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ABSTRACT In real time embedded system, the embedded software often consists of a set of concurrent
tasks, and such tasks are generally subject to timing constraints. In order to satisfy all the timing constraints,
precisely predicting the WCET of a task is essential for the task scheduler to construct a feasible schedule
for a task set. Caches have been widely used to bridge the gap between high speed processors and relatively
slower off-chip memory. However, caches make it extremely harder to predict precise WCET (Worst
Case Execution Time ) of a task for the simple reason that it is difficult to predict if each cache access
is a cache hit or miss. Cache locking is a mechanism which disables the replacement policy of caches and
locks some contents (instruction or data) in the caches, such that the accesses to those contents become fully
predictable and the WCET of a task is easier to predict. Furthermore, cache locking is also an effective
technique to reduce the WCET of a task by locking appropriate contents in the caches. In this paper,
we investigate the WCET-aware I-cache (Instruction cache) locking problem and propose an ILP-based
(Integer Linear Programming) dynamic I-cache locking approach for reducing the WCET of a task. Our
approach not only select locking contents which have largest benefit for reducing WCET of a task, but
also finds a good locking point for each locked instruction such that extra execution time spend on locking
instructions is also minimized. We have implemented this approach and compared it with two state-of-the-
art I-cache locking approaches, the longest path based dynamic cache locking approach proposed in and the
min-cut based dynamic locking approach proposed in by using MRTC benchmark suite. The experimental
results show that our approach performs better for each benchmark. Compared to the longest path based
dynamic approach, our approach achieves the average improvements of 5.8%, 13.8%, 16.1% and 12.6% for
the 256B, 512B, 1KB and 2KB caches, respectively. Compared to the min-cut based dynamic approach, our
approach achieves the average improvements of 2.2%, 7.6%, 8.2% and 6.4% for the 256B, 512B, 1KB and
2KB caches, respectively.

INDEX TERMS Cache locking, real-time systems, worst-case-executing-time.

I. INTRODUCTION
Modern real-time embedded systems are often suffered from
hard timing constrains. Therefore, the WCET of each task
needs to be predicted firstly such that a feasible schedule
of the tasks which satisfies all the timing constrains can be
constructed. However, with the utilization of caches, it is
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significantly harder to predict precise WCET of a task
because of the unpredictability of memory access latency.
Since caches are automatically managed by the hardware,
it is difficult to know at compile time whether the contents
needed to be accessed is in the cache (hit) or not (miss),
and a cache hit and a cache miss obviously have different
access latencies. Cache locking is an effective way to improve
cache predictability. When a content is locked into a cache,
it will not be evicted until it gets unlocked. Each access

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 208003

https://orcid.org/0000-0003-0474-6611
https://orcid.org/0000-0002-5711-8638
https://orcid.org/0000-0003-1494-1138


T. Zhang et al.: Dynamic Instruction Cache Locking Approach for Minimizing Worst Case Execution Time of a Single Task

to this locked content will be a cache hit and generally
takes one clock cycle. Obviously, for a fully locked cache,
accesses to those unlocked contents will be always cache
misses. As a result, the WCET of a task is much easier to be
predicted. For real-time embedded systems, tasks running on
them are stationary, barely change after compiled and burned.
Therefore, the process of cache locking can be done in the
compiler. Most modern embedded systems support hardware
level cache locking, including line locking and set locking.

Typically, there are two cache locking strategies described
as follows, static cache locking and dynamic cache locking.
Static Cache Locking : This strategy does not analyse the

life ranges of the locked contents and simply assumes that
all the locked contents share the same life range which spans
the entire execution time of the task. Thus, the static locking
strategy selects locked contents only once, and the locked
contents will not be replaced during the entire execution of
the task.
Dynamic Cache Locking : This strategy considers the life

ranges of the locked contents which means locked contents
can be replaced after their life ranges expires. As a result,
different locked contents can be stored in a cache as long
as their life ranges do not overlap, leading to more efficient
utilization of cache space than static strategy.

Furthermore, cache locking technique can also reduce the
WCETof a task by selecting appropriate contents to be locked
into the caches. Therefore, the main objective of WCET-
aware static cache locking approaches is to select a set of
locked contents according to the limitation of the cache space
such that the WCET of a task can be minimized. For WCET-
aware dynamic cache locking approaches, there is an addi-
tional task which is the determination of locking points for
locked contents according to their life ranges. A selected
cache content is loaded and locked into the cache at its locking
point.

In this paper, we investigate the WCET-aware dynamic
I-cache locking for a single task. Given a task, our objective
is to select a set of memory blocks of the code of the task
as locked cache contents and determine the locking point of
each locked memory block such that the WCET of a task
is minimized meanwhile the utilization of cache space is
maximized. We make the following major contributions.
• We propose an ILP-based dynamic I-cache locking
approach which constructs a unified model for the prob-
lems of both locking contents selection and locking
points determination. Software Lingo is employed to
obtains optimal solution of this ILP model.

