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ABSTRACT The number of computers that provide information services via the Internet is constantly
increasing, particularly for IoT applications. Compared to the servers in managed data centers, IoT com-
puters have an increased risk of contamination from unidentified computers. It is therefore important for
applications that utilize IoT to identify the appropriate computers to use. However, it is difficult to assign
digital identifiers with adequate protection to a huge number of IoT computers. In this work, we have devised
a method to extract computer-specific features from the characteristics of the CPU core temperature and
the drift of the time information. This feature data can be treated as computer-specific information, just
like human biometric information. We performed experiments on two types of computer (three of each)
with the same software settings and obtained a regression linear equation for each that represents the time
deviation per temperature. The correlation coefficients of these equations were greater than 0.9 for all, and
a strong positive correlation was obtained. From the equation and the temperature values, we found that it is
possible to estimate the computer-specific time deviation. Our method does not require the implementation
of a special temperature sensor. Therefore, it shows good potential for future applications.

INDEX TERMS Clocks, computer network management, Internet of Things, network service, parameter
extraction, system identification, time measurement.

I. INTRODUCTION
The growing prevalence of the Internet of Things (IoT) has
led to a dramatic increase in the number of computers con-
nected to the Internet, which is predicted to exceed 50 billion
in 2020 [1] and increase to 125 billion by 2030 [2]. IoT com-
puters are a key infrastructure for running Industry 4.0 and
Smart City applications [3]–[5]. However, since IoT comput-
ers are deployed in large numbers in various locations, it is
more difficult to manage their quality compared to the servers
in conventional tightly managed data centers. This increases
the risk by contamination of unidentified computers and
the spoofing of legitimate computers [6]. As such, a means
of identifying legitimate computers for IoT applications is
urgently needed.

Generally, network applications use identifier data such as
Internet Protocol (IP) addresses, session IDs, application IDs,
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and user IDs, which are provided by a service or network
administrator, to distinguish between computers. However,
identifiers defined with digital data are easy to replicate and
can be a source of spoofing. Various methods utilize bio-
metric information such as fingerprints and irises to identify
human beings in service authentication, and recently this
technique has been applied to network services as well [7].
Unlike identifier data, biometric information has an advan-
tage in that it is difficulty to falsify. Moreover, the lengthy
process of issuing and assigning identifiers can be avoided.
We have been investigating a method analogous to bio-
metric authentication in which the unique characteristics of
clock frequency signals generated by computer hardware are
treated as identifier information.

Computers make use of various clock frequency signals,
such as a microprocessor to drive the computer, a timer
counter to manage program interrupts, and a real-time clock
(RTC) to keep the time when the system is powered off.
This signal is slightly different for each piece of hardware,
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even if the same frequency value is set. In a prior work,
we hypothesized that the relative signal deviation compared
to the reference signal could be extracted as a computer-
specific characteristic feature, which we dubbed a clock
fingerprint (CFP) [8]. However, it is difficult to measure
very high-frequency clock signals (e.g., computing process-
ing units), and it is not practical to implement the hardware
of a signal acquisition function for this specific purpose.
Therefore, we devised a method that uses the time informa-
tion and counter value instead of the clock signal frequency.
Since computers generally get their time information from
a clock counter that is generated from the clock frequency,
this information is also subject to hardware-specific gaps.
According to our hypothesis, we can analyze a computer’s
unique characteristics by examining the ‘‘time drift’’, which
is the difference between the computer-generated time infor-
mation and the reference time.

However, as the clock oscillator of a signal varies in fre-
quency due to the effect of temperature [9], our previous
method could not provide stable results in an environment
where the temperature changes rapidly. In the present study,
we developed a new feature extraction method corresponding
to temperature change in which the hardware temperature
and time drift characteristics are sampled to derive charac-
teristic equations for each computer. In addition, since it is
not practical to attach a temperature sensor to every clock
oscillator, we devised a method to map the temperature of the
clock oscillator from the central processing unit (CPU) core
temperature information.

In this paper, we first present our method for obtaining
characteristic feature values based on temperature and time
drift for two types of computer with the same operating
system (OS) and system settings. Next, we report the values
obtained from experiments and the results of the linear func-
tions derived from them. Finally, we discuss how these results
validate our hypothesis, clarify the contributions of this work
compared with related research, and briefly touch on future
challenges.

