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ABSTRACT The score function can be used as a measure for evaluating predicted probabilities of the
classification models. In multiple classifiers systems, one of the problems is the diversity of the way of
determining the scoring function of individual base classifiers. To alleviate this limitation, in this article,
we propose a novel concept of calculating a scoring function defined by the probability-based potential
function. The proposed potential functions take into account the distance of the recognized object from the
decision boundary as well as a prior probability of the class labels. The proposed score function has the same
nature for all linear base classifiers, which defined the multiple classifiers model. Additionally, the proposed
method is compared with other ensemble algorithms based on homogeneous linear base classifiers. The
experiments on seventy databases demonstrate the effectiveness of our method. To discuss the results of our
experiments, we use multiple classification performance measures dedicated to standard and imbalanced
datasets. The statistical analysis of the experiments is also performed.

INDEX TERMS Ensemble of classifiers, linear classifier, score function, supervised learning.

I. INTRODUCTION
The idea of building an ensemble of classifiers (EoC) is to
compose a single strong model from the pool of weak or
different ones. In general, EoCs improve the possibilities of
individual base models (base classifiers) by building a more
stable and accurate complex model [1]. The real-world classi-
fication problems solved with EoC was already mentioned in
paper [2] because EoC increase the performance of individual
classification models. Since then, many publications have
appeared that indicate the practical applications of EoC. The
network intrusion detection approach used EoCwas proposed
in [3] whereas paper [4] presents usefulness of EoC in detec-
tion cross-site scripting attack for web security. EoC have
been also applied in many industrial fields like: the optimal
stacking ensemble for remaining useful life estimation was
proposed in [5], classification of cutting tools [6] or in the
in-line detection of surface defects on glass substrates of
thin-film transistor liquid crystal displays [7]. In addition,
EoCs are used in other applications such as: the marine sedi-
ments classification [8], the land cover type classification [9]
or in medical diagnostics [10]. The EoC classifiers play also
an important role in the multi-label classification problems.
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In those classification problems, multiple classes may be
simultaneously assigned to one object [11]. A possible solu-
tion to so posed classification is to decompose the multi-label
problem into a series of multi-class classification tasks [12].
Then the results of created classifiers are combined to form
a multi-label solution. These decomposition and aggregation
are usually done using EoC approaches [13]–[15].

In general, the procedure for creating an EoC can be
divided into three major steps: generation, selection, and
fusion [16]. In the final phase of the EoC building, the outputs
of each base classifier are combined. The classifier outcome
can be represented by the class label, a subset of class labels
ordered by plausibility or a vector of all possible labels
with the corresponding scoring function that can reflect a
measure expressed as a probability. This article focuses on
a new proposition of the score function, which is defined
by a probability-based potential function. This proposition
significantly expands the concept of the scoring function
presented in the earlier authors’ work, because as proposed
in [17] a scoring function is based on the distance of the
recognized object from the decision boundary of a given base
classifier and the distance to the class centroid. On the other
hand, the article [18] presents the weighted scoring function
based on Manhattan distance that uses the location of the
cluster centroids and the distance to the decision boundary.
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Given the above, the main objectives of this work can be
summarized as follows:
• A proposal of a new scoring function based on a
probability-based approach dedicated to linear base
classifiers. We propose two versions of this potential
function.

• The proposal of a new scoring function is used in the
fusion process of homogeneous linear base classifiers.

• A new experimental setup for the comparison of the pro-
posed method with other base classifiers fusion methods
using different classification performance measures.

The outline of the paper is as follows: In the next section
(Section II), related works are outlined. The proposed method
is presented in Section III. In Section IV, the experiments
that were carried out are discussed, while results and the
discussion are present in Section V. Finally, we conclude the
paper in Section VI.

II. RELATED WORK
In general, a classifier is a function that maps the feature
space X into a set of class labels M [19]. Usually, if we
talk about a classifier, we implicitly assume that the clas-
sifier is built with the use of a kind of supervised learning
procedure. That is a procedure that incorporates information
extracted from the training set [19]. The training set consists
of training samples (taken from the feature space) and the
information about the class points to which these samples
belong to. In this article, it is assumed that the input space X
is a d − dimensional Euclidean space X = Rd . The paper
is focused on linear (binary) classifiers. Consequently, each
object from the input space x ∈ X belongs to one of two
available classes, so the output space is:M = {−1; 1}.

A. LINEAR BINARY CLASSIFIER
A linear classifier produces a decision boundary that is
described using a hyperplane π defined by the following
equation:

π : 〈n; x〉 + b = 0, (1)

where n is a unit normal vector of the decision hyperplane, b
is the distance from the hyperplane to the origin and 〈·; ·〉 is
a dot product defined as follows [20]:

〈a; b〉 =
d∑
i=1

aibi ∀a, b ∈ X. (2)

For each instance x, the linear classifier ψ produces the
discriminant function [21]:

ω(x) = 〈n; x〉 + b. (3)

When the normal vector of the plane is a unit vector, the abso-
lute value of the discriminant function equals the perpendicu-
lar distance from the decision hyperplane to the point x. The
sign of the discriminant function depends on the site of the
plane where the instance x lies.