• We have implemented our dynamic instruction lock-
ing approach and compared it to two state-of-the-art
approaches, namely the longest path based dynamic
instruction cache locking approach proposed in [24]
and min-cut based dynamic instruction cache locking
approach proposed in [17], by using a set of benchmarks
from the MRTC benchmark suite. The experimental
result show that compared to the longest path based
dynamic approach, our approach achieves the average

improvements of 5.8%, 13.8%, 16.1% and 12.6% for
the 256B, 512B, 1KB and 2KB caches, respectively.
Compared to the min-cut based dynamic approach, our
approach achieves the average improvements of 2.2%,
7.6%, 8.2% and 6.4% for the 256B, 512B, 1KB and 2KB
caches, respectively.

The rest of this article is organized as follows. Section II
gives a brief survey of related work. Section III describes the
systemmodel and major definitions. Section IV describes the
details of our approach. Section V shows the experimental
results and section VI concludes the paper.

II. RELATED WORK
Many cache locking approaches have been proposed to
reduce the WCET of tasks or improve the schedulability of
embedded systems. We summarized the previous work from
the following perspectives.

A. STATIC CACHE LOCKING
Anand and Barua [1] propose an approach for instruction-
cache locking that is able to reduce the average-case run-time
of the program. They use a cost-benefit model to determine
contents to lock, and iteratively lock the memory block with
most benefit into the cache, until the cache is full or the
benefit of the memory block with the most benefit is neg-
ative. Liang and Mitra [2] introduce temporal reuse profile
to accurately and efficiently model the cost and benefit of
locking memory blocks in the cache. Ding et al. [3] observe
that such aggressive locking mechanisms may have negative
impact on the overall WCET as some memory blocks with
predictable access behavior get excluded from the cache.
They introduce a partial cache lockingmechanism that has the
flexibility to lock only a fraction of the cache. They propose
an algorithm to select memory blocks to lock by evaluating
the impact of locking. They developed an ILP based algo-
rithm to select lock contents. The WCET of a loop is repre-
sent by the memory blocks’ time consumption multiply the
iteration time. Campoy et al. [16] compare the performance
of two algorithms for static locking of instruction caches: one
using agenetic algorithm for cache contents selection [15]
and a pragmatical algorithm, called her-after reference-based
algorithm proposed in [4], which uses the string of memory
references issued by a task on its worst-case execution path
as an input of the cache contents selection algorithm. The
genetic algorithm behaves slightly better than the reference-
based algorithm with respect to the average slack of tasks but
has more execution time spent. Liu et al. pointed out in [26]
that it is NP difficult to reduce the average case executing
time of the system through static cache locking. Adegbija and
Gordon-Ross [18] present a phase-based locking technique
for data caches. Their technique divides the execution into
intervals and groups the intervals with similar characteristics
into phases showing data reuse. At least 50% of cache lines
are always kept unlocked to avoid extra misses for unlocked
data. They show that their technique leads to significant
reduction in miss rate and energy saving. They extended their
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work in [12] and proposed a new cache locking method to
achieve energy saving with minimal performance loss. The
method can be used for both instruction and data cache. The
selection, loading and retaining are dynamically executed at
runtime. According to the experiments, their method has a
good effect in reducing the energy consumption of data cache.
Puaut and Decotigny [4] explore the use of static cache lock-
ing of instruction caches in multitasking real-time systems,
addressing both intra-task and inter-task interferences and
leading better performance. Dugo et al. proposed a method
in [10]to mitigate interferences that occur in thememory hier-
archy levels. Considering that predictability is a key concept
of ARINC-653-compliant systems, their approach uses static
cache locking. Two locking content selection approaches are
proposed. An average improvement of 27.93% is demon-
strated in their experiment.

B. DYNAMIC CACHE LOCKING
Dynamic locking has its own advantages since it shows better
performance and flexibility than static locking in most cases,
pointed out by Campoy et al. in [19]. Qiu et al. [5] presents an
approach, Branch Prediction-directed Dynamic Cache Lock-
ing (BPDCL), to improve system performance through cache
conflict miss reduction. Ding et al. [6] propose a flexible
loop-based dynamic cache locking approach. They not only
select the memory blocks to be locked but also the lock-
ing points. Isabelle Puaut present an dynamic cache locking
approach in [24]. The code of each task is divided into regions
and every region has its corresponding cache contents. They
use greedy algorithm and genetic algorithm to select the
reload point of contents to be locked. At runtime, at region-
transition boundaries, statically computed cache contents are
loaded into the cache and then the cache is locked. Their
experiments show that the worst-case performance of locking
contents is comparable with that of unlocked contents. Also,
the greedy algorithm can find acceptable solutions quickly,
while genetic algorithm is much slower when the initial
population is randomly chosen. Zheng and Wu elaborate a
min-cut based dynamic cache locking approach in [7]. They
point out that the longest pathmay change after some contents
on the longest path are locked into the cache. Thus, it is not
effective to iteratively select contents on the longest path as
locked cache contents. Their min-cut based approach select a
minimal cut of the control flow graph of a task, such that the
longest path and other potential longest pathes are reduced
simultaneously. Zheng et al. [17] propose two algorithms to
find appropriate locking point for selected memory blocks.
The ILP algorithm achieves optimal solution and the heuristic
algorithm obtains approximate optimal solution faster.

