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ABSTRACT Discovering influential nodes (or actors) in the network is often the key task of mining,
analyzing, and understanding real-life networks. Centrality measures are commonly used to detect important
nodes that control the information propagation in the network. While off-the-shelf centrality indices may
provide effective node identification in several situations, they frequently produce inadequate results when
confronted with massive networks, in the presence of complex local structures or the lack of certain
characteristics. In this paper, we introduce Cross-face, a new scalable centrality measurement for the
identification of key nodes in such networks. Inspired by the Formal Concept Analysis (FCA) framework,
the conceptual idea of ‘‘Cross-face’’ is to leverage the faces of concepts to identify nodes that are located in
‘‘face bridges’’ and have an influential ‘‘cross clique’’ connectivity. Thus, it concurrently measures how
the node influences its neighbour nodes through its cross cliques while linking the densely connected
substructures of the network via its presence in bridges. Unlike traditional centrality measures, the cross-face
of nodes can be computed using only a set of symmetrical concepts, which is often quite small compared to
the set of nodes or edges in the network. Our experiments on several real-world networks show the efficiency
of Cross-face over existing prominent centrality indices such as betweenness, closeness, eigenvector, and
k-shell among others.

INDEX TERMS Formal concept analysis, complex networks, key nodes, cross-cliques connectivity,
betweenness centrality.

I. INTRODUCTION
A complex system consists of many connected components
which non-linearly interact with each other in such a way
that the behaviour of its network formulation is often hard
to interpret. Since the structure of such network is complex,
some nodes are expected to be more important than others
in some context. Thus, identifying key nodes in a network
is often a substantial task for explaining different behaviours
and outcomes in scientific data analysis. This is applicable
to a growing number of applications such as halting virus
super-spreading, recognizing actionable actors in criminal
networks, detecting important infrastructure locations in the
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Internet networks and predicting active protein modules in
protein-protein interaction networks.

The role of nodes within a network can often be deduced
through a centrality analysis, which aims to measure how
a node influences, or is affected by, other nodes via its
connection topology. Since there is no consensus on a
unique definition of centrality, many different centrality mea-
sures have been proposed in the network analysis literature
(cf. [1]–[3] for a detailed survey), each of which considers
its specific concept of a central node. That is, some centrality
measures may exploit certain valuable characteristics in the
network to capture local information, while another measure
quantifies how a node is located within a global network
context. While there are many classifications of centrality
indices based on how their approaches define the importance
of a node, a traditional stream research area categorizes the
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centrality indices into local and global ones, while taking into
account the perception of the information flow of network
community properties.

From a cohesion perspective, the local centrality measure
focuses on the relative prominence of the focal node in
its neighbourhood within local communities. The degree
centrality [4] is a simple local measure that counts the number
of edges (or links) attached to each node. Thus, the higher
the degree of a node, the more important it is in a network.
While it is intuitively anticipated that a densely connected
node (i.e. a hub) could be in the center, it may not be in
practice. For example, the peripheral nodes with the highest
degree should not be the central ones in the network. Here,
the k-shell centrality [5] provides the k-core, as a recipe
measure, to promote the degree of a node in terms of its neigh-
bourhood connections. In k-shell centrality, when removing
low degree nodes, the peripheral nodes are not involved in the
main connected components, and the high-degree peripheral
nodes ought to have a small number of k-cores. This implies
that only the hubs at the cores of networks have the highest
values of k-cores. The two-fold limitation of the k-shell is that
it often assigns the same number of k-cores to many nodes.
It also produces poor results when the network structure
contains a small number of k-cores, which is often present
in real-life networks. In this context, the Cross k-clique
connectivity [6], [7] conceptually surpasses k-shell by using
k-cliques rather than k-cores. That is, the number of neigh-
bour overlapping k-cliques of a node is counted to determine
its connectivity. Although the cross-clique connectivity is a
good local measure of how the node facilitates (or influences)
the propagation of information through its high overlapping
cliques, it has the following two limitations in general:
Limitation a1: Computing the cross-clique connectivity of

a node could take an exponential time and space complexity.
In its basic form, it depends on the extraction of k-cliques
from the network, which is an NP-hard problem. [8].
Limitation a2: The output centrality value of the

cross-clique connectivity is often sensitive to the k parameter.
That is, a small value of k could lead the cross-clique central-
ity to overestimate the importance of certain nodes on the
periphery of the network, resulting in similar behaviour as
the degree centrality. On the contrary, a large value of k might
result in the overshooting of several small k-cliques, which in
turn, renders the cross-clique connectivity to underestimate
the influence of other nodes in dense local communities
within the network.