Consequentely, the decision of the linear classifier is deter-
mined using the sign of the discriminant function:

ψ(x) = sign (ω(x)) . (4)

The decision-plane coefficients (n and b) are obtained in
a supervised learning procedure using the training set T
containing |T | (where | · | is the cardinality of a set) pairs
of feature vectors x and corresponding class labels m:

T =
{
(x(1),m(1)), (x(2),m(2)), . . . , (x(|T |),m(|T |))

}
, (5)

where x(k) ∈ X and m(k)
∈M.

B. ENSEMBLE OF LINEAR CLASSIFIERS
An ensemble classifier (or multiclassifier) is a set of properly
trained classifiers whose decisions are then combined to pro-
duce the final decision of the system [22]. There are a few
main reasons for building classifier ensembles [23].

First, the classifier training procedure may be interpreted
as a procedure for exploring the hypothesis space. The goal is
to find the best hypothesis that fits the training data. Unfortu-
nately, a single classifier can search only a limited subspace
of the entire hypothesis space.What is more, the optimization
process connected with the classifier training may get stuck
in one of the local optima. Those problems may be dealt with
by employing a set of diverse classifiers [24].

Solving practical classification problems involves dealing
with limited training/validation data. This may result in find-
ing a set of classifiers which achieve the same classification
quality. Combining responses of multiple classifiers may pre-
vent the ensemble from choosing the wrong model [24].

The process of developing an ensemble system is divided
into two main tasks: choosing the ensemble building strategy
and choosing the method of output combination [22], [24].

The main goal of the ensemble building step is to provide
the system with a set of accurate and diverse classifiers.
Diversity of base classifiers is even more important than their
high accuracy because combining classifiers whose predic-
tions are identical gives no improvement over prediction of
a single classifier [24]. There are two well-known ways of
building a diverse set of classifiers. One is to build an ensem-
ble of classifiers based on the different learning paradigm
(heterogeneous ensemble) [25]. The other is to build a set
of homogeneous classifiers (the same learning paradigm)
which are learned on different training data. The most widely
used methods of creating homogeneous ensembles are bag-
ging [26], boosting [27], and random subspaces [28].

The second step of the ensemble creating process is to
develop a method that combines outputs of the classifiers
forming the ensemble (a combiner). Two methods can be
used to combine the responses of base classifiers, namely
output weighting methods and meta-learning [29]. In the
meta-learning methods there is a need to learn at least two
levels of classifiers/regressors. Classifiers on the first level
are learned using object description and classifiers on higher
levels are learned using outputs of classifiers from the lower
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level [21], [30]. The output weightingmethods can be divided
into [31]:
• voting based [32] and support based [33];
• trainable [32] and untrainable [34];
• static [32], [34] and dynamic [33].
The idea of constructing ensemble classifiers has been and

still is widely explored [22], [35], [36]. This is because they
proved to be an efficient tool for solving many classification
problems across multiple domains. Ensembles of linear clas-
sifiers have also been utilized in many practical problems like
medical diagnosis [37], robotics [38] or bioinformatics [39]
to name only a few. The linear classifiers owe their popularity
to their low computational complexity and fair accuracy that
may be achieved. They are also less overfitting prone. [37].

Now, let us define an ensemble of linear classifiers as a set
of N classifiers:

9 =
{
ψ (1), ψ (2), · · · , ψ (N )

}
. (6)

This article is focusedmainly on the methods of combining
the outputs of linear classifiers constituting the ensemble.
In the literature, we may find multiple methods of doing so.
The simplest strategy to combine the outcomes of multiple
classifiers is to apply the majority voting scheme:

ω(x) =
N∑
i=1

sign
[
ω(i)(x)

]
, (7)

where ω(i)(x) is the value of the discriminant function pro-
vided by the classifier ψ (i) for point x. However, this simple
yet effective strategy ignores the values of the discriminant
function ω(x).
Another simple strategy is model averaging [40]. The out-

put of such a model is calculated by simply averaging the
values of the discriminant functions:

ω(x) =
1
N

N∑
i=1

ω(i)(x). (8)

It is easy to notice that the model-averaging approach has a
major drawback. That is, the discriminant function of a linear
classifier is unbounded, and it grows with the distance from
the decision plane. Consequently, a classifier-related decision
plane placed far from the real decision boundary will produce
a high value of the discriminant function that may negatively
affect the ensemble. For the same reason, the outliers may
acquire an abnormally high value of the discriminant function
which may also affect the decision of the ensemble.