C. INSTRUCTION AND DATA CACHE LOCKING
Most of the cache locking approaches [1], [2], [5]–[7], [15],
[17] focus on instruction cache locking. And for data cache
locking, Vera et al. [8] propose an approach for data cache
analyzing and locking. Due to the complex situation brought
by indirect array accesses (X[Y[j]]) and dynamic memory

allocations, the locking procedure cannot be easily deter-
mined, even the corresponding memory blocks are locked
into cache, misses still happen at run time. They introduce
a method that combines static cache analysis and cache lock-
ing in order to achieve both predictability and good perfor-
mance. Furthermore, it allows computing a WCMP(Worst
Case Memory Performance) estimate of tasks in a fast and
tight way. Xue et al. [13] pointed out that the conventional
instruction cache locking approach has little effect on data
cache. They proposed a data re-allocation approach to mini-
mize the memory block interference frequency by reorganiz-
ing data objects in the memory. Data interference graph and
memory block interference graph are used to perform data re-
allocation and data cache locking. The experimental results
show that the miss rate and energy savings are obtained
by a set of benchmarks. Wan et al. [14] propose a novel
data cache locking approach. SPM(Scratch Pad Memory)
is used as cache so they don’t need to consider the mem-
ory mapping problem. They use k-longest-path instead of
longest-path to select memory blocks to be locked, making
better locking decisions. Zheng and Wu propose two full
cache-locking approaches to the D-cache locking problem
in [22]. An effective technique for reducing the number of
false dependencies between variables is propose and better
D-cache utilization is observed. They are the first ones on the
WCET-aware dynamic D-cache locking problem considering
the live ranges of variables. In addition, there have been some
researches on L2 cache locking. Since L2 is usually larger
than L1 and shared by multiple cores, function-level contents
can be locked and significant improvement can be achieved.
Asaduzzaman et al. [21] present a cache locking technique for
L2 cache. Blocks with the most miss rate in cache are locked
in cache in turn. Their experiments show that for the tasks
that working set fits in L1 cache, locking provides nearly no
benefit. For those tasks with significant L2 accesses, large
energy saving and performance improvement are observed.

III. SYSTEM MODEL AND DEFINITIONS
We investigate theWCET-aware dynamic I-cache locking for
a single task. A typical processor models of an embedded
system is shown in Fig.1. The target processor is consisted
of I-cache and D-cache (data cache). In this paper, we focus
on I-cache locking problem only. The I-cache is an n-way set
associative cache withm sets. Every set has a set number from
0 tom−1, and all sets have the same size. Every instruction is
mapped into a certain set determined by its memory address.
The locking unit of our approach is a cache line.

Given a task, we firstly construct CFG (Control Flow
Graph) of the task. The definition of CFG is shown in
Definition 1.
Definition 1 (Control Flow Graph): The CFG is a classical

structure for representing the code of a task, which can be
formatted as D =< N ,T ,E >, where N = {ni: ni represents
a basic block}, T = {ti: ti is the execution time of basic block
ni} and E = {(ni, nj): a control flow from ni to nj }.
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FIGURE 1. System model.

In a CFG, each node denotes a basic block which is a
sequence of code that has only one entry and only one exit.
Typically, the CFG contains two types of edges: forward
edges and back edges. For ease of constructing ILP model,
we construct a DAG (Directed Acyclic Graph) by removing
all the back edges of the CFG and multiply the weight of each
basic block by its maximum iteration times. The definition of
a DAG of a task is shown in Definition 2.
Definition 2 (Directed Acyclic Graph): Given a CFG

of a task, the DAG of the task is a weighted graph
G =< N ,W ,E >, where N = {ni: ni represents a basic
block}, W = {wi: wi is the maximum iteration times of ni
multiply the execution time of ni without using cache} and
E = {(ni, nj): an edge from ni to nj }.
Since the locking unit is a cache line, we split each basic

blocks into one or more memory blocks such that each mem-
ory block is mapped to exactly one cache line. Given a DAG
of a task, we transform it into a memory block graph (MBG)
defined in Definition 3.
Definition 3 (Memory Block Graph): Given a DAG of a

task, its memory block graph is a weighted directed acyclic
graph G′ =< M ,W ′,E ′ > where M = {mij : mij denotes the
j− th memory block of the basic block ni in the DAG of the
task}, W ′ = {w′ij : w

′
ij is the total execution time of memory

block mijwithout using cache} and E ′ represents the set of
edges between memory blocks.

Given a DAG, the MBG can be constructed by the follow-
ing steps.

1) For each node ni of the DAG G of a task, create new
nodes mij(j=1,2,...,k) in MBG G′. k is the total number
of cache lines that need to lock the instructions of the
basic block ni.

2) For each pair of nodes mij and mij+1(j=1,2,...,k−1) in G
′,

create an edge from mij to mij+1 in G
′.

3) For each edge (ni, nj) in DAG G, construct an edge
(mik ,mj1 ) in MBG G′.

