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ABSTRACT We present a graphene-based phase shifter for radio-frequency (RF) phase-array applications.
The core of the designed phase-shifting system consists of a graphene field-effect transistor (GFET) used in a
common source amplifier configuration. The phase of the RF signal is controlled by exploiting the quantum
capacitance of graphene and its dependence on the terminal transistor biases. In particular, by independently
tuning the applied gate-to-source and drain-to-source biases, we observe that the phase of the signal, in the
super-high frequency band, can be varied nearly 200◦ with a constant gain of 2.5 dB. Additionally, if only
the gate bias is used as control signal, and the drain is biased linearly dependent on the former (i.e., in a
completely analogue operation), a phase shift of 85◦ can be achieved making use of just one transistor and
keeping a gain of 0 dB with a maximum variation of 1.3 dB. The latter design can be improved by applying
a balanced branch-line configuration showing to be competitive against other state-of-the-art phase shifters.
This work paves the way towards the exploitation of graphene technology to become the core of active
analogue phase shifters for high-frequency operation.

INDEX TERMS Field-effect transistor (FET), graphene, phase shifters, quantum capacitance, radio-
frequency (RF) devices.

I. INTRODUCTION
In the last few years the number of applications where
graphene is involved has increased drastically in almost every
field of electronics. Its use in flexible electronics [1], [2]
along with its intrinsic material properties [3]–[10], have
postulated it as one of the main candidates to play a leading
role in the future of the industry. However, due to the absence
of band gap in graphene and its consequent inability (at
the device level) to be effectively turned off, this progress
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has been especially notorious in the field of RF electronics.
Some examples of the main advancements can be found
among radio-frequency (RF) power detection applications
[11], high-frequency (HF) transmission lines [12], RF low
power applications [13], fifth-generation (5G) antenna arrays
[14], or printed sensing applications for the Internet of Things
(IoT) [15]. However, in the RF field, there are still some elec-
tronics components that indeed play an essential role in mul-
tiple communication systems embedded in radars or satellites
[16]–[18], that remain unexplored. One notorious case corre-
sponds to phase shifters, elements of paramount importance
in order to control and direct the main radiation lobe of
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antenna arrays. In particular, this ability of the arrays allows
for a reduction in power consumption and an overall improve-
ment of the signal-to-noise ratio (SNR) of the antenna [19],
both crucial features in communication systems.

Although phase shifters are well-known RF systems, the
design of purely analogue architectures, advantageous due
to their higher precision and reduced complexity, has been
technologically limited to two main approaches. First, the
use of varactors as periodical loads of transmission lines,
so to modify the equivalent circuit capacitance with a control
voltage [20]–[23]. However, due to its passive nature, these
topologies will always present some insertion losses (IL).
Second, the implementation of transistor-based architectures
either in all-pass filter configuration with a flat amplitude
passing band and a voltage-dependent phase [24], or emulat-
ing the varactor structure by employing high electron mobil-
ity transistors [25].

An alternative strategy is getting the phase variation
through a quadrature amplitude modulation (QAM) tech-
nique, where the so-called in-phase/quadrature (I/Q) signals
(with a 90◦ phase difference between each other) feed two
voltage gain amplifiers (VGAs), and are later added up. The
resulting phase shift is controlled by changing the relative
amplitudes of the I/O signals [26]–[31]. This strategy results
in quite complex circuits (including the I/Q generator, VGAs,
and signal adders) as well as a digital control system.

However, in spite of the increasing number of effective
prototypes of graphene RF devices such as graphene field-
effect transistors (GFETs) [32], as well as one-dimensional
(1D) flexible RF diodes [33], none of them have already
been explored for the aforementioned purpose. In this con-
text, we propose a bias-controlled analogue phase shifter
based on a GFET by taking advantage of the possibility
of tuning the graphene quantum capacitance with the FET
terminal biases thanks to its low density of states around
the Dirac point [34]. Not only is the use of graphene-based
technology for this application novel and relevant, but also
the fact that the phase shift can be controlled solely by an
analogue signal without impacting on its gain. In this regard,
the proposed phase shifter architecture consists of only one
device and the role of the control signal is played by the gate
bias with the drain bias linearly depending on the former.
The proposed design achieves a 85◦ phase shift, keeping a
gain of 0 dB with a maximum variation of 1.3 dB. In order
to reduce the source mismatch, the design is improved by
applying a balanced branch-line amplifier configuration pro-
viding return losses higher than 30 dB. The performance and
main figures of merit (FoMs) of the proposed graphene-based
phase shifters are compared against the state-of-the-art with
promising results.