From the network flows perspective, local centrality
measures assume that the different types of paths along
which information is transferred capture the description of
the networks. For instance, the betweenness centrality [9]
quantifies the importance of a node by calculating the number
of times it is located in the bridge along the shortest paths
between the other nodes in the network. Although between-
ness may provide a good indicator of how the node perceives
the network information flow, it has the following common
limitation:

Limitation b1: The calculation of betweenness centrality
is computationally expensive. When the network is dense,
it requires a time complexity of O(n3), where n is the number
of nodes. Evenwith the accelerated algorithm proposed by [9]
to compute betweenness centrality of a single node, it runs
in O(nm + n2 log n), where m is the number of edges in the
network. This is computationally problematic even with quite
medium-sized networks. Using adjacency list representation
of the graph, an alternative solution could be to use the
depth-first search procedure to extract all bridges in the net-
work, and then approximate the betweenness by counting the
number of bridges containing the node. However, this needs
at least a time complexity of O(nm), which still represents a
computational bottleneck with large networks.

Closeness is another shortest path-based local centrality.
It assumes that the important node is an independent one that
should be close to other nodes in the network in terms of
distance. Intuitively, this is because it is the node that uses
the shortest distance to transfer information to all other nodes.
Closeness calculates the average distance between the node
and all the other nodes, where the distance between the two
nodes is the length of the shortest path between them. It is
therefore appropriate, in particular, to characterize the spread
of information over the shortest distances, but in general,
it presents the following limitation.
Limitation b2: Closeness centrality frequently produces

poor results on non-spatial networks [10]. Since it depends
only on the shortest distances, and due to the small diameter
of the networks, the range of variation is too narrow. Given
that the largest distance increases with the logarithm of the
number of nodes log n, most complex networks may have
a small average length of the shortest path. Thus, the ratio
between the largest and the minimum distances is O(log n),
presuming that the minimum distance is equal to one. This
means that several nodes could have similar values of close-
ness centrality despite the fact that they could play different
roles in the propagation of information. This makes close-
ness more appropriate for spatial networks whose distance
between nodes is high compared to random networks with
almost the same number of nodes and edges. Also, and
likewise degree, closeness is mostly suitable for connected
networks.

On the flip side of the coin, global measures focus on
prominence within the context of the network as a whole. For
instance, Eigenvector centrality [11] quantifies how a node
is important based on its links to other important neighbour
nodes. From the viewpoint of walk structures in the network,
it approximates the number of traversals of each node through
a randomwalk of infinite length. Thus, when the node is at the
center of the network, then it is more accessible than the other
nodes. The eigenvector can be seen as a natural extension of
degree centrality in a sense that both of them count walks that
start and end from the given node. This might support why it
has the following limitation:
Limitation b3: Eigenvector centrality produces inaccu-

rate results based on some network structures. When the
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network structure involves several hubs, most weights of the
eigenvector are biased toward a few nodes. In this situation,
most of the nodes will have centrality close to zero, which in
turn disqualifies the importance of nodes. This is consistent
with the explanation proposed in [12]: using a the localize
network regime, it was demonstrated that the hub node and
its neighbours have the highest eigenvector values, whereas
the remaining nodes have the same centrality value equals
to O(1/n). Moreover, the Eigenvector centrality may not be
able to distinguish the importance of nodes in other regimes
where the network has symmetrical dense regions and a small
amount of bridges, as it will be explained using a toy example
in subsection IV-D.

In this paper, one of our key goals is to bring the three cen-
trality aspects of shortest paths, cohesiveness and impact on
important neighbour nodes closer together through the lens
of the formal concept analysis framework. That is, to address
the limitations (a1-b3) discussed above, we introduce Cross-
face, a novel approach to centrality for the identification
of actionable nodes within complex networks. We achieve
this by first reformulating the concept lattice that represents
the network in such a way that the so-called symmetrical
concepts in the lattice capture the corresponding local struc-
tures in the network. We consequently demonstrate that those
symmetrical concepts with intent sizes of k greater than 2
can be used to extract k-cliques from the network. Second,
we leverage the faces of the symmetrical concepts with
intent sizes equal to 2 for detecting new key bridges that we
call face-bridges. Unlike traditional cross-clique connectivity
centrality, this results in the efficient extraction of key bridges
and overlapping k-cliques from the network without being
sensitive to the k parameter. Thus, while our experiments here
focused on assessing the importance of nodes, the Cross-face
approach could easily be applied to other applications, such
as finding maximum cliques and bridges in arbitrary graphs
and detecting communities.