A compromise between the above-mentioned methods is
to transform the discriminant function by applying a kind
of sigmoid function to it [21]. The sigmoid function is a
monotonic function that has finite upper and lower bounds:

ω̃(i)(x) =
(
1+ exp

[
−ω(i)(x)

])−1
. (9)

As a consequence, the distance-specific information is not
lost, and the impact of the misplaced decision boundaries
is reduced. This approach is equivalent to applying a kind

of the logistic regression on the values of the discriminant
function [41]. The value of the discriminant function may
also be used to estimate the conditional probability of a class
given the instance x [41], [42]. The normalized outputs are
then simply averaged:

ω(x) =
1
N

N∑
i=1

ω̃(i)(x). (10)

The other issue with combining linear classifiers is that the
discriminant function of the linear classifier grows monoton-
ically with the distance to the decision plane. It means that
the linear classifier ignores the data spread along the normal
vector of the decision plane and it is implicitly assumed
that the distribution is uniform. However, in many real-world
datasets objects are distributed unevenly. An example of
this situation is visualised in Fig. 1. The figure presents
a binary, two-dimensional, banana-shaped dataset and the
decision boundary. As we can see, the objects are placed
in one cluster located in the intersection of intervals x1 ∈
[−1.5; 2.5], x2 ∈ [−1.5; 2]. Outside this area, there are no
class-specific objects. Consequently, the discriminant func-
tion generated by the classifier should be low outside this
area. Unfortunately, a linear classifier ignores this fact and its
support will grow (along the normal vector n of the decision
boundary) outside this area. Transforming the discriminant
function using a monotonic function, such as a sigmoid func-
tion, does not change the situation at all. This is because
far from the decision boundary the discriminant function
approaches its upper (lower) limit. Being close to the limit
still indicates high support for a particular class in the area
where there are no class-specific instances.

FIGURE 1. The linear decision boundary for binary, two-dimensional,
banana-shaped data. The plot also shows the normal vector of the
decision plane n.

Ignoring the class-spread-related information does not
change the outcome of the single classifier since the sign
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of the discriminant function remains the same. However,
our previous research has shown that employing this infor-
mation may improve the classification quality for het-
erogeneous ensembles of linear classifiers [17]. In the
previously-proposed approach, the discriminant function is
transformed using a non-monotonic function derived below:

g
(
ω(x)

)
= ω(x) exp

[
−ζ
(
ω(x)

)2
+ 0.5

]√
2ζ , (11)

where ζ is a coefficient that determines the position and
steepness of peaks (positive and negative peaks) [see Fig. 2].
This coefficient should be tuned during the training proce-
dure. The translation constants 0.5 and the scaling factor

√
2ζ

guarantee that the maximum and minimum values (peaks)
of the discriminant functions are 1 and −1 respectively. The
above-mentioned non-monotonic function is visualised in
Fig. 2. The figure shows the shape of the function for different
values of ζ .

FIGURE 2. Visualisation of the potential function g(z) [see (11)] for
different values of ζ .

Using this transformation, the prediction of the ensemble
is calculated as follows:

ω(x) =
N∑
i=1

g
(
ω(i)(x)

)
. (12)

After combining the base classifiers, the final prediction of
the ensemble is obtained according to the rule (4).

Harnessing the above-mentioned transformation allows the
ensemble to improve the classification quality. This is due to
the function being tuned so that the potential is near zero in
the areas where there are no training points. However, when
the data distribution is imbalanced, the performance may
degrade [17]. The other drawback of this method is that the ζ
coefficient controls the position and the steepness of the peaks
simultaneously. This can be seen in Fig. 2. The higher the
value of ζ is, the closer the peak is to the decision boundary,
and it is narrower. The solution may be to use an asymmetric,
data-driven potential function. The potential function should
possess the following properties:

• The function should be bounded within a given interval;
• The function should not be a sigma-shaped one;
• The function should not be an odd function;
• The function should allow multiple peaks;
• The peaks should indicate areas where the density of
class-specific instances is high.

III. PROPOSED METHOD
In this section, the probability-based potential function is
introduced. The concept description is preceded by the dis-
cussion that motivates the usage of such a potential function.

A. POTENTIAL FUNCTION
The discussion has brought us to the point where we realise
that an asymmetric, data-driven potential function is needed.
This section describes such a function based on a probabilistic
framework. The harnessing of the probabilistic model means
that x and m are realizations of random variables X and M,
respectively. The joint distribution P(X,M) is also given.
Then, the value of the discriminant function ω(x) of a linear
classifier (described by its normal vector n and offset b) is
also a realisation of a random variable defined as follows:

W = 〈n;X〉 + b. (13)

We denote its probability density function by w(ω). This
one-dimensional distribution describes the data spread along
the line defined by the normal vector n of the decision plane.
More precisely, it describes the distribution of distances of
points from the decision plane. This random variable is also
jointly distributed withM: P(W,M).

Taking this into consideration, the potential function β
should be proportional to the conditional probability of
class 1 given ω(x):

β(x) ∝ P
(
M = 1|ω(x)

)
. (14)

The conditional probability is expressed as follows:

P
(
M = 1|ω(x)

)
=

w
(
ω(x)|M = 1

)
P(M = 1)

w
(
ω(x)

) (15)

=

w
(
ω(x)|M = 1

)
P(M = 1)∑

m∈M w
(
ω(x)|M = m

)
P(M = m)

.