II. GRAPHENE FET AS PHASE SHIFTER
The design and analysis of an RF phase shifter founded in
graphene require a physics-based description of the electrical
behavior of a GFET at a compact and analytical level suitable
for standard circuit simulators. To this purpose, we employ

TABLE 1. Graphene technology parameters used in the design of the
analogue phase shifter.

the large-signal model implemented in Verilog-A by some
of the authors [35], embedding it into Keysight˙ Advanced
Design System. This GFET compact model has been thor-
oughly validated in [36] by the assessment of the DC char-
acteristics, transient dynamics, and frequency response of
a variety of graphene-based circuits such as a HF voltage
amplifier [37], a high-performance frequency doubler [38],
a subharmonic mixer [39], and a multiplier phase detector
[40] showing a very good agreement between measurements
and simulations.

In order to proceed with the device-level analysis, it is
important to first introduce the graphene technology parame-
ters considered within the design. Table 1 summarizes them,
where T is the temperature; µ represents the effective carrier
mobility; VG0 is the gate offset voltage;1 is the inhomogene-
ity of the electrostatic potential due to electron-hole puddles;
W and L are the channel width and length, respectively; and
Cox is the oxide capacitance per unit area.
The inspirational property of a GFET that postulates it as a

candidate to be the core of an active analogue phase shifter
is the bias-tunable quantum capacitance originated by the
reduced density of states of graphene around the Dirac point
[34]. To take advantage of this inherent property, the graphene
quantum capacitance, Cq, has to be dominant over the gate
geometrical oxide capacitance, Cox = ε0εox/tox . In a metal-
insulator-graphene structure Cox and Cq are working in series
[41], and therefore, achieving a design withCox � Cq allows
to leverage the Cq tunability. This effect can be observed by
analyzing the intrinsic device capacitances (Cij) of the GFET
which relate the incremental charge (1Qi) at a terminal iwith
a varying voltage (1Vj) applied to a terminal j assuming that
the voltage at all the other terminals remains constant [35],

Cij =

{
−
∂Qi
∂Vj
, i 6= j

∂Qi
∂Vj
, i = j

(1)

where i and j stand for g (gate), d (drain), and s (source)
respectively. The dynamic regime of a three-terminal GFET
can be described by just four out of nine intrinsic capacitances
[42], [43],Cij in Eq. (1). In order to illustrate the device capac-
itive tunability with terminal biases, Fig. 1 shows the gate
(VGS) and drain (VDS) bias dependences of the selected set of
capacitances, namely Cgs, Cgd , Csd and Cdg, considering the
device technology described in Table 1. As can be observed,
all intrinsic capacitances show large variations in the selected
range of bias proving that, due to the Cq tunability, using a
control signal based on VGS and/or VDS can be eventually
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FIGURE 1. Intrinsic capacitances Cgs (red circles), Cgd (blue squares), Csd
(purple triangles) and Cdg (yellow diamonds) of the GFET employing the
technology summarized in Table 1 versus (a) gate bias and (b) drain bias.

exploited for phase shifting operation through the variation
of the capacitive response of the device.

To the purpose of selecting the RF band of operation, a bare
and quick estimation of the RF performance limits of the
GFET technology can be achieved by calculating the cut-off
frequency, fT , and maximum oscillation frequency, fmax [44],
[45]. In particular, the expected RF FoMs for the technology
described in Table 1 are fT = 18.9GHz and fmax = 25.1GHz
at VGS = VDS = 1V. These values have been estimated
considering that the source and drain metal-graphene contact
resistances are limited to Rs · W = Rd · W = 100�µm
[46]–[48], respectively; and the gate resistance is Rg · L =
5�µm. As a rule of thumb, the operating frequency should
be lower than 20% of fmax so as to guarantee sufficient power
gain. In order to fulfill this requirement, we have opted for a
design within the S-band of the spectrum. Specifically, the
chosen operating frequency of the phase shifter is 3GHz.
Nevertheless, future improvements of the GFET technology
would allow our design procedure to be extended beyond this
frequency range.