II. METHODS
We define ‘‘target computer’’ as the computer fromwhich the
time drift features are extracted, ‘‘criterion computer’’ as the
central computer that keeps the standard time and extracts
the features, and ‘‘standard time source’’ as the reference
source that provides the exact standard time. In the following,
we explain the basic principle and the experimental system
for deriving the characteristic equations with the temperature
parameters proposed in this paper.

A. PRINCIPLE
The system time is the time information used by the operating
system and applications. It is updated by adding up the values
of the clock counter function on the computer. The counter
source derived from the clock oscillator available to the com-
puter depends on the computer type. For example, in the case
of the Intel architecture, which is typically used in personal

FIGURE 1. Overview of feature extraction system and its processing flow.

computers (PC), the system time is generated by calculating
the CPU’s clock counter value, called the time stamp counter
(TSC). In any case, if the hardware that generates the counter
values exhibits an inherent characteristic, we should be able
to observe the inherent deviation as a time drift. Further-
more, if the clock frequency of the oscillator changes with
temperature, the functional expression representing the time
drift value with this temperature parameter can represent a
characteristic equation of the target computer.

The procedure for extracting features from the deviation
of the system time of the target computer using the crite-
rion computer is shown in Fig. 1 and described below. The
criterion computer utilizes the functions of a feature data
collection application and a Network Time Protocol (NTP)
server. This collection application is hereafter referred to as
the CENTER App. The target computers set up a feature data
collection target application, which hereinafter is referred to
as the TARGET App. The process flow corresponding to the
flow numbers in Fig. 1 is as follows.

1. Acquire the standard time by the NTP server and correct
the system time.
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2. Send an initial query from the CENTER App to each
target computer sequentially.

3. Acquire standard time by the TARGET App of each
target computer that has received an initial query from
the CENTER App.

4. Correct own system time by the TARGET App to the
latest standard time.

5. After a specified interval, correct own system time by
the NTP server from the standard time source.

6. Send a regular query sequentially from the CENTER
App to each target computer.

7. Acquire standard time from NTP server by TARGET
App of each target computer that received a regular
query from the CENTER App.

8. Acquire the differential data by the TARGET
App between the system time and the standard time.

9. Acquire CPU core temperature data by the TARGET
App.

10. Repeat steps 5–9 a specified number of times.
11. Analyze the accumulated data and derive correlations

to determine the characteristics.

In this case, the standard time source referenced by the cri-
terion computer should be accurate so as to increase the
accuracy of the feature data. Examples of source are the
Stratum 1 NTP server or the NTP server which receives
the Global Navigation Satellite System (GNSS) signal that
provides the reference clock via atomic clock. The target
computers are placed in the same network segment with low
latency. The time drift is defined as the difference between
the system time managed by the OS of the target computer
and the standard time provided by the criterion computer as
an NTP server. Since this time drift varies with temperature,
the criterion computer collects the temperature value along
with the time drift value.

The method for deriving the correlation from the acquired
data (step 11) is as follows. First, letD(t) be the time drift that
occurs from time 0 to t , and T (t) be the CPU core temperature
at time t . Since the time drift D takes a continuous value, this
derivative can be written as

dD (t)
dt
= d(t). (1)

Assuming that the time drift is linearly affected by the core
temperature, this drift can be written as a function of temper-
ature T , as

d (T ) = aT + b, (2)

where a and b are constants. Since the temperature T is a
function of time t , T (t), it is expressed as

d (t) = aT (t)+ b. (3)

However, since the values obtained in the experiments are dis-
crete, we use the time drift per unit of time, which represents
the measurement interval, and the CPU core temperature.
When the i-th measurement takes place at time ti, the average

FIGURE 2. Overview of experimental system.

STi of the time drift1Di and the core temperature per unit time
during the i, i+ 1(1 5 i)-th measurement is expressed as

1Di = D (ti+1)− D(ti), (4)

STi =
T (ti+1)+ T (ti)

2
. (5)

Using these, we replace Eq. (3) with

1Di = aSTi + b. (6)

For N feature data consisting of a pair of drift and average
CPU core temperature per unit of time obtained from the
experiment, we find the slope a and the intercept b of the
regression line representing the pair of 1D and STi at some
period P(2 ≤ P ≤ N ). For the regression line

D = aTi + b, (7)

parameters a and b are obtained by the least-squares method
for the corresponding number of data. The combination of
averages astd and bstd for each of these parameters a and b is
the reference feature of the computer.