Fig.2 shows a simple example of the MBG from the CFG.
For the process of generating MBG (Memory Block

Graph), the time complexity is O(n+ e) where n denotes the
number of memory blocks and e denotes the number of edges
in DAG.

Given an MBG of a task, the memory blocks of MBG can
be regarded as locking candidates. When a memory block of
MBG is locked into cache, accesses to this memory block
would be a cache hit, and each fetching costs one clock cycle.

FIGURE 2. Constructing DAG and MBG.

Otherwise, a cache miss occurs and each fetching costs c
clock cycles. Obviously, locking a memory block which exe-
cutes only once provides no benefit for reducing the WCET
of a task. Thus, we only consider the memory blocks within
a certain loop nest as locking candidates.

The objective of our approach is to not only select memory
blocks as locked cache contents but also determine a good
locking point for each selected memory blocks such that the
WCET of a task is minimized. In this paper, we define that
the life range of a particular memory block is the life range of
the loop it belongs to. Different memory blocks can share the
same cache space as long as their life ranges do not overlap.
For a single loop, the locking point of a selected memory
block is placed at the preheader of the loop which it belongs
to. However, for a loop nest, the memory blocks of inner loop
have different choices of locking points. Suchmemory blocks
can be locked at the preheader of its own loop or the preheader
of outer loops. Locking at the preheader of outer loops has
benefit for reducing the WCET of a task because the iter-
ation times of locking selected memory blocks are reduced
and leads to less time cost on loading and locking selected
memory blocks. However, if a memory block is locked at
the preheader of its outer loop, its life range is extended to
span the entire outer loop and cause more overlaps. Thus,
the utilization of cache space is reduced and less memory
blocks can be locked, which brings increase of WCET.

Two simple examples are shown in Fig.3 and Fig.4 to
illustrate the affect of different locking points choices. Given
a loop nest, we assume that there are only fourmemory blocks
and the cache size is extremely small which can store only
one memory block. loop2 and loop3 are direct inner loop of
loop1, and we use I to denote the iteration time of loop1. For
memory block m1, it can be locked at the preheader of loop2
or loop1. The examples compare these two cases.
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FIGURE 3. Locking at inner preheader.

FIGURE 4. Locking at outer preheader.

• Case 1; If m1 is locked at the preheader of loop2 as
shown in Fig.3, it can be unlocked when its life range
expires. Thus, m3 also can be locked into the cache
because the life ranges of m1 and m3 do not overlap.
However, m1 and m3 need to be locked I times because
such actions occurs in loop1. For Case1, more memory
blocks can be locked into the cache, but more time cost
on locking selected memory blocks.

• Case 2; If m1 is locked at the preheader of loop1 as
shown in Fig.4,m1 is locked only once. However, the life
range ofm1 extend to the life range of loop1. As a result,
the life ranges of m1 and m3 overlap and cannot share
the same space of the cache. For Case2, fewer memory
blocks can be locked into the cache, and less time cost
on locking selected memory blocks.

In order to analyse the life ranges of memory blocks and
record the usage of cache space, we define the Loop Nested
Tree (LNT) of a loop nest in Definition 4.

FIGURE 5. A memory block graph.

Definition 4 (Loop Nested Tree): For each loop nest of a
task, its Loop Nested Tree is weighted tree T =< L, S,R >

where L = {li: li denotes a loop in the loop nest of the task},
S = {Si: Si is the weight of li } and R = {(li, lj): lj is
immediately nested in li}.

Specifically, the weight Si of a loop li in loop nest is an
m-th tuple formed as [si0 , si1 , . . . , sim−1 ], wherem is the num-
ber of sets of the cache. Each element sij of Si denotes the
number memory blocks that are locked at the preheader of li
and stored in the set j of the cache.

For generating LNT (Loop Nested Tree), we first traverse
all the loops of a task to construct a tree structure, and
then traverse all the memory blocks of MBG to determine
the weight of each node of the constructed tree. Thus, then
complexity is O(n+I ) of time complexity where n denotes the
number of memory blocks in MBG and I denotes the number
of loops in a task.

Fig.5 to Fig.6 show an example of a loop nested tree.
Consider an MBG in Fig.5, there are 12 memory blocks.
Notice that, the MBG is a directed acyclic graph and has
no back edges. The gray arrows in Fig.5 are just used to
illustrate which loop is the memory blocks belong to. The
loops are labeled from loop1 to loop5 respectively. For ease
of descriptions, we make the following assumptions:
• The I-cache considered in this example has only 2 sets
and each set contains 2 cache lines.

• loop2 and loop3 are the inner loops of loop1.
• loop4 and loop5 are the inner loops of loop2.
• Each memory block is mapped to exactly one cache line
and the memory blocks with the same color means they
are mapped to the same cache set.