(16)

The potential function β
(
ω(x)

)
is given as follows:

β
(
ω(x)

)
=

exp
[
w
(
ω(x)|M = 1

)
P(M = 1)

]
∑

m∈M exp
[
w
(
ω(x)|M = m

)
P(M = m)

]−0.5.
(17)

To turn the probability into the potential function, the fol-
lowing modifications have been applied.
• When an outlying object x is considered, the sum∑

i∈M w
(
ω(x)|M = m

)
P(M = m) may be close
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to zero. To avoid numerical problems, the softmax trans-
formation is applied. The application of the softmax
normalization also gives the potential function a desired
shape. That is, for outliers lying far from the decision
boundary, the potential function is close to zero [because
the fraction in the (17) is close to 0.5].

• To get the potential bounded within an interval
[−0.5; 0.5] (the sign of the potential indicates the class),
we have to subtract 0.5 from the probability.

The above-defined potential function takes into account
prior class probabilities P(M = m). Using these probabilities
may not be suitable for imbalanced classification problems.
If we want the potential function using only class-conditional
densities, we simply assume P(M = m) = 0.5 ∀m. It gives
the following potential function:

βb

(
ω(x)

)
=

exp
[
w
(
ω(x)|M = 1

)]
∑

i∈M exp
[
w
(
ω(x)|M = m

)] − 0.5. (18)

Given the above-defined potential function and the ensem-
ble of linear classifiers, the outcome of the ensemble is cal-
culated using simple averaging of the values of the potential
function:

ω(x) =
N∑
i=1

β(i)
(
ω(x)

)
, (19)

where β(i)
(
ω(x)

)
is the classifier-specific potential.

B. PROBABILITY ESTIMATION
In the previous section the potential function has been
developed. It was assumed that all needed probabilities are
known. Unfortunately, in the real-world classification tasks,
the probabilities have to be estimated from the training data.
This section describes the techniques used to estimate the
probabilities needed by the potential function.

First, the linear classifier ψ is trained using the training
set T . Then, the training set is divided into two datasets
containing objects belonging to class -1 and 1 respectively:

T (m)
=

{
(x(k),m(k))|m(k)

= m
}
, (20)

Given those sets, the prior probabilities may be easily
estimated as:

P̂(M = m) =
|T (m)
|

|T |
. (21)

Estimating the class-conditional densities w
(
ω(x)|M =

m
)
is a more complicated task. This is due to the entire

probability density function have to be estimated instead of
a single value. To avoid any assumptions about the distri-
bution type, the non-parametric estimation technique must
be used [43], [44]. Two widely-known examples of such
techniques are histograms and kernel estimators [45]. The
histogram-based estimators are often criticized because the

shape of estimated distribution strongly depends on the width
and the number of bins. What is more, due to the binning
approach the histogram loses some information coming from
the sample [44]. However, the kernel-based estimators are
devoid of these drawbacks [43], [44].

Consequently, the class-conditioned densities are esti-
mated using the kernel estimator [46]:

ŵ
(
ω(x)|M = m

)
=

1

h
∣∣T (m)

∣∣
∣∣T (m)

∣∣∑
i=1

K

(
ω (x)− ω

(
x(i)
)

h

)
,

(22)

where h is the smoothing parameter (bandwidth) and K (·) is
the kernel function. The kernel estimation technique uses a
’smooth’ kernel function that is centered at each data point
and then the values coming from the centered kernels are
summed up to form the estimated probability density func-
tion. The estimation result of a smiple distribution is visu-
alised in Fig. 3.

FIGURE 3. Example of the kernel estimation. The vertical lines over the
abscissa represent the realisations of the random variable being
estimated. The realizations are generated using normal distributions with
standard deviation equal to 0.5 and mean values equal to zero and two
respectively. The number of realizations is 50 for each of the normal
distributions. The estimation was made using Gaussian kernel and
bandwidth selected using the Silverman’s rule [44].

The kernel function usually meets the following proper-
ties [44], [47]:

K (t) ∈ [0;∞)∀t ∈ R, (23)

K (t) = K (−t)∀t ∈ R, (24)∫
∞

−∞

K (t) dt = 1, (25)

Many different types of kernel functions have been
described so far in the literature [44]. However, for the
symmetric kernels described above the shape of the kernel
function has little impact on estimator properties [48], [49].
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On the other hand, the Gaussian kernels are told to produce
most ’smooth’ estimators and, due to this fact, they are most
frequently used [44]. The impact of the kernel shape on the
resulting estimation is shown in Fig. 4.

FIGURE 4. Example of the kernel estimation. The vertical lines over the
abscissa represent the realisations of the random variable being
estimated. The realizations are generated using normal distributions with
standard deviation equal to 0.5 and mean values equal to zero and two
respectively. The number of realizations is 50 for each of the normal
distributions. The estimation was made using different kernels and
bandwidth selected using the Silverman’s rule [44]. As we can see,
the shapes of the estimated distributions are quite similar for all of the
investigated kernels.

