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ABSTRACT This article focuses on the impulsive synchronization of chaotic neural networks (CNNs) with
time-varying delays subject to actuator saturation. By constructing discontinuous Lyapunov function and
employing linear matrix inequality (LMI) approach, some sufficient conditions are derived to guarantee
the synchronization object of the delayed chaotic neural networks. In addition, the control methods in this
article have no strict requirements on the size of time delay and the actuator saturation domain, which is
more flexible and practical in real system. Finally, a numerical example is given to verify the effectiveness
of the proposed method.

INDEX TERMS Impulsive control, synchronization, actuator saturation, chaotic neural networks.

I. INTRODUCTION
Over that last few decades, the research on chaos
synchronization has become research hotspots from for-
eign and domestic scholars in various perspectives, such
as information technique, secure communication, biological
science, and so forth [1]. The concept of chaos synchro-
nization was explored in [2] firstly, and a large number
of control schemes were emerged subsequently to achieve
the chaos synchronization scheme, such as state feedback
approach [3], [4], sliding mode approach [5], [6], adap-
tive approach [7], [8], event-triggered approach [9]–[11],
anti-disturbance control [12], [13], fuzzy control [14], [15],
impulsive approach [16], [17], etc. In some cases, the com-
mon continuous control methods will be invalid, and the
system state cannot change instantaneously. As a discrete
control method, impulsive control can provide an effective
solution [18]–[26]. Furthermore, in the process of impulsive
synchronization (only at the impulsive instants), the response
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(slave) system is controlled by obtaining the state information
of the drive (master) system. Obviously, the information
transmission loads will be alleviated enormously, which
obtains low control cost and strong robustness in actual
applications.

Note that the influence of time delay is a nonnegligible fac-
tor in practical applications because of the limited switching
speed and transmitting signals [27]–[29]. Facts proved that
the delayed system is very common in the case of signal trans-
mission and manual control. Moreover, the response trend of
the system state depends on its current value and past one
concurrently. Thus, it is meaningful and significant to discuss
the problems of delayed impulsive control system. There
are some meaningful results in synchronization of delayed
chaotic systems with impulsive control strategy [30]–[35].
In [30], the novel impulsive synchronization control crite-
ria of delayed chaotic neural networks (DCNNs) are estab-
lished to handle with the scheme with uncertain nonlinear
coupling function. In [31], the synchronization of delayed
fractional order systems with impulsive control approach was
discussed, and the scheme with same structure and different
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structure was investigated simultaneously. In [32], the impul-
sive synchronization scheme of DCNNs with distributed and
time-varying delays was discussed. In [33], the power-rate
synchronization of delayed (i.e., proportional delay) CNNs
with impulsive control approach was studied. The lag syn-
chronization of DCNNs was studied, and the sampled-data
and impulsive control (so-called hybrid control) was designed
in [34]. In [35], the synchronization of coupled delayed mul-
tistable neural networks with directed topology was inves-
tigated, and two new concepts (i.e., DMS and SMS) were
firstly proposed to describe the two novel kinds of synchro-
nization manifolds.

Furthermore, actuator saturation is a very common and
important nonlinearity in practical control systems because
the actuators cannot produce unrestricted amplitude sig-
nals in real systems. It is common knowledge that actuator
fault and saturation may give rise to performance deterio-
ration of the system and even make the stable closed-loop
system unstable for external perturbations. Recently, many
meaningful research results on actuator saturation are inves-
tigated because of the significance and importance of
actuator saturation [36]–[42]. For instance, in [36], based on
the master-slave synchronization concept, the synchroniza-
tion with input time-delay and input saturation was discussed.
In [37], the synchronization of fractional order chaotic sys-
tems with impulsive control approach was discussed, and
both control gain error and actuator saturation were consid-
ered simultaneously. The master-slave synchronization with
input saturation, model mismatches and external perturba-
tions was addressed in [38]. In [39], the synchronization
of the uncertain coupled memristive NNs with switching
topology and actuator saturation was discussed, and the non-
fragile reliable controller was designed to realize the synchro-
nization asymptotically under directed topology. Considering
the control advantage of impulsive control method, it is
very important and significant to investigate the impulsive
synchronization with actuator saturation. In [40], the impul-
sive synchronization of coupled DNNs with actuator satura-
tion via sector nonlinearity model method was investigated,
and the derived results were verified in image encryption.
In [41], the time-delayed impulsive control for discrete-
time dynamical systems with actuator saturation was dis-
cussed, some new sufficient criteria were derived by
impulsive differential inequality techniques and convex anal-
ysis method. Several fault-tolerant control laws for singularly
perturbed systems with actuator faults and disturbances were
discussed in [42].