Take the locking decisions shown in the charts near the
nodes of the LNT in Fig.6 for example where each column
of the chart represents a cache set and each row represents
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FIGURE 6. The loop nested tree.

a cache line. As can be seen from the figure, the weight of
node loop2 of the LNT is [1, 1] which means 1 memory block
is locked into set0 of the I-cache at the preheader of loop2
and 1 memory block is locked into set1 of the I-cache at the
preheader of loop2. Since the life ranges of loop4 and loop5
do not overlap, m4, m5 in loop4 and m7, m8 in loop5 can
share the same space of the I-cache. Thus, the weight of loop4
and loop5 are both [1, 1]. By using loop nested tree, we can
calculate the total number of cache lines needed to store the
locked memory blocks for each set of the I-cache.

To achieve the dynamic cache locking, we insert a
call_lock instruction at the preheader of each loop for load-
ing and locking selected memory blocks of corresponding
loops. After the life range of a loop ends, the locked memory
blocks of this loop can be unlocked and the cache lines
storing these memory blocks are able to reuse. In order
not to disrupt the memory address mapping of the instruc-
tions, the call_lock instruction is designed as a procedure-
call instruction which calls the corresponding loading and
locking procedures placed at the end of the code of the task.
For each loop, if there are memory blocks to be locked,
we insert a single call_lock instruction at its preheader, oth-
erwise, we insert a nop instruction. For loading and locking
procedures, the original cache management policy is disabled
andwe introduce a special instruction lock .When a cache line
is already locked, lock instruction replaces the old content
with the new one. Thus, no unlock instruction is needed.
Given a task, our approach is performed to determine the

locked cache contents of the task before running it. We first
use static analysis tool, named Chronos [28], to analyze the
code of a task and construct corresponding CFG. Then, our
cache locking approach can be performed to determine locked
cache contents of the task.

IV. OUR APPROACH
In this section, we describe our ILP-based dynamic I-cache
locking approach. The objective of our approach is to select a
set of memory blocks as locked cache contents and determine

locking point for each selected memory block such that the
WCET of a single task is minimized. The details are shown
as follows.

Our approach selects the appropriate content lock for a
task to minimize the WCET, and the framework is listed as
follows:
• Get the CFG and the number of cycles of the basic blocks
by using Chronos [28];

• Generate the DAG from the CFG by removing the back
edges and modifying the weight of the nodes. Then,
generate the MBG from the DAG by decomposing the
nodes of the DAG into serval memory blocks;

• Generate the loop nodes by analysing the back edges of
the CFG and the number of cycles of the basic blocks.
Then, construct the LNT with the loop nodes.

• Construct the ILP model. Construct the set capacity
constraints by summing the weight of the loop nodes
of the LNT by layer. Construct the execution time con-
straints by summing the weight of the memory blocks
of the MBG by layer. Set minimizing the WCET as the
objective function.

• Get the locking decision of each memory block by solv-
ing the ILP model;

• Calculate the WCET of the task.
To facilitate descriptions, we introduce the following nota-

tions in Table-1.

TABLE 1. Notations.

A. ILP MODELLING
Give an MBG of a task, our approach only consider the
memory blocks within a certain loop as locked candidates for
the simple reason that a memory block which is not in any
loop executes only once and has no benefit to be locked.

As we mentioned in Section III, we insert a call_lock
instruction at each preheader of a loop. Thus, a memory block
of a loop nest can be locked at the preheader of its own
loop or the preheader of outer loops of the loop nest. There-
fore, for each memory block mi in a loop nest, we design a
k-th tuple Xi = [xi,1, xi,2, . . . , xi,k ] to determine the locking
state and locking point of the memory block mi. We create
a set Ki which stores all the potential locking points of
mi, and k = |Ki| is the number of the potential locking
points of memory block mi. Consider the example shown
in Fig.3,m3 can be locked at preheader3 or preheader1. Thus
K3 = {perheader3, perheader1}.
Each element xi,j of Xi is a binary decision variable to

determine whether memory block mi is locked at preheader
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pj or not. xi,j is formulated as follow.

xi,j =

{
1, if mi is decided to be locked at pj
0, otherwise

(1)

1) MEMORY BLOCK LOCKING STATE CONSTRAINTS
For a candidate memory block in loops, it can either be locked
at only one preheader or not be locked at any preheader.
Therefore, the k-th tuple Xi = [xi,1, xi,2, . . . , xi,k ] of a mem-
ory block mi has the following constraints.

k∑
j=1

xi,j ≤ 1 (2)

2) SET CAPACITY CONSTRAINTS
The cache considered in this paper is an n-way set associative
cache with m sets. The locking decisions of memory blocks
in different sets are independent of each other. Therefore,
we consider the capacity of different sets separately.

Given a loop nested tree Tq, for each loop lj in Tq, we create
a set NLyj = {mi : memory block mi is mapped to set y of the
cache and the potential locking point set Ki of mi contains
preheader pj of loop lj }. The weight Sj = [sj0 , sj1 , . . . , sjm−1 ]
of each loop lj in Tq is calculated as follows:

sjy =
∑

mq∈NL
y
j

xq,j(y = 0, 1, . . . ,m− 1) (3)

For each loop nested tree Tq of the task, we construct
the following constraints considering each set y (y = 0, 1,
. . . ,m− 1) of the I-cache separately.
• If a loop Lj is a leaf node in the Tq:

Cy
j = sjy (4)

• Otherwise, we have the following constraints:

Cy
j = sjy +max{Cy

g : lg is a child of lj in Tq} (5)

For the root node lroot of the Tq, C
y
root denotes the entire

number of cache lines of set y of the I-cache needed to store
the locked memory blocks of Ti. Thus, there is an additional
constraint for the root node lroot of Tq as follow.