In this study, we decided to use the Gaussian (The kernel
is the pdf. of the normal distribution) kernel:

Kg(t) =
1
√
2π

exp(−0.5t2). (26)

In contrast to the kernel shape choice, the choice of the
kernel bandwidth is critical [44]. On one hand, too large value
of the smoothing parameter causes the estimator to be over
smoothed. The over smoothed estimator may loose impor-
tant details of the density function. For example the over
smoothed estimator may loose information about multiple
modes when the peaks are to close to each other [43], [44].
The impact of the bandwidth on the estimation result is shown
in Fig. 5.

On the other hand, too small bandwidth value may cause
the estimator to show many insignificant details of the den-
sity function. For example, it may show multiple modes
when estimating unimodal distribution [44]. The literature
presents many techniques for finding the proper value of the
kernel bandwidth [47], [50], [51]. However, for Gaussian
kernels, the Silverman rule of thumb is often used in practice
due to ist simplicity and the ability to provide quite good
results [44].

FIGURE 5. Example of the kernel estimation. The vertical lines over the
abscissa represent the realisations of the random variable being
estimated. The realizations are generated using normal distributions with
standard deviation equal to 0.5 and mean values equal to zero and two
respectively. The number of realizations is 50 for each of the normal
distributions. The estimation was made gaussian kernel. The estimation
was done using different values of bandwidth parameter.

In our work, we also decided to select the bandwidth using
Silverman’s rule of thumb [48]:

h = 0.9min(σ̂ ,
IQR
1.34

)n−
1
5 , (27)

where σ̂ is the sample standard deviation, IQR is the
interquantile ratio of the sample and n is the sample size [52].

C. TOY EXAMPLES
In this section, simple examples of the potential-function-
construction process are presented.

1) PROBABILITY ESTIMATION AND THE POTENTIAL
FUNCTION
In this subsection, a simple example of constructing the
potential field out of balanced dataset is given

The training dataset and the constructed linear classifier
(constructed using the nearest centroid rule [53]) for this set
are presented in Fig. 6. The estimated class-conditioned den-
sities are shown in Fig. 7. The potential function is visualised
in Fig. 8.

2) ENSEMBLE-SPECIFIC DISCRIMINANT FUNCTIONS
In this subsection, we visualise the ensemble-specific dis-
criminant functions obtained using different approaches to
combining linear classifiers. In the examples, we used an
imbalanced two-dimensional dataset. As a base classifier the
Fisher LDA classifier is used. [54] The base classifiers of
the ensemble are trained using the bagging approach and the
number of the base classifiers is three.
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FIGURE 6. Linear decision boundary for binary, two-dimensional,
banana-shaped data. The solid line presents the decision boundary
obtained using the nearest centroid algorithm.

FIGURE 7. Class conditioned pdfs. calculated using the kernel estimator.

The visualisations of discriminant functions are shown
in Fig. 9 – 12. In the figures, objects are shown using red and
green dots with a white border. The values of the discriminant
functions are shown using the background colour. Shades
between red and green indicate the negative and positive
values of the discriminant functions.

As we can see in Fig. 9, for the response of the majority
voting ensemble is rather crisp. The shades between red and
green are visible only in the area where the decision areas of
base classifier do not overlap.

For the ensemble using the model averaging approach,
which is shown in Fig. 10, no clear decision boundary

FIGURE 8. The potential function βb calculated using the given dataset.
The solid line presents the potential function defined in (18). The dashed
one is the alternative potential related to the other class.

FIGURE 9. Discriminant function for the ensemble classifier using
majority voting approach.

is visible. The values of the discriminant function decrease
along the horizontal axis of the plot. Consequently, the objects
that are more distant from the decision boundary, the higher
the absolute value of the discriminant function is.

The discriminant function generated by the ensemble using
β potential function is visualised in Fig. 11. It may be seen
that the green colour dominates the plot. It means that the
ensemble is biased towards the majority class. However,
we may see that absolute value of the discriminant function
for the majority class is the highest in the area where the value
of class-specific probability-density-function is the highest.

The discriminant function generated by the ensemble
using βb potential function is visualised in Fig. 12. In this
case, the ensemble is not biased towards the majority class.
As expected, the class-specific valiues of the discriminant
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FIGURE 10. Discriminant function for the ensemble classifier using model
averaging approach.

FIGURE 11. Discriminant function for the ensemble using β potential
function.

function are the highest in the areas where many class-
specific objects are placed.

IV. EXPERIMENTAL SETUP
In the experimental study, the proposed method was used
to combine classifiers using a homogeneous ensemble of
classifiers. The ensembles were created using a bagging
approach [40]. The generated ensembles consist of 11 clas-
sifiers learned by using the bagging method containing 80%
of the number of instances from the original dataset. The
instances for the given base learner are chosen randomly.