B. EXPERIMENTAL SYSTEM CONFIGURATION
An overview of the experimental system is shown in Fig. 2.
The criterion computer consists of a PC installed with Ubuntu
Server 16.04.4 and runs the NTP server and CENTER
App. The NTP server is a service using the NTP daemon,
which is standard in Linux, and corrects the standard time by
referring to the Stratum1NTP server provided by theNational
Institute of Information and Communications Technology
(NICT). The CENTER App logs in to the target computer
as a secure shell (SSH) client at 10-minute intervals set by
the crontab service. Then, the shell script is executed to
measure the time drift and CPU core temperature data. In this
experiment, we use two types of target computer:

1) x86-64 PC, Intel Celeron T1600, Ubuntu Server
16.04.4, and

2) Raspberry pi 3B, Broadcom BCM2837 1.2 GHz
64-bit quad-core ARMv8 Cortex-A53, Raspbian (April 2018,
Kernel version 4.14).
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The TARGET App is installed in each of these target
computers. It consists of an SSH server that accepts a query
from the criterion computer and a shell script that executes the
data acquisition process. In our experiments, three computers
are set up for each of the two types, and all of them have
the same software settings. We label these computers PC
A, B, C and Raspi A, B, C. Since these target computers
do not execute any processes other than the TARGET App,
the load on the CPU is almost negligible. We also installed
a Raspberry pi 3 equipped with a temperature sensor to
check the correlation between the CPU core temperature
and room temperature. It incorporates a digital temperature
sensor (Maxim Integrated Products DS18B20) and records
the temperature of the room where the target computers are
installed.

III. RESULTS
First, we show the results of the time drift per unit of time in
the experimental configuration described in Methods, with-
out temperature information, which is a conventional method.
Next, the results in which temperature was added to the above
results are presented. Finally, these data are used to derive the
parameters of the regression line.

A. TIME DRIFT WITHOUT TEMPERATURE INFORMATION
Figure 3 shows the time drift 1D every ten minutes for
about 50 days. This graph roughly indicates that 1D was
different for five of the six computers. However, Raspi A and
Raspi C were very close, and in this case it was difficult to
distinguish them using the methods that measure only time
drift [8]. In contrast, none of the computers had an 1D that
was constant with respect to elapsed time, and waves could
therefore be observed. However, since the rise and fall of
the waves were linked to all devices, we can assume they
were dependent on common environmental changes such as
temperature, rather than on device-specific causes.

B. TIME DRIFT WITH CPU CORE TEMPERATURE
INFORMATION
Figure 4 shows a graph obtained by excluding the outliers
from the data in Fig. 3 bymeans of a test based on the quartiles
and by using Eqs. (4) and (5), where the vertical axis is the
drift 1D per unit time and the horizontal axis is the CPU
core temperature STi. In this graph, we can see different trends
in Raspi A and Raspi C, which were difficult to distinguish
in Fig. 3.

C. DERIVATION OF REGRESSION LINE PARAMETERS
The regression lines and correlation coefficients derived from
the data in Fig. 4 are listed in Table 1. The value of the
correlation coefficient r for all computers was |r| = 0.7
and the regression line showed a strong positive correlation.
Slope a and intercept b of this regression line indicate the
characteristic features specific to each computer. We can
see here that they had distinctly different parameters despite
being the same computer type.

FIGURE 3. Change in the amount of time drift every ten minutes.

FIGURE 4. Correlation between time drift and CPU core temperature.

TABLE 1. Regression line parameters.

IV. DISCUSSION
A. DISCUSSION OF EXPERIMENTAL RESULTS
In this research, we use the CPU core temperature to derive
the characteristic equations. First, we investigate whether it
can be used in place of a temperature sensor. In general,
when the computational load of a CPU increases, the power
consumption of the CPU unit increases, so the CPU core
temperature also increases. In this experimental configura-
tion, data processing other than feature acquisition is not
performed. Therefore, we can assume that the change in CPU
core temperature depends only on the external environment,
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FIGURE 5. Correlation between CPU core temperature and room
temperature.

FIGURE 6. Boxplot analyzing anomalies by quartiles.

i.e., room temperature. In order to verify this, we examine
the correlation between each CPU core temperature and room
temperature, as shown in Fig. 5. We can see that the CPU
core temperature was proportional to room temperature for
all devices. Specifically, it was about 20 Celsius degree (◦C)
for Raspberry pi and 25 to 30◦C for PC, which is higher than
room temperature. These results demonstrate that the CPU
core temperature can be transformed into room temperature
at low load status.