III. PHASE SHIFTER GRAPHENE CIRCUIT
As it is known, an analogue phase shifter is expected to
produce a phase shift in the output with respect to the input,
as dictated by a control signal, while the amplitude of the
output is minimally attenuated by a constant factor. In order
to implement this concept using graphene, we propose a
GFET operating in common-source (CS) configuration, thus
forming a two-port network. As shown in Fig. 2, the RF

FIGURE 2. Schematic of the phase shifter. The GFET is used as the active
element. IMN and OMN allow to maximize the power transfer from the
source to the load and, at the same time, minimize signal reflection from
the load. Bias tees at both input and output ports are considered, each
one consisting of an ideal capacitor to allow the AC through but
uncoupling the DC, and an ideal inductor to allow the DC through but
uncoupling the AC signal.

signal and DC biases are combined by using bias tees con-
sisting of L/C networks which properly block the AC/DC
components, respectively. Source and load impedances, ZS
and ZL respectively, are assumed equal to the characteristic
impedance, set to Z0 = 50�. In order to achieve a good
power transfer, two matching networks are employed; while
to the purpose of gaining stability, a shunt resistor of 1.65 k�
is added to the gate of the GFET even though this will
entail some gain losses. Unconditional stability is achieved
for VGS and VDS = 1V, which allows us to calculate the
reflection coefficients 0S and 0L for the maximum available
gain (MAG). Input and output matching networks (IMN and
OMN, respectively) are designed to simultaneously satisfy
0in = 0

∗
S and 0out = 0

∗
L so as to yield conjugate matching in

both ports. Both matching networks are composed by a shunt
capacitor (CIMN = 465.26 fF, COMN = 55.13 fF) and a series
inductor (LIMN = 35.07 nH, LOMN = 37.32 nH). The IMN is
configured in a C-L topology while the OMN is configured
in a L-C topology. It is important to note that the lumped
components here used are assumed to be ideal. Tolerance and
quality factor (Q) issues associated with them could affect
the design and, therefore, they should be analyzed in detail
for the integrated circuit technology employed in an eventual
realization of the circuit.

In a phase controlled antenna array, the phase shifter feeds
each element of the array in a way that the amplitude and
phase difference of the input current at each element deter-
mine the shape and direction of the main lobe of radiation,
respectively. Thus, for a proper array design, it is of utmost
relevance to be able to select the direction of the main lobe
(changing the relative phases between the input signals of the
antennas), while keeping the shape of the radiation pattern
unaltered (maintaining the signal amplitudes of all elements
balanced). Therefore, in terms of the scattering (S) param-
eters, a two-port phase shifter feeding each antenna must
be able to keep the magnitude of S21 (|S21|) constant while
tuning its phase in a controlled way (φ21), where ports 1 and
2 of the system refer here to the gate-source and drain-source
terminals, respectively. The rest of the S parameters (S11, S12
and S22) are also important to guarantee an acceptable power
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FIGURE 3. Isocurve plots of a) |S21| (dB) and b) φ21 (Degree) versus both
VGS and VDS.

transfer from the input to the output and are addressed by the
proper design of the IMN and OMN.

In particular, IMN and OMN in Fig. 2 are optimized in
order to achieve a value of the matching coefficient (M) as
high as possible. Generally, matching networks are designed
for a single bias point, but in this case, both VGS and VDS of
the GFET have to be changed so to enable the phase shifting
while keeping a constant amplitude, so it is crucial to have a
highM value for a large window of VGS or VDS combinations.
In this regard, we have assessed that M is over 0.7 for the bias
window under test.