During the experiment, the following ensembles were
considered:

• ψRA – Random forest ensemble [55];
• ψRO – Rotation forest ensemble [56];
• ψMV – bagged classifiers were combined using the
majority-voting approach (7);

FIGURE 12. Discriminant function for the ensemble using βb potential
function.

• ψMA – bagged classifiers were combined using the
model-averaging approach (8);

• ψSM – outputs of the linear classifiers were normalized
using the softmax rule, and then combined according
to (10);

• ψPF – the approach using the potential function pro-
posed in [17]. Classifiers were combined using model
averaging;

• ψB1 – the ensemble combined using β function;
• ψB2 – the ensemble combined using βb function.

The following base classifiers were used to build the
above-mentioned ensembles (except random forest and rota-
tion forest):

• ψFLDA – Fisher LDA [54];
• ψLR – Logistic regression classifier [57];
• ψPER – perceptron classifier [58];
• ψNC – nearest centroid (Nearest Prototype) [53] with the
Euclidean distance;

• ψSVM – SVM classifier with the linear kernel (no
kernel) [59].

The classifiers used were implemented in the WEKA
framework [60]. If not stated otherwise, the classifier param-
eters were set to their defaults. Themulti-class problemswere
dealt with using One-vs-One decomposition [14]. The source
code of the proposed methods is available online .1

For each of the employed kernel estimators the kernel
bandwidth was selected using the Silverman’s rule [48]. The
gaussian kernel is used.

To evaluate the proposed methods, six classification-
quality criteria are used:

• Macro-averaged:

– false discovery rate (1− precision, FDR);
– false negative rate (1− recall, FNR);
– Matthews correlation coefficient (MCC);

1https://github.com/ptrajdos/piecewiseLinearClassifiers/tree/master
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• Micro-averaged:

– false discovery rate (1− precision, FDR);
– false negative rate (1− recall, FNR);
– Matthews correlation coefficient (MCC).

Macro and micro averaged measures were used to assess
the performance for the majority and minority classes. This
is because the macro-averaged measures are more sensitive
to the performance for minority classes [61]. The criteria
are bounded in the interval [0, 1], where zero denotes the
best classification quality. The results obtained using the
MCC criterion are also normalised to fit the above-mentioned
property.

The experimental procedure was conducted using the
ten-fold cross-validation procedure. The data folds were gen-
erated using methods implemented in WEKA software. The
random seed used to generate them is zero.

Following the recommendation of [62] the statistical sig-
nificance of the obtained results was assessed using the
two-step procedure. The first step was to perform the
Friedman test [62] for each quality criterion separately.
Since the multiple criteria were employed, the family-wise
errors (FWER) should be controlled [63]. To do so, the
Bergmann-Hommel [63] procedure of controlling FWER
of the conducted Friedman tests was employed. When
the Friedman test shows that there is a significant dif-
ference within the group of classifiers, the pairwise tests
using the Wilcoxon signed-rank test [62] were employed.
To control FWER of the Wilcoxon-testing procedure,
the Bergmann-Hommel approach was employed [63]. For all
tests, the significance level was set to α = 0.01.
Table 1 displays the collection of the 70 benchmark sets

that were used during the experimental evaluation of the pro-
posed methods. The table is divided into three columns. Each
column is organized as follows. The first column contains
the names of the datasets. The remaining ones contain the
set-specific characteristics of the benchmark sets: the number
of instances in the dataset |S|; dimensionality of the input
space d ; the number of classesC ; average imbalance ratio IR.

The datasets come from the Keel 2 repository. The datasets
are available online .3

During the dataset-preprocessing stage, a few transforma-
tions on the datasets were applied. The PCAmethod [64] was
applied and the percentage of covered variance was set to
0.95. The attributes were also normalized to have zero mean
and unit variance.

V. RESULTS AND DISCUSSION
To compare multiple algorithms on multiple benchmark sets,
the average ranks approach is used. In this approach, the
winning algorithm achieves rank equal to ’1’, the second
achieves rank equal to ’2’, and so on. In the case of ties,
the ranks of algorithms that achieve the same results are

2https://sci2s.ugr.es/keel/category.php?cat=clas
3https://github.com/ptrajdos/MLResults/blob/master/data/KeelData.

tar.xz

TABLE 1. The characteristics of the benchmark sets.

averaged. To provide a visualization of the average ranks the
radar plots are employed. In the radar plot, each of the radially
arranged axes represents one quality criterion. In the plots,
the data is visualized in such a way that the lowest ranks
are closer to the centre of the graph. Consequently, higher
ranks are placed near the outer ring of the graph. Graphs
are also scaled so that the inner ring represents the lowest
rank recorded for the analyzed set of classifiers, and the outer
ring is equal to the highest recorded rank. The radar plots are
presented on Fig. 13 – 17.

FIGURE 13. Radar plot for the ψFLDA.
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FIGURE 14. Radar plot for the ψLR.

FIGURE 15. Radar plot for the ψPER.