Cy
root ≤

Scache
lcache ∗ m

(6)

Actually, Scache
lcache∗m

is the associativity of the I-cache.
The time complexity of generating set capacity constraints

is O(n+ e) where n denotes the number of nodes in LNT and
e denotes the number of connections between nodes.

3) EXECUTION TIME CONSTRAINTS
Given the constructed memory block graph G′ of a task,
the weight w′i of memory block mi of G′ is the total execution
time of mi without using the I-cache. If mi is a memory
block which does not belong to any loops, its wight remains
w′i, which is a constant. Otherwise, we create the following

FIGURE 7. Construction of execution time constraints.

constraint to calculate the execution timeEXi of eachmemory
block mi.

EXi = w′i −
k∑
j=1

xi,j ∗ (w′i − w
′
ilock ) (7)

w′ilock is the total execution time of the memory block mi
when it is locked into the I-cache. If mi is locked into the
I-cache,

∑k
j=1 xi,j = 1, and its execution time is reduced to

w′ilock . Otherwise, EXi remains w′i.
In the memory block graphG′, There is only one start node

mstart and may be multiple end nodes. For the convenience of
the calculation, we add a dummy end node mend and directed
edges from previous end nodes to mend . The weight of mend
is 0. Based on the memory block graph G′, we model the
WCET of the task as follows.
• We define a variable LPi as the longest path length from
mstart to mi. Obviously, LPstart = EX ′start .

• For each memory block mi, we construct constraints as
follow:

LPi = EXi +max{LPj : mj is a parent of mi} (8)
Fig.7 shows an example of construction of execution time

constraints. Firstly, execution time of each memory block is
calculated by (8) denoted by EXi. Then, we model the longest
path length of the given memory block graph from start node
m1 to end node mend . Finally, LPend represents the longest
path length of the memory block graph.

The time complexity of generating execution time con-
straints is O(n + e) where n denotes the number of nodes in
MBG and e denotes the number of edges.

4) OBJECTIVE FUNCTION
We top-down construct a set of execution time constraints to
model the longest path length ofG′ which denotes theWCET
of the task. Thus, LPend of the end node of G′ represents
the WCET of the task. Loading and locking a memory block
into the I-cache will cause extra time cost. We create a set
B to store all the locking candidates of memory blocks. The
objective of our approach is to minimize the WCET of a task.
Thus, we have the following objective function.

min LPend +
∑
mi∈B

k∑
j=1

(xi,j ∗ Ij ∗ c) (9)
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TABLE 2. Benchmarks.

The second term of (9) denotes the time cost on loading and
locking all the selected memory blocks, where Ij is the total
number of iterations of preheader Pj and c is the time cost by
loading and locking one memory block into the I-cache.

The time complexity of solving ILP can’t be calculated
directly. The typical ILP solve method, named Interior Point
Method, has the complexity of O(n4 ∗ L) where n is the
number of variables and L is the number of constraints.

V. EXPERIMENTS AND RESULTS
We have implemented our approaches and compared them
with the longest path based dynamic instruction cache
locking approach proposed in [24] and the min-cut based
dynamic cache-locking approach proposed in [17]. We use
Chronos [28] to estimate theWCET of each task shown in the
table [27] by using compared approaches and our approach.

A. SETUP AND PREPROCESS
The benchmarks are taken from the MRTC benchmark
suite [27]. Each benchmark is source code written in C lan-
guage. All the benchmarks are consisted of basic program-
ming structures including branching and iterations, don’t
include third party libraries. For example, the benchmark
bs is the implementation of binary search among 15 integer
elements. The detailed descriptions are included in Table-2.

We use four different type of cache sizes 256B, 512B,
1KB and 2KB; two different associativities 2 and 4; two
different cache line size 32B and 64B. Although the CPU
of modern embedded systems usually contains bigger cache
sizes, we use relatively smaller cache size to reflect the effect
of our approach because of the small size of the benchmarks.

By using cache locking algorithm, the worst case execution
time (WCET) of a task will be reduced. Chronos provide the
number of clock cycles of WCET of each task. Comparing
with other approaches, our approach achieves more WCET
reduction. For each task in the benchmark suit, the improve-
ment is calculated by the equation in (10).

Improvement =
W ′ −W
W ′

(10)

W is the WCET of a task by using our approach,
and W ′ denotes the WCET of a task by using another

approach. Notice that, in our experiments, WCET is repre-
sented by the number of clock cycles.