In the design of Fig. 2, we expect that, by changing VGS
or VDS, the intrinsic capacitances of the GFET will vary,
as shown in Fig. 1a, and so will do φ21. The interest of the
design is to keep at the same time a constant |S21|. In order
to better understand the φ21 and |S21| dependencies on the
bias, Figs. 3a and 3b depict their corresponding isocurves as
a function of VDS and VGS. As can be observed, both |S21|
and φ21 show a strong dependence on VDS and VGS what can
be exploited for the design of the phase shifter. It should be
highlighted that each isocurve of Figs. 3a and 3b provides a
VGS − VDS combination ensuring a constant |S21| and φ21.
Moreover, the phase isocurves depict a different dependence
on VGS−VDS compared to amplitude isocurves, unveiling the
possibility of applying a bias combination (i.e., a simultane-
ous variation of both VGS and VDS ) such that, harnessing the
quantum capacitance tunability of graphene, would yield a
constant amplitude while the phase is appropriately modified.

It is also interesting to note here that it would be possible to
change the design technique and playing with the amplitude
of the output signal (|S21|) while maintaining a constant phase

FIGURE 4. a) Bias dependence of the phase shift φ21 for three gain
values |S21| = −5 dB (dashed line), 0 dB (dotted line) and 5 dB (solid line).
Bias combinations that do not guarantee unconditional stability for the
device are coloured in dark grey, and are represented by region B. b) Gate
bias dependence of the phase shift for the same three constant gain
values by considering that the drain bias is simultaneously modified to
mantain the selected |S21| value (analogue control).

shift φ21, and this result would also be of notable interest as
it would allow the radiation pattern to change while keeping
the direction of the main lobe.

Following on with the phase shifter design, Fig. 4a shows
the φ21 variation (color scale) as a function of the bias com-
binations that keep a constant value of |S21|: −5 dB (dashed
line), 0 dB (dotted line) and 5 dB (solid line). In order to
ensure the unconditional stability of the circuit, the so-called
K-1 test [49] is carried out. In that regard, Fig. 4a shows two
different regions denoted as A (light grey) and B (dark grey).
Region A represents the bias combinations where uncondi-
tional stability is achieved. As for Region B, it contains the
bias points where the stability of the circuit cannot be assured,
i.e., there are bias combinations inside Region B where either
the stability is conditioned or the circuit is directly unstable.
For this reason, we have chosen to restrict the design to
Region A, ensuring that the circuit is unconditionally stable.

Using a purely digital control, i.e., allowing any possible
VGS−VDS combinations that provide a constant specific gain,
would result in large phase shift ranges, e.g. 1φ21 ' 180◦

keeping |S21| = 0 dB. If an analogue control is considered,
i.e., a linear relation is forced between VDS and VGS, the
range of1φ21 diminishes. Nevertheless, the analogue control
would rely only on one signal, e.g., VGS, and an extraordi-
nary simple control circuit would be required (that may be
implemented by a DC-DC converter, or in case efficiency is
not a constraint, a simple voltage divider). This outstanding
linear relation between both biases can be estimated for each

209058 VOLUME 8, 2020



A. Medina-Rull et al.: GFET Based Analogue Phase Shifter

FIGURE 5. Maximum feasible phase shift range with digital (blue
squares) and analogue (red circles) control versus |S21|.

|S21| isocurve by applying a standard linear regression and
ensuring that the determination coefficient (R2) is higher than
0.9999. In this regard, Fig. 4b) shows the performance of the
analogue controlled phase shifter, demonstrating1φ21 values
higher than 50◦ for the three gain values considered and with
a remarkable value of1φ21 higher than 80◦ for |S21| = 0 dB.
As the maximum phase shift range 1φ21 depends on the

gain value, we have evaluated it under two scenarios: (i) when
the digital control is selected, and (ii) when the linear relation
between VGS and VDS is assumed. The results are depicted in
Fig. 5, where1φ21 is plotted for gains ranging from −15 dB
up to 15 dB, considering either a digital or an analogue con-
trol. According to Fig. 5, |S21| = 0 dB happens to be in good
trade-off between power gain and phase shift when designing
an analogue phase shifter. It should be highlighted that it is
possible to obtain a higher gain at the expense of losing some
phase shift. This trade-off, however, can be balanced with the
inclusion of an additional amplifier in the design of the phase
shifter.