The numerical results are given in Table 2 to 6. Each table
is structured as follows. The first row contains the names of
the investigated algorithms. Then, the table is divided into
six sections – one section is related to a single evaluation
criterion. The first row of each section is the name of the
quality criterion investigated in the section. The second row
shows the p-value of the Friedman test. The third one shows
the average ranks achieved by algorithms. The following
rows show p-values resulting from the pairwise Wilcoxon
test. The p-value equal to 0.000 informs that the p-values
are lower than 10−3 and p-value equal to 1.000 informs that
the value is higher than 0.999. P-values lower than α are
bolded. Consequently, the bolded results show that there is
a significant difference between classifiers.

FIGURE 16. Radar plot for the ψNC.

FIGURE 17. Radar plot for the ψSVM.

Before we begin the analysis of the classification qual-
ity of the proposed methods, let us analyse the reference
algorithms first. We start with the analysis of the results
connected with ensembles built using linear classifiers only.
For the above-presented experimental setup there are almost
no significant differences between the reference methods. For
ψNC classifier on the other hand, for macro-averaged FDR
measure ψMV classifier performs significantly worse than
the other reference ensemble algorithms based on the linear
classifiers. It means that forψNC, the majority voting strategy
fails to identify the minority class. This may be due to the fact
that ψNC completely ignores inter and intra-class variation.

Now, the results related to tree-based ensembles (ψRA
and ψRO) are analysed. For macro-averaged FDR and MCC,
the ψRO algorithm is significantly better than the ensembles
built using linear classifiers for four of five base classifiers.
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TABLE 2. Statistical evaluation: the Wilcoxon test for the ensembles based on ψFLDA classifier.

TABLE 3. Statistical evaluation: the Wilcoxon test for the ensembles based on ψLR classifier.

TABLE 4. Statistical evaluation: the Wilcoxon test for the ensembles based on ψPER classifier.

What is more, for macro-averaged FDR it is better than
the above-mentioned ensembles for two (ψNC and ψSVM)
out of five base classifiers. On the other hand, in terms of
all macro-averaged measures, ψRA classifier is significantly
better than the ensembles based on the linear classifiers for
two (ψNC andψSVM) out of five base classifiers. These results
show that ψRA and ψRO tend to be better at recognizing
minority classes.

The situation changes for the micro-averaged quality
criteria. For those criteria, ψRA and ψRO algorithms tend to

be significantly better in terms of FNR and worse in terms of
MCC. These results indicate that, for majority classes, ψRA
and ψRO tend to make more false-positive predictions than
the ensembles based on the linear base classifiers.

A. ψB1 VS REFERENCE
Observing the tables for ψB1 classifier, we may find three
different patterns of behaviour.

First for ψFLDA (Tab. 2, Fig. 13) and ψNC (Tab. 5,
Fig. 16) classifiers, ψB1 get a significantly worse score for
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TABLE 5. Statistical evaluation: the Wilcoxon test for the ensembles based on ψNC classifier.

TABLE 6. Statistical evaluation: the Wilcoxon test for the ensembles based on ψSVM classifier.

the macro-averaged FNR and a significantly better score for
micro-averaged FNR andMCCmeasures. On the other hand,
for the micro-averaged FDR, the B1 ensemble is significantly
better than ψRA and ψRO. It means that for those classi-
fiersψB1 classifier makes more false-negative predictions for
the minority class than the reference ensembles built using
linear classifier. Moreover, it tends to be biased towards the
majority class. However not as biased as ψRA and ψRO.
The second pattern of behaviour may be observed for ψLR

(Tab. 3, Fig. 14) and ψPER (Tab. 4, Fig. 15). For those classi-
fiers, ψB1 is also worse than the reference methods in terms
of macro-averaged FNR, but for ensembles built using linear
base classifiers it is comparable in terms of micro-averaged
measures. It means that its bias towards the majority class is
smaller for those base classifiers.

For the above-considered cases, the bias towards themajor-
ity class is an effect of employing the prior class probabili-
ties in the potential function. Employing those probabilities
moves the decision boundary towards the majority class.

The third pattern is observed for ψSVM base classifier
(Tab. 6, Fig. 17). For this base classifier,ψB1 outperforms the
linear-base-classifier-based reference ensembles in terms of
macro-averaged measures.ψB1 is also comparable to them in
terms of micro averagedmeasures. Contrary to the previously
observed patterns, for this base classifier, ψB1 is not biased

towards the majority class. What is more, it allows to improve
the classification quality for the minority classes. This effect
may be related to the separation margin that is enforced
by the SVM-based classifiers. The harnessing of the prior
class probabilities moves the decision boundary towards the
majority class, however, the separation-margin is so wide
that it does not cause a bias towards the majority class. The
situation changes when ψB1 is compared to ψRA and ψRO
in terms of the macro-averaged criteria. In this case ψB1 is
significantly worse than the tree-based-reference ensembles.

B. ψB2 VS REFERENCE
Comparing ψB2 classifier with the reference methods allows
us to observe the following patterns.

For ψFLDA base classifier (Tab. 2, Fig. 13), there are no
significant differences between the ψB2 ensemble and the
reference methods.