Based on the above discussions, the impulsive synchro-
nization for delayed (i.e., time-varying delays) CNNs with
actuator saturation is explored in this works, which is dis-
cussed firstly in the literatures to the authors’ knowledge.
By Lyapunov analysismethod, linearmatrix inequality (LMI)
and impulsive control system theory, some new sufficient cri-
teria on impulsive synchronization or stabilization of DCNNs
with actuator saturation are derived, which is more effec-
tive and rigorous in actual control systems. It is particularly

important to note that the stabilization and synchronization
conditions in this article of DCNNs also apply to the impul-
sive synchronization or stabilization of the delayed nonlinear
systems with similar system models. Moreover, the relation
between the control parameters and the control performance
is discussed intensively, which can bring design guidance for
obtaining better control performance.

The organization of this article is outlined below.
Section 2 provides the problem formulation and some nec-
essary preliminaries. Main results for the impulsive synchro-
nization and stabilization of DCNNs with actuator saturation
are given in Section 3. In Section 4, one numerical simulation
is given to show the correctness of the obtained main results.
Finally, in Section 5, some brief conclusions are included.

Notations: IN , ⊗, λmax(·), R, R+, Rn, Rm×n refer to the
identity matrix with N dimensions, the Kronecker product,
the maximal eigenvalue, the real numbers, the positive real
numbers, the Euclidean space with n dimensions, the m × n
real matrices respectively. N = {1, 2, . . .}, diag{d1, . . . , dN }
is the diagonal matrix.

II. PROBLEM DESCRIPTION
The master system is considered as

ẋ(t) = −Bx(t)+ A1f (x(t))+ A2f (x(t − τ (t))), (1)

where x(t) = [x1(t), · · · , xn(t)]T ∈ Rn, A1 ∈ Rn×n,
A2 ∈ Rn×n, B = diag{b1, · · · , bn}, bi > 0, the state
time delay satisfies 0 ≤ τ (t) ≤ τ , f (x(t)) =

[f1(x1(t)), . . . , fn(xn(t))]T ∈ Rn is the activation function
respectively.
Assumption 1: The nonlinear function fi : R→ R satisfies

‖fi(ω1)− fi(ω2)‖ ≤ σi ‖ω1 − ω2‖ , σi > 0, ∀ω1, ω2 ∈ R.

It follows from the master–slave chaos synchronization
viewpoint that the slave one is described as

ẏ(t) = −By(t)+ A1f (y(t))+ A2f (y(t − τ (t)))+ u(t), (2)

where y(t) = [y1(t), · · · , yn(t)]T ∈ Rn. Note that system (1)
and (2) have the same systemmodel. The controller u(t) ∈ Rn

in (2) is chosen as

u(t) = sat(0ke(tk ))δ(t − tk ), (3)

where sat(0ke(tk ))=̇(sat(γ1ke1(tk )), . . . , sat(γnken(tk )))T with
sat(ϑ) = sign(ϑ) min{1, |ϑ |}, ϑ ∈ R,1 ∈ R+ is the satura-
tion level. e(t) = y(t)−x(t) = [e1(t), . . . , en(t)]T denotes the
synchronization error vector. 0k = diag{γ1k , . . . , γnk} is the
gain matrix of impulsive control. The discrete time sequence
{tk} satisfies 0 ≤ t0 < t1 < t2 < · · · < tk−1 < tk < · · · ,
x(t+k ) = lim

s→0+
x(tk + s), x(t

−

k ) = x(tk ) = lim
s→0+

x(tk − s), δ(t)

is the Dirac delta function.
Subtract system (1) from (2), the synchronization error

system is given as{
ė(t)=−Be(t)+A1ϕ(e(t))+ A2ϕ(e(t − τ (t))), t 6= tk ,
1e(tk ) = e(t+k )− e(t

−

k ) = sat(0ke(tk )), k ∈ N,
(4)
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where

ϕ(e(t)) =̇ [(f1(y1(t))− f1(x1(t)), . . . , fn(yn(t))

− fn(xn(t))]T ,

ϕ(e(t − τ (t))) =̇ [(f1(y1(t − τ (t)))− f1(x1(t − τ (t))), . . . ,

fn(yn(t − τ (t)))− f (xn(t − τ (t)))]T .