Next, we discuss the causes of the outlier in the experi-
mental data. Table 2 lists the results of quartile analysis of
the experimental data, and Fig. 6 shows a boxplot based on
this analysis. The interquartile range of the time drift per mea-
surement for each computer was less than 0.5 milliseconds,
but some significant outliers of about 1 to 7 milliseconds
were recorded against the median. When we compare these
outliers to the results in Fig. 3, the time of the outlier
was almost the same for all computers. Since our method
sequentially acquires data from the criterion computer to
each measurement target computer, if a data processing
delay or network delay of the criterion computer occurs

TABLE 2. Results of evaluation of outlier values by quartiles.

during the execution, all the observations will be affected
simultaneously. Therefore, these anomalous values were
likely caused by errors in the external environment, which
are different from the inherent characteristics of the target
computer.

B. CONTRIBUTION OF THIS RESEARCH
Next, we discuss the contribution of this research in com-
parison to previous studies. Several prior studies have exam-
ined the relationship between clock frequency signals and
temperature in electronic devices. Crystal oscillators are gen-
erally used as clock oscillators for electronic components
such as CPUs and hardware clocks, and it has long been
known that the frequency response of such crystal trans-
mitters varies with temperature depending on the method
used to cut the crystal [9]–[12]. The correlation of frequency
with temperature has also been studied [13], and a Tem-
perature Compensated Crystal Oscillator (TCXO) and com-
pensation methods using temperature characteristics have
been proposed [14], [15]. However, these techniques are
used to generate a stable clock frequency signal and can-
not be used to obtain the characteristics of the computer.
Other studies have shown the relationship between temper-
ature, PC CPU clock frequency, and clock drift [16], [17],
and Marouani et al. reported that the clock frequency varied
by approximately 150 hertz per Celsius degree for the PC
CPUs in their study [18]. However, they did not mention
any individual clock characteristics of the computer. The
key contribution of our research is the experimental results
showing that the time drift caused by the clock signal and its
correlation with temperature have different characteristics for
individual computers. By approximating this to a regression
line, we developed a method to treat these parameter values
as characteristic features of each computer. As our method
utilizes the CPU core temperature, which is easily obtained in
many digital devices such as PCs and single-board computers
for IoT, it does not require the implementation of a special
temperature sensor. As such, it can be used with existing
devices simply by introducing the relevant software, and
thus has good potential for contributing to the spread of IoT
infrastructure in the future.

C. FUTURE CHALLENGES
Finally, we briefly touch on the future challenges of this
research. The proposed method was derived by linearly
approximating the correlation equation, but the temperature
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characteristics of quartz crystal units show nonlinear
characteristics in the low and high temperature ranges [19].
In future work, it will be necessary to analyze the practical
range of applicability of the linear approximation and/or
to determine how to derive correlations in the nonlinear
domain. In addition, the results of this experiment were
conducted under no-load conditions to suppress any change
in the CPU core temperature. However, in practical opera-
tion, various data processing programs are running and the
computational load on the computer is heavy. Since this
increased load induces an increase in the temperature of
the CPU core, we need to resolve this issue for practical
use. From another practical point of view, it is necessary to
consider the aging of electronic devices. Although the results
in this study are based on the data of about 50 days, the
characteristics of quartz crystal units also change [20], so we
need to investigate the effect of aging on the characteristic
values in order to accurately determine the effect of long-term
operation.

V. CONCLUSION
Proper management of various types of computers is essential
for the secure use of IoT services, and versatile and sim-
ple identification techniques will be significant to achieving
this. The contribution of this research is our development
of a method that extracts new hardware-inherent charac-
teristic information for use in identifying computers. Our
method samples the temperature and system time deviation
of the computer and then derives the inherent characteristic.
Using this method, we obtained several unique characteristic
expressions for each of six computers with the same soft-
ware configuration. A key feature of the proposed method
is its ability to use CPU core temperature instead of tem-
perature sensors along with a simple regression equation to
describe the intrinsic characteristics of the computer. This
means that it does not require the installation of any special
hardware on the computer and can be used by implementing
software that does simple computational work. This makes
it a highly versatile method that can be implemented on
computers already installed in the field. Moreover, it has the
potential to be used in a wide range of future IoT platforms.
For its practical use, it is necessary to create a system that
can identify the different types of computers utilized in a
general network environment, rather than just the current
one used in our experiment. In future work, we plan to
improve the accuracy of the identificationmethod, expand the
number of computer variations, and enable long-term oper-
ation, thereby achieving practical computer identification
technology.
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