We make some processes to the benchmarks before the
experiments. First, because there are too few memory blocks
in loops in the tasks of the benchmarks, we add an outer
loop to all benchmarks, which contains the whole benchmark,
and set the number of iterations of the outer loop to 10. This
operation increases the number of memory blocks that can be
locked to simulate tasks with more complex structures. Then,
we use static analysis tool, named Chronos [28], to analyze
the code of a task and construct corresponding CFG. Chronos
divides the task into several independent basic blocks and
compiles the code in each basic block into fixed length
assembly instructions. Chronos also estimates the number of
cycle times of each basic blocks. The loop information can
be obtained by analyzing the cycle times and reverse edges
of the CFG. The fixed length assembly instructions are used
to generate the memory block graph.

After thememory block graph and loop nested tree are gen-
erated, we construct the ILP model described in IV. We use
Lingo global solver as the ILP solver and run the programs
for preforming all experiments on an Intel i7-6700 CPU with
3.4GHz and 16GB memory. The maximum running time of
our approach is 17.54 seconds for the benchmark nsichneu,
which has largest code size. Notice that most of the running
time is spend on constructing constraints of the ILP model,
such as generating and traversing the MBG. Solving the
ILP model takes up approximately 20% of the total running
time. Finally, the locked cache contents can be determined by
solving ILPmodel and Chronos is used to estimate theWCET
of the benchmark after locking the selected cache contents.
All experimental results are shown fromFig.8 through Fig.11,
where each horizontal axis denotes benchmarks and each
vertical axis shows the improvements of our approach.

B. OUR APPROACH VERSUS OTHER DYNAMIC CACHE
LOCKING APPROACHES
Compared to the longest path based approach, the experi-
mental results show that our approach achieves the average
improvements of 6.2%, 13.9%, 16.5% and 12.9% for the
256B, 512B, 1KB and 2KB 2-way set-associative caches with
a cache line size of 32B, respectively. For the 256B, 512B,
1KB and 2KB 4-way set-associative caches with a cache line
size of 32B, the average improvements are 6.6%, 14.9%,
17.2% and 13.4% respectively. For the 256B, 512B, 1KB
and 2KB 2-way set-associative caches with a cache line size
of 64B, the average improvements are 5.1%, 12.7%, 14.7%
and 11.9% respectively.

The longest path based approach [24] divides the task into
serval regions. Then, for each region, the approach iteratively
selects locking contents with biggest benefit in the longest
path of the control flow graph, locks the content to the nearest
loop lock point until all locked content has a negative locking
benefit or the cache is full. The locking instructions are placed
outside of the outermost loop of the region. Because the life
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TABLE 3. WCET improvements of our approach versus longest path based approach (%).

TABLE 4. WCET improvements of our approach versus min-cut based approach (%).

ranges of the regions do not overlap, the cache space can be
reused.

The min-cut based approach [17] reduces the WCET of
the task by locking the content in the min cut point set of
the control flow graph. For a non-nested loop, the approach
iteratively find the memory blocks that located on the min cut
points and lock them outside of the loop sequentially, until
the benefit brought by locking is negative or the cache is full.
For a nested loop, the approach first selects a set of memory
blocks as the locking candidates using min cut algorithm.
Then, the approach selects the best locking points for each
candidate.

Compared to the min-cut based approach, the experimental
results show that our approach achieves the average improve-
ments of 2.4%, 7.5%, 8.7% and 6.4% for the 256B, 512B,
1KB and 2KB 2-way set-associative caches with a cache
line size of 32B, respectively. For the 256B, 512B, 1KB
and 2KB 4-way set-associative caches with a cache line size
of 32B, the average improvements are 2.5%, 8.6%, 9.3%
and 7.6% respectively. For the 256B, 512B, 1KB and 2KB
2-way set-associative caches with a cache line size of 64B,

the average improvements are 1.9%, 6.5%, 7.1% and 5.6%
respectively.

The approach in [17] and [24] both select the locking
content first, and select the locking point for each determined
locking content. In this case, when a locked content is locked,
the longest path of the task could no longer be the most
valuable choose, which making the overall locking decision
can not reach the optimal. As for our approach, for each
lockable memory block, it considers if the memory block is
worthy to be locked and where to be locked concurrently,
resulting in more efficient lock decisions and higher cache
utilization.

Our approach has different WCET improvement under
different setups. In terms of cache capacity, our approach
achieves less improvements when the cache capacity is rel-
atively small such as 256B. The main reason is that, only
several memory blocks can be selected as locked contents
and these three approaches provide similar locking strategies.
When the cache size increases, the improvements of our
approach increase compared with the other two approaches
for the simple reason that more memory blocks can be locked
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FIGURE 8. WCET improvements of our approach (2-way set associative
caches with 32B cache lines).

and our approach provides a better solution of the selection
of the locked contents. Besides, our approach also provides
the most appropriate determination of the locking points
for selected memory blocks, leading to further reduction of

FIGURE 9. WCET improvements of our approach (2-way set associative
caches with 64B cache lines).

the WCET. However, when cache space continues growing,
the improvement of our approach tends to dwindle. This is
because most of the memory blocks which are valuable for
locking have been chosen and continue to lock new memory
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FIGURE 10. WCET improvements of our approach (4-way set associative
caches with 32B cache lines).

blocks brings nearly no reduction the WCET. Still, our
approach have improvement compared with the other two
approaches because the locking point decisions are always
better.