To understand the characteristics of actuator saturation
well, we define a time-varying function hi(tk ) ∈ R+ as

hi(tk ) =


1

|γikei(tk )|
|γikei(tk )| > 1,

1 |γikei(tk )| ≤ 1.
(5)

It is easy to check that hi(tk ) ∈ (0, 1] and then the actuator
saturation in (3) is described by

sat(0ke(tk )) = (sat(γ1ke1(tk )), sat(γ2ke2(tk )),

. . . , sat(γnken(tk )))T

= (γ1kh1(tk )e1(tk ), γ2kh2(tk )e2(tk ),

. . . , γnkhn(tk )en(tk ))T

= 0kH (tk )e(tk ), (6)

where H (tk ) = diag{h1(tk ), . . . , hn(tk )} ∈ Rn×n.
In this article, the control goal is to achieve the asymptotic

synchronization of system (1) and (2) via impulsive control,
i.e., lim

t→∞
e(t) = 0.

In the following sections, all time-varying parameters will
be simplified as x=̇x(t) or xτ =̇x(t − τ (t)) for convenience.

III. MAIN RESULTS
In the section that follows, the main synchronization condi-
tions are studied to accomplish impulsive synchronization of
DCNNs subject to actuator saturation.

Before giving the main theorems, one necessary lemma is
introduced, which will help to obtain the main results.
Lemma 1 [43]: For any real matrices S1, S2 and Y > 0,

scalar ε > 0, it has

ST1 S2 + S
T
2 S1 ≤ εS

T
1 YS + ε

−1ST2 Y
−1S2.

Theorem 1: The synchronization of systems (1) and (2) is
realizedwith impulsive controller (3) if the following inequal-
ities holds:[

4i 6

∗ −Zi

]
< 0, i = 1, 2, (7)

(0kH (tk )+ In)T (0kH (tk )+ In) ≤ ηk In, (8)

(α +
β

ηk
)(tk+1 − tk )+ ln ηk < ln ξ, (9)

where 41 = −2B+ A1Z1AT1 + A2Z2A
T
2 − αIn, 42 = −βIn,

6 = diag{σ1, . . . , σn}. Z1 and Z2 are positive diagonal
matrices, and α, β, ηk < ξ < 1(k ∈ N) are positive constants.

Proof: Consider the Lyapunov functions as

V (t) = eT e. (10)

and its derivative is given as

D+V (t) = 2eT (−Be+ A1ϕ(e)+ A2ϕ(eτ )). (11)

From Lemma 1, one gets

2eA1ϕ(e) ≤ eTA1Z1AT1 e+ ϕ
T (e)Z−11 ϕ(e)

≤ eT (A1Z1AT1 +6Z
−1
1 6)e. (12)

and

2eA2ϕ(eτ ) ≤ eTA2Z2AT2 e+ ϕ
T (eτ )Z

−1
2 ϕ(eτ )

≤ eTA2Z2AT2 e+ e
T
τ 6Z

−1
2 6eτ . (13)

Thus, from (12) and (13), one has

D+V (t)

≤ eT (−2B+ A1Z1AT1 +6Z
−1
1 6 + A2Z2AT2 )e

+ eTτ 6Z
−1
2 6eτ

= eT (−2B+ A1Z1AT1 +6Z
−1
1 6 + A2Z2AT2 − αIn)e

+ eTτ (6Z
−1
2 6 − βIn)eτ + αeT e+ βeTτ eτ

= eT51e+ eTτ52eτ + αeT e+ βeTτ eτ , (14)

where

51 = −2B+ A1Z1AT1 +6Z
−1
1 6 + A2Z2AT2 − αIn

52 = 6Z
−1
2 6 − βIn.

Note that the condition (7) implies inequality 5i < 0
(i = 1, 2), therefore, it gets

D+V (t) ≤ αeT e+ βeTτ eτ = αV (t)+ βV (t − τ (t)). (15)

For t = tk , from (3) and (6), it yields

e(t+k ) = (0kH (tk )+ In)e(tk ), (16)

then one can get

V (t+k ) = eT (t+k )e(t
+

k )

= eT (tk )((0kH (tk )+ In)T (0kH (tk )+ In))e(tk )

≤ ηkV (tk )

≤ ηk Ṽ (tk ), (17)

where Ṽ (t)=̇sups∈[t−τ,t]V (s).
Next, for t ∈ (tk , tk+1], k ∈ N, we are going to obtain

V (t) < ξ Ṽ (tk ), 0 < ηk < ξ < 1. (18)

If (18) is not correct, from the continuity of V (t) and
V (t+k ) ≤ ηk Ṽ (tk ) for t ∈ (tk , tk+1], there must exist a
t̃k ∈ (tk , tk+1] such that