In order to evaluate the variations in |S21| that the purely
analogue control of the phase shifter induces (due to the small
depart from linearity of the actual VGS−VDS combinations),
Fig 6a depicts the outcome of the analogue controlled phase
shifter for |S21| = 0 dB. As can be seen, when forcing the
linear relation for VGS − VDS, still a 85◦ phase shift range
is achieved while satisfying a gain of 0 dB and a maximum
variation of 1.3 dB of |S21|.
Fig. 6b completes the analysis of the analogue controlled

phase shifter showing the compression point at 1 dB (CP
1 dB) and the third order interception point (IP3) as main
FoMs to assess the linearity of the amplifier. The CP 1 dB is
considerably low (lower than −30 dBm for the worst case),
which limits the input power of the phase shifter to−30 dBm.
When using this device in reception applications, the signal
may be free from any distortion as the power of the received
signals in most of the wireless transmission protocols is
typically lower than that value. However, the current design
for the graphene phase shifter would be quite limited for
transmission applications, and power stages should be added
after it to provide enough power to the transmitted signal.
In any case, due to the likely interest of using the proposed
phase shifter as both, transmitter and receiver, a bidirec-

FIGURE 6. a) |S21| (blue squares) and φ21 (red circles) variation; and
b) compression point at 1 dB (blue squares) and third order interception
point (red circles) versus the analogue control provided by the gate bias.

tional configuration of the device is proposed in Appendix A.
In spite of this, it is worth to mention that improvements in the
performance of GFET technology are expected in the future
[50], so that this non-linear behavior should be improved.

It is also important to mention that a frequency analysis of
the proposed phase shifter has been carried out. The results
show that the phase shifter in its current form is only suitable
to work in narrowband applications. Further developments
should be implemented in order to increase the bandwidth
of the circuit, and in particular input and output wideband
matching networks should be used.

We have carried out in Table 2 a comparison among
different state-of-the-art topologies currently employed to
implement phase shifters and the one proposed in this work.
In terms of the IL, our proposal is the only one that is able to
supply some gain to the signal, thanks to the use of an ampli-
fier configuration based on the GFET. On the other hand, the
main limitations of our design are: (i) return losses (RL) are
still limited to poor values, and (ii) the range of phase shift is
not the widest, although this is to a certain point balanced by
the particular simplicity of the analogue control hardware.

With the aim of attaining a better performance in terms of
return losses, we explore the feasibility of using a balanced
configuration with a branch-line coupler. The attention paid
to the achievement of flat insertion losses and a wide range of
phase shift, may lead to a degradation of the standing-wave-
ratio (SWR) at input and output ports, thus endangering the
power generator as the reflected power could be too high.
In our particular situation, we are continuously changing
the bias of the device, and therefore operating the device in
different bias points to those for which thematching networks
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TABLE 2. Comparison among state-of-the-art phase shifter topologies.

FIGURE 7. Schematic of the balanced amplifier. Two amplifiers, A and B,
are used along with two 90◦ hybrid couplers. The schematic of the
amplifiers is shown in Fig. 2.

were originally designed. This is the reason why the analysis
of the return losses shown in Table 2 gives poor results in the
worst case. The adoption of a balanced configuration solves
this issue by using two hybrid couplers at input and output
ports, along with two amplifiers [55]. The schematic of the
circuit designed to this purpose is depicted in Fig. 7. The
hybrid coupler is characterized by its scattering parameters,
which can be ideally described as:

[S] =
−1
√
2


0 j 1 0
j 0 0 1
1 0 0 j
0 1 j 0

 (2)

So that, if all ports of the coupler are matched, the power
entering into port 1 is evenly divided between ports 2 and
3, with a 90◦ phase shift one with respect to the other. Port
number 4 is isolated, so no power would be coupled to it
[49]. With the proper analysis, the global parameters of the
network S11 and S21 can be calculated by following Eqs. (3)
and (4), respectively, where a and b subscripts denote the S-
parameters of A and B amplifiers respectively. It is of special
interest the case where both amplifiers are alike, as in this
case S11 = S22 = 0 and S21 is equal to the gain of one of the
parallel branches of the coupler (with a phase shift of 90◦).
This means that it is possible to get rid of any reflected power
at the input port, with no gain losses, at the cost of a higher
complexity of the circuit.