For most base classifiers, exceptψFLDA,ψB2 the ensemble
is significantly better than linear-classifier-based ensembles
in terms of macro-averaged FNR measure. Additionally,
for ψNC (Tab. 5, Fig. 16), and ψSVM (Tab. 6, Fig. 17),
the investigated classifier is significantly better in terms of
the macro-averaged FDR. What is most important, for ψPER,
ψNC, and ψSVM, it is also better in terms of macro-averaged
MCC measure. It means that ψB2 classifier tends to
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outperform the linear-classifier-based reference ensembles in
recognizing objects of minority classes.

The situation changes when comparingψB2 ensemble with
the tree-based ensembles (ψRA and ψRO). In this case for
ψNC, and ψSVM base classifiers, the ψB2 ensemble is signif-
icantly worse in terms of macro-averaged FDR and MCC.

For the majority classes the situation is quite different. For
ψNC (Tab. 5, Fig. 16), and ψSVM (Tab. 6, Fig. 17), when
comparing to the linear-classifier-based ensembles, there are
no significant differences in terms of the micro-averaged
measures. It means that for those base classifiers ψB2 ensem-
ble is able to improve the classification quality for minor-
ity classes without harming the recognition quality of the
majority classes. For ψLR and ψPER, on the other hand,
ψB2 tends to be worse in terms of the micro averaged mea-
sures. Consequently, for those classifiers, ψB2 ensembles are
biased towards minority classes.

The situation is a bit different when comparing ψB2 with
the tree-based ensembles. In this comparison, ψB2 tends to
be significantly better in terms of the micro-averaged MCC
criterion and significantly worse in terms of micro-averaged
FNR. It means that the ψB2 ensemble is less biased towards
the majority classes.

C. ψB1 VS ψB2
For all the investigated base classifiers, the result pattern is
very clear. That is, in terms of macro-averaged FNR and
MCC, ψB2 is always significantly better than ψB1. It means
that for the minority class ψB1 makes significantly more
false-negative predictions than ψB2. In other words, employ-
ing prior probabilities makes the ensemble based on ψB1
potential function less sensitive to the minority class.

On the other hand, for micro-averaged FNR and MCC
measures, ψB1 is better than ψB2 for three out of five base
classifiers (ψFLDA (Tab. 2, Fig. 13), ψPER (Tab. 4, Fig. 15),
ψNC (Tab. 5, Fig. 16)). For two remaining base classifiers
(ψLR (Tab. 3, Fig. 14) andψSVM (Tab. 6, Fig. 17)), no signifi-
cant differences are observed. It means thatψB1 is far better at
identifying majority class examples. This fact which is con-
nected with the low classification quality for macro-averaged
measures means that ψB1 classifier is biased towards the
majority class. This is disadvantageous because, in many
practical imbalanced classification problems, the minority
class is the class of most interest [65].

D. MAIN FINDINGS
Given the above, themain advantages of the proposedmethod
can be summarized as follows:

• Ensemble ψB2 is better than ψB1 in dealing with imbal-
anced data.

• In general,ψB2 ensemble is comparable toψRA andψRO
in terms of macro-averaged quality measures. It means
that the classification quality for examples coming from
the minority classes is similar to the classification qual-
ity obtained by non-linear ensembles.

• In general, in terms of the macro-averaged measures
ψB2 ensemble is better than other ensembles built using
linear classifiers i.e. ψMV, ψMA, ψSM and ψPF

Likewise given the above, the main disadvantages of the
proposed method can be summarized as follows:
• Creating the potential function for ψB1 and ψB2 needs
more computational burden than creating potential func-
tion in ψMV, ψMA and ψSM. This is because the kernel
estimators is employed. What is more, the bandwidth
parameter of the kernel must be chosen. This generates
an additional computational cost.

• Generally, for macro-averaged measures ψB1 ensemble
is worse than the reference methods. It means, that ψB1,
due to employing prior class probabilities, is biased
towards majority classes.

VI. CONCLUSION
In this article, a new method of combining linear classifiers
has been proposed. Outputs of the base classifiers constitut-
ing the ensemble are combined via the potential functions.
Two potential functions based on class-conditional probabil-
ities have been developed. One of them ignores class prior
probabilities.
The proposed methods have been compared to four ref-

erence methods. The comparison was done in terms of six
different quality criteria. The experiments were conducted
using a large set of benchmark datasets (70 benchmark sets).
The experimental evaluation shows that the potential func-

tion that ignores prior probabilities outperforms most of
the reference methods in terms of macro-averaged quality
criteria. It means that the method is significantly better at
recognizing minority class objects.
In this study, a simple bagging approach was used to

constitute a diverse set of base classifiers. This simple, yet
effective method allowed to achieve quite interesting results.
Nevertheless, we believe that harnessing an ensemble build-
ing scheme tailored to the proposed potential function will
allow to improve the classification quality achieved by the
proposed method. Future research should be aimed at this
issue.
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