applicable to the clinical practice. Previous
studies [12], [18], [43] demonstrated that CDG is an effec-
tive method for the detection of myocardial ischemia with
normal or approximately normal ECG. This study further
suggests that accurate quantification of CDG can improve
the performance of CDG in detecting ischemia. However,
the results of the LZ complexity-based ischemic detection
model are obtained from small numbers of patients, therefore,
whether accurate quantification of CDG can improve its clin-
ical performance needs more and more cases to be verified.

V. CONCLUSION
The morphology of CDG is found to be related to myocardial
ischemia significantly. The Lyapunov exponent is used to
depict the morphology of CDG in previous studies, but it is
not accurate enough in some cases. This paper investigates the
cause of the inaccuracy of the Lyapunov exponent and reveals
that its incomplete convergence results in the inappropriate
characterization of the CDG morphology. Further, the LZ
complexity is used to characterize the irregular degree of
CDG morphology. Based on a total of 393 suspected patients
with myocardial ischemia with nondiagnostic ECG, the aver-
age accuracy, sensitivity, and specificity of the LZ model
for detecting myocardial ischemia are 90.8%, 93.4%, and
86.8%, respectively. The results indicate that LZ complex-
ity is more precise than Lyapunov exponent in quantifying
CDG morphology in some cases, which further improves the
performance of CDG in detecting myocardial ischemia.
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