FIGURE 11. WCET improvements of our approach (4-way set associative
caches with 64B cache lines).

For caches with fixed cache size and set associativities,
caches with 32B line size performs slightly better than the
caches with 64B line size. Since the locking unit of these three
approaches is a cache line, smaller cache line sizemeansmore
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locked candidates, Our approach can achieve a better selec-
tion of locked candidates. However, more memory blocks
also means more variables in ILP model, leading higher time
cost on solving the ILP model.

With the fixed cache size and cache line size, 4-way set
associative caches performs slightly better than 2-way set
associative cache. For the caches with the same line size
and total size, associativity increase means the number of
sets reduce. A smaller number of sets can avoid the situation
like one set is short of space while the other set is not full.

Compared with the other two approaches, our approach
performs much better for the benchmarks which contain
deeply nested loops or complex branches, such as crc, expint
and ud . The longest path based approach do not optimize
the selection of the locking points, leading to more time cost
on loading and locking selected memory blocks. Especially
for the benchmarks with deeply nested loop, the longest path
based approach shows the worst performance. The min-cut
based approach iteratively selects a minimum set of cut of
the CFG as locked contents, so it cannot efficiently handle
the benchmarks with complex branches.

For benchmark nsichneu, our approach has basically no
improvement compared with the other two approaches. From
the source file and generated CFG of this task, we can see
that this task has only one cycle, and the structures in the loop
are basically sequential structure and single branch structure.
Because there is only one cycle, the locking points selected
by the three approaches are the same, and there are only
some differences in the selection of memory block to be
locked, which leads to a slight difference in the final results of
the three approaches. For benchmark matmult , our approach
obtained slight improvement compared with min-cut based
approach. This is because the task has a simple nested loop
structure, and there are no branches in the loop. When the
cache size is small, the locking contents selected by the two
approaches are the same, that is, the memory blocks in the
innermost loop. With the increase of cache size, our approach
can select the memory blocks which can bring the largest
WCET improvement, while locking the cut point selected
by min-cut based approach may not bring the maximum
WCET improvement. However, the min-cut based approach
can select the most appropriate locking point of the memory
blocks by the ILP algorithm, so our approach has limited
improvement.

No promotion in some benchmarks compared with other
approaches does not mean that our algorithm has limitations.
In the real-time embedded system or mobile edge comput-
ing server, the tasks often have complex nested loops and
branches,and our approach will perform better.

VI. CONCLUSION
In this article, we investigate the problem of selecting instruc-
tions of a task as locked cache contents to minimize the
WCET of the task and propose an ILP-based dynamic cache
locking approach. For each memory block, our approach
considers if the memory block is worthy to be locked and

where to be locked concurrently, resulting in more effi-
cient lock decisions and higher cache utilization. The exper-
imental result show that compared with the longest path
based dynamic approach, our approach achieves the aver-
age improvements of 5.8%, 13.8%, 16.1% and 12.6% for
the 256B, 512B, 1KB and 2KB caches, respectively. Com-
pared to the min-cut based dynamic approach, our approach
achieves the average improvements of 2.2%, 7.6%, 8.2% and
6.4% for the 256B, 512B, 1KB and 2KB caches, respectively.

A typical embedded system generally consists of a set of
tasks. Our cache locking approach can be easily applied to
multi-task embedded systems if no timing constraints exist.
Timing constrains means that each task has its own release
time and deadline and a task must execute after release time
and finish before deadline. For a set of tasks without timing
constraints, we first select locked cache contents of each
single task by using our cache locking approach, such that
the WCET of each task is minimized. Then, all the tasks are
sequentially executed. Finally, the total worst-case execution
time of the multi-task system is minimized. Unfortunately,
tasks are often subject to timing constraints, and a feasible
schedule is needed to be constructed for satisfying all the
timing constraints. Our cache locking approach cannot easily
extend to multi-task embedded systems.

In the future, we will investigate the problem of integrating
task scheduling and cache locking for multiprocessor-based
embedded systems with two levels of caches. This problem
is more challenging. For WCET calculation of a task, a basic
requirement is to know how much cache space is assigned
to the task for locking its selected contents. The cache space
assignment problem needs to consider the lifetimes of tasks.
Given a schedule, the lifetime of a task is an interval where
the start point is the start time of the task and the end point
is the finish time of the task in the schedule. For any two
tasks, if their lifetimes overlap, they are executed in parallel
and cannot share the same space in caches. Otherwise, they
can share any space in caches. In order to improve the uni-
tization of the cache space, a good cache space assignment
approach is needed to determine the size of cache space
assigned to each task. For two tasks with non-overlapping
lifetimes, named t1 and t2, the cache space assigned to t1
can be re-assigned to t2 when the lifetime of t1 expire. After
determining the size of cache space assigned to each task,
the WCET of the tasks can be calculated. Finally, a feasible
schedule can be constructed.
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