V (t̃k ) = ξ Ṽ (tk ), (19)

and V (t) < ξ Ṽ (tk ), for t ∈ (tk , t̃k ).
From (19) and V (t+k ) ≤ ηk Ṽ (tk ), there exists t̂k ∈ (tk , t̃k )

such that

V (t̂k ) = ηk Ṽ (tk ), (20)

and ηk Ṽ (tk ) ≤ V (t) ≤ ξ Ṽ (tk ), fort ∈ [t̂k , t̃k ], where
t̂k = sup{t ∈ (tk , t̃k ),V (t) ≤ ηk Ṽ (tk )}.
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For t ∈ [t̂k , t̃k ], it yields

V (t + s) ≤ Ṽ (tk ), for s ∈ [−τ, 0]. (21)

From (20) and (21), it yields

ηkV (t + s) ≤ ηk Ṽ (tk ) ≤ V (t), for s ∈ [−τ, 0), t ∈ [t̂k , t̃k ].

Thus, for t ∈ [t̂k , t̃k ], (15) yields

D+V (t) ≤ αV (t)+ β(V (t − τ (t)) ≤ (α +
β

ηk
)V (t). (22)

Integrating the both sides of (22) from t̂k to t̃k , where
tk < t̂k < t̃k < tk+1, it yields

ln(V (t̃k ))− ln(V (t̂k )) ≤ (α +
β

ηk
)(t̃k − t̂k )

≤ (α +
β

ηk
)(tk+1 − tk ). (23)

Moreover, from (9), (19) and (20), one has

ln(V (t̃k ))− ln(V (t̂k )) = ln(ξV (t̃k ))− ln(ηkV (t̃k ))

= ln ξ − ln ηk > (α +
β

ηk
)(tk+1 − tk ),

(24)

which contradicts (23), and therefore (18) holds.
Next, we will prove the result Ṽ (tk ) ≤ Ṽ (tk−1), k ∈ N
1) If tk − τ ≥ tk−1, then it can get

Ṽ (tk ) ≤ sup
s∈[tk−τ,tk )

V (s) ≤ ξ Ṽ (tk−1). (25)

2) If tk − τ < tk−1, it gets

Ṽ (tk ) ≤ sup
s∈[tk−τ,tk )

V (s)

≤ max{Ṽ (tk−1), ξ Ṽ (tk−1)}

= Ṽ (tk−1). (26)

From (25) and (26), one gets

Ṽ (tk ) ≤ Ṽ (tk−1), k ∈ N. (27)

In general, there exist 1 < k1 < k2 < · · · < kl−1 < kl <
kl+1 < · · · (kl ∈ N, l ∈ N) such that

tk1 − τ ∈ (t1, t2],
tk2 − τ ∈ (tk1 , tk1+1],
...

tkl−1 − τ ∈ (tkl−2 , tkl−2+1],
tkl − τ ∈ (tkl−1 , tkl−1+1],
tkl+1 − τ ∈ (tkl , tkl+1],
...

(28)

Thus, for t ∈ (tkl , tkl+1 ], from (18), (27) and (28), it yields

V (t) ≤ ξ Ṽ (tkl ). (29)

Moreover, it gets tkl+1 − τ > tkl , which yields

Ṽ (tkl+1) ≤ ξ Ṽ (tkl ). (30)

Thus, from (30), (29) can further yield that

V (t) ≤ ξ Ṽ (tkl )

≤ ξ2Ṽ (tkl−1)

≤ ξ3Ṽ (tkl−2)

≤ · · ·

≤ ξ l Ṽ (tk1 )

≤ ξ l+1Ṽ (t1). (31)

From (27) and (31), one has

V (t) ≤ ξ l+1Ṽ (t1) ≤ ξ l+1Ṽ (t0),

which further implies that

‖e(t)‖2 ≤ ξ l+1Ṽ (t0).

Note that ξ l+1 → 0 as l → ∞ (i.e., t → ∞). Obviously,
the error vector e(t) converge to zero asymptotically. This
completes the proof. �
Remark 1: It follows from (8) and hi(tk ) ∈ (0, 1] that

ηk ∈ (0, 1) satisfies for γik ∈ 2=̇(−2,−1) ∪ (−1, 0).
The master-slave synchronization goal can be obtained for
choosing suitable control gain γik ∈ 2 and impulsive interval
τk = tk+1 − tk .
Remark 2: It follows from (5) that sat(γikei(tk )) =

sign(ei(tk ))1 if |γikei(tk )| > 1. In this situation, the strength
of the impulsive control will be weakened to some extent.