S11 =
e−jπ

2
(S11a − S11b) (3)

S21 =
e−j

π
2

2
(S21a + S21b) (4)

Finally, Fig. 8 compares S11 as a function of the device bias
for the single branch configuration (Fig. 2) and the alternative
balanced configuration (Fig. 7). As expected, the results show
that as both branches of the design are identical, the reflection
coefficient is strongly diminished, providing a reduction of

FIGURE 8. Comparison of the |S11| parameter (blue squares) of the
former configuration presented in Fig. 2 and of the balanced amplifier
(red circles) presented in Fig. 7.

more than 30 dB in S11. Adopting this new configuration, the
return losses are RL = 30.4 dB for the worst case, which
makes the balanced amplifier phase shifter topology compa-
rable to the rest of the technologies considered in Table 2.
Again, the use of this balanced configuration is possible
thanks to the use of an amplifier configuration based on the
GFET.

As for the phase shift range shown in Table 2, even though
our solution yields a range which is one-fourth of other state-
of-the-art devices, it does not preclude its use for numerous
applications: many antenna arrays would need no more than
10◦ shift in their pointing, for which a controllable phase shift
of 80◦ is enough.

A broader phase shift range would be easily achieved
by cascading several balanced amplifiers. As the reflection
parameter of the balanced amplifier configuration of the
phase shifter is extremely low, the cascading would be suc-
cessfully obtained and, therefore, a multi-stage phase shifter
can be readily attained. Eventually, if we cascaded four of
these balanced structures, a phase shift range of around 360◦

would be obtained, making our device fully competitive with
other ones in terms of phase shift range.

IV. CONCLUSION
This work presents a graphene-based phase shifter oper-
ating in the S-band, able to produce a phase shift on an
input RF signal while maintaining a constant gain. Quantum
capacitance tunability of graphene is leveraged in order to
achieve this phase modulation, combined with an original
design procedure. Phase shifts higher than 180◦ are possible,
as well as gains above 15 dB, due to the amplifier configura-
tion adopted with the GFET as the core element. Moreover,
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FIGURE 9. Schematic of the balanced amplifier in a bidirectional
operation. In this case, amplifier B is mirrored vertically, so that its input
is fed in port 3, and the output is extracted from port 1. The schematic of
the amplifiers employed in this design is depicted in Fig. 2.

FIGURE 10. a) |S12| and φ12 variation and b) |S22| and |S11| variation
versus VGS.

a completely analogue operation has been demonstrated
achieving a phase shift of up to 84.5◦ and keeping a max-
imum variation of 1.3 dB. The RL have been considerably
increased by using a balanced configuration based on the
amplifier topology employed. These results demonstrate the
potential of graphene technology for the future development
of improved high-frequency applications and in particular for
analogue phase shifters.

APPENDIX A
BIDIRECTIONAL OPERATION
This Appendix shows the results of employing the balanced
amplifier phase shifter simultaneously as a transmitter and
as a receiver. These calculations are of great importance,
as they may be required for its application in phased-array
techniques in reception and transmission, thus improving the
global efficiency of the system not just in one direction but
in both. This device is made by vertically mirroring amplifier
B from the topology shown in Fig. 9 so that its input is fed
in port 3 and the output is extracted from port 1. The final
schematic is shown in Fig. 9.

In the bidirectional system, S22 = S11 and S12 = S21.
As can be seen in Fig. 10a, the shape of the amplitude and
phase of the bidirectional amplifier is the same shown in
Fig. 6a, but instead of 0 dB now we have a−6 dB gain, which
is still acceptable even though it means we are lossing some
power. The phase is also shifted but the range of variation
remains identical. The reflection parameter |S22| = |S11|
shows in Fig. 10b values lower than −7 dB for the worst
case. Although this value is not optimal, it is still acceptable.
In conclusion, we have demonstrated a system able to work
as a phase shifter in both directions symetrically with a−6 dB
gain and RL = 7 dB for the worst case.
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