Furthermore, since the overlapping k-cliques and bridges
are powerful sub-graphs commonly used to measure the
cohesion and shortest path centrality of nodes in the net-
work, we consequently design our cross-face centrality to
identify important nodes that are located in face bridges
and cross k-cliques. Dissimilar to betweenness, we consider
only the key bridges rather than all bridges. Thus, the overall
cross-face quantifies how the node influences its neigh-
bour nodes through its cross-cliques while connecting the
densely connected regions of the network through its pres-
ence in key bridges. In contrast to closeness and eigenvector,
the hybridization of the key bridges and cross-clique connec-
tivity aspects in cross-face centrality enables it to tackle the
various topological structures of the network. The computing
of the cross-face requires only a set of symmetrical concepts,
and is therefore quite fast in practice.

The rest of the paper is organized in the following manner.
Section II recalls some basic definitions of FCA and tradi-
tional centrality measures. Section III explains our proposed
Cross-face centrality for identifying key nodes in further

more detail. In Section IV we conduct a thorough experimen-
tal study and a discussion. Finally, Section V presents our
conclusions and directions for future work.

II. BACKGROUND
This section will briefly review the main concepts that sup-
port the comprehension of our proposed centrality measure
by using an illustrative example, which is an excerpt of a
COVID-19 viral transmission network. As shown in Figure 1,
the network is modeled as an undirected graph ϒ = (G, I),
where G is a set of 13 nodes representing individuals, and I
is a set of edges where an edge (gi, gj) ∈ I links two nodes,
gi, gj ∈ G, if they contacted each other.

FIGURE 1. A an excerpt of graph network that represents the
COVID-19 viral transmission among three local communities.

A. BASIC NOTATION AND DEFINITIONS
Definition 1 (k-Clique): Let ϒ = (G, I) be an undirected

graph defined over the objects G. A clique of size k in ϒ is a
subset Q ⊂ G such that |Q| = k and for any two nodes (i.e.,
objects) gi and gj ∈ Q, there exists an edge (i.e., a binary
relation) (gi, gj) ∈ I.
For simplicity, we will express a clique by a set of nodes

without reference to the edges. For instance, the set Q =
{9, 10, 11, 12} represents a clique of size 4.
Definition 2 (Bridge or Cut-Edge): An edge (gi, gj) ∈ I

is a bridge iff it is not contained in any cycle and its
removal increases the number of connected components in
the graph ϒ .

For example, the edge {7, 13} represents a bridge in ϒ .
Definition 3 (Local Bridge [13], [14]): An edge (gi, gj) ∈

I is a local bridge iff its removal increases the distance
between its two end nodes to a value that is strictly more
than two and that there will be no common neighbour nodes
between them.

For instance, the edge {4, 9} represents a local bridge
in ϒ . The main difference between local and regular bridges
is the number of connected components left behind after
their removal. From the network perspective, both regular
and local bridges play substantial roles for transmitting the
information from one group to another. Thus, we generally
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use the term ‘‘bridge’’ throughout the paper to denote a local
or regular bridge.

B. FORMAL CONCEPT ANALYSIS
In the following we recall key notions of FCA [15] that will
be used in this paper.
Definition 4 (Formal Context): It is a triple K =

(G,M, I), where G is a set of objects, M a set of attributes,
and I a binary relation between G andM with I ⊆ G ×M.
For g ∈ G and m ∈ M, (g,m) ∈ I holds (i.e., (g,m) = 1)
iff the object g has the attribute m, and otherwise (g,m) /∈ I
(i.e., (g,m) = 0).