Note that the main results in Theorem 1 is also applicable
to the stabilization of single delayed system (1), and the
controlled impulsive system can be further described as{
ẋ(t) = −Bx(t)+ A1f (x(t))+A2f (x(t − τ (t))), t 6= tk ,
1x(tk ) = x(t+k )− x(t

−

k ) = sat(0kx(tk )), k ∈ N.
(32)

The stabilization conditions can be derived in the following
corollary, which has similar format with Theorem 1.
Corollary 1: The stabilization of DCNNs (32) can be real-

ized if the following inequalities holds:[
4i 6

∗ −Zi

]
< 0, i = 1, 2, (33)

(0kH (tk )+ In)T (0kH (tk )+ In) ≤ ηk In, (34)

(α +
β

ηk
)(tk+1 − tk )+ ln ηk < ln ξ, (35)

where 41 = −2B+ A1Z1AT1 + A2Z2A
T
2 − αIn, 42 = −βIn,

6 = diag{σ1, . . . , σn}. Z1 and Z2 are positive diagonal
matrices, and α, β, ηk < ξ < 1(k ∈ N) are some positive
constants.

Proof: Compared with the controlled synchronization
error system (4) and the controlled DCNNs (32), they
have similar structure and control goal (i.e., error vector
and state vector asymptotically convergence to zero). Thus,
the detailed proof of Corollary 1 can be referred to Theorem 1,
and it is omitted here for brevity. �
Remark 3: Some literatures have studied the impulsive

stabilization and synchronization of master-slave (chaotic)
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FIGURE 1. Synchronization error trajectories for Theorem 1.

FIGURE 2. The impulsive interval τk = tk+1 − tk vs k .

FIGURE 3. The impulsive controller u(tk ) vs k .

systems simultaneously [44]–[46]. Note that the criteria of
stabilization and synchronization in [44]–[46] are also similar
because of their similar controlled systems. For example,
Theorem 1 and Theorem 2 in [44], Theorem 1 and Theo-
rem 3 in [45], Theorem 3 and Theorem 4 in [46].

FIGURE 4. The time-varying function hi (tk ) vs k .

FIGURE 5. Parametric comparison diagram for hi (tk ), γik and ηk . (a) the
case for γik ∈ (−1,0) (b) the case for γik ∈ (−2,−1).

IV. SIMULATION RESULTS
An example is given to verify the feasibility and correctness
of the synchronization conditions, and the control perfor-
mance under the given control parameters is discussed.
The models of system (1) and (2) are considered as

208218 VOLUME 8, 2020
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FIGURE 6. The relation between ηk and τk .

follows:

ẋ = −Bx + A1f (x)+ A2f (xτ ),{
ẏ = −By+ A1f (y)+ A2f (yτ ), t 6= tk ,
1y(tk ) = sat(0ke(tk )), k ∈ N,

where B = I2, f (x) =
|x+1|−|x−1|

2 , τ = 0.1sA1 =[
1+ π/4 20

0.1 1+ π/4

]
,A2 =

[
−1.3
√
2π/4 0.1

0.1 −1.3
√
2π/4

]
It

follows from Assumption 1 that 6 = I2. Let α = 99.2227,
β = 56.8160, γ1k = γ2k = −0.6, ξ = 0.99 such that the
inequalities (7)∼(9) holds. The saturation level is chosen as
1 = 0.25.

The curves in Fig. 1 show that the impulsive synchroniza-
tion is achieved less than 0.11s, which presents the feasibility
of the proposed theoretical approach. The curves of impulsive
interval τk , impulsive controller u(tk ) and function hi(tk ) are
shown in Figs. 2∼4 respectively, which reflects the response
trend of the acceptable impulsive interval and control inten-
sity. With the decrease of the error magnitude, the controlled
system is not under the influence of the input saturation
(note that the function matrix H (tk ) = I2 in this case),
and the acceptable impulsive interval keep unchanged. For
further analyze the parametric relationship in inequalities (8)
and (9), the parametric comparison diagram for hi(tk ), γik
and ηk is shown in Fig. 5, and the relation of ηk and τk is
shown in Fig. 6, which provides design guidance to obtain
better synchronization performance. In this section, the initial
state are chosen as x = [0.05, 0.05]T and y = [2,−0.5]T

respectively.

V. CONCLUSION
This article investigates the impulsive synchronization of
delayed chaotic neural networks subject to actuator satura-
tion. By using Lyapunov analysis method and some helpful
inequality approaches, the asymptotic convergence of the
error system is studied via the designed impulsive controller.
Accordingly, this article gives some necessary discussions
of control parameters and synchronization performance.

The numerical simulation results can prove the correctness
of the proposed protocol.
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