Given arbitrary subsets A ⊆ G and B ⊆M, the following
derivation operators are defined:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G
B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}, B ⊆M

where A′ is the set of attributes common to all objects of A
and B′ is the set of objects sharing all attributes from B. The
closure operator (.)′′ implies the double application of (.)′,
which is extensive, idempotent and monotone. The subsets A
and B are closed when A = A′′, and B = B′′.
Definition 5 (Formal Concept): The pair c = (A,B) is

called a formal concept of K with extent A and intent B if
both A and B are closed and A′ = B, and B′ = A.
Definition 6 (Partial Order Relation �): A concept c1 =

(A1,B1) � c2 = (A2,B2) if:

A1 ⊆ A2 ⇐⇒ B1 ⊇ B2. (1)

In this case, c2 is called a superconcept (or successor) of c1,
and c1 is called a subconcept (or predecessor) of c2. The set
of all concepts of the formal context K is expressed by C(K)
or simply C.
Definition 7 (Concept Lattice): The concept lattice of a

formal context K, denoted by L(K) = (C,�), is a Hasse
diagram that represents all formal concepts C together with
the partial order that holds between them. In L(K), each node
represents a concept with its extent and its intent while the
edges represent the partial order between concepts.

There are several methods (cf. [15]–[17]) that build the
lattice, i.e., compute all the concepts together with the partial
order. One-mode data networks contain only one type of
nodes and relations. Hence, we can simply adapt the formal
context (in Definition 4) to define a one-mode data context as
follows.
Definition 8 (One-Mode Formal Context): It is a formal

context K̃ = (G,G, I) in which the two sets of objects and
attributes are identical, i.e., G ≡M, and I is a set of relations
defined on G with I ⊆ G × G. For gi, gj ∈ G, (gi, gj) ∈ I
holds iff object gi is linked to gj or gi = gj.
Definition 9 (Lower- and Upper-Covers): For any two

formal concepts c1 = (A1,B1) � c2 = (A2,B2) if:

(A1,B1) � (A2,B2), @ c3 = (A3,B3) such that

(A1,B1) � (A3,B3) � (A2,B2), (2)

or

A1 ⊆ A3 ⊆ A2 ⇐⇒ B1 ⊇ B3 ⊇ B2, (3)

then c1 = (A1,B1) is a lower cover of c2 = (A2,B2), and
c2 = (A2,B2) is an upper cover of c1 = (A1,B1); represented
as c1 ≺ c2 and c2 � c1 respectively.

We will use U(c) to denote the set of upper covers of the
formal concept c.
Definition 10 (Concept Face [18]): The face f (c, cu) of a

concept c = (A,B) w.r.t its u-th upper cover concept, cu =
(Au,Bu) ∈ U(c), is the difference between their intent sets as:
f (c, cu) = B \ Bu.

C. CENTRALITY MEASURES
Definition 11 (Centrality Measure): The centrality mea-

sure of a regular node gi ∈ G is a function that assigns a
positive real number to gi quantifying its centrality w.r.t to all
other nodes G \ {gi} in the network ϒ .
The centrality measures are frequently used to identify

and rank key nodes in networks. While several central-
ity measures have been introduced, the degree, closeness,
betweenness and eigenvector have been found to be the
most prominent in several applications, and they thereby are
commonly used.
Definition 12 (Degree Centrality Dc [4]): The degree cen-

trality of a node gi, in a graph network ϒ , is defined as:

Dc(gi) =
∑
gj∈G

Iij, (4)

where Iij is equal to 1 when a link exists between gi and gj,
and 0 otherwise. Thus, the summation in Eq. (4) represents
the number of edges (or ties with neighbour nodes) involving
the node gi.
Definition 13 (Closeness Centrality Cc [19]): The close-

ness centrality of a node gi, in a graph network ϒ , is defined
as:

Cc(gi) =
1∑

gj∈G d(gi, gj)
, (5)

where d(gi, gj) is the length of (or the number of hops on) the
shortest path between the nodes gi and gj.
Definition 14 (Betweenness Centrality Bc [9]): The

betweenness centrality of a node gi, in a graph network ϒ ,
is defined as:

Bc(gi) =
∑

gj 6=gk 6=gi, gj,gk ,gi∈G

σgjgk (gi)

σgjgk
, (6)

where σgjgk denotes the total number of shortest paths
between nodes gj and gk , and σgjgk (gi) is the number of those
paths that traverse gi.
Definition 15 (Eigenvector Centrality EVc [11]): The

eigenvector centrality of a node gi, in a graph networkϒ , can
be iteratively computed as:

EVc(gi) =
1
λ

∑
gj∈G

agigjEVc(gj), (7)
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where the eigenvalue λ 6= 0 is a constant, and agigj is the
adjacency element which is equal to 1 if node gi is linked to
node gj, and 0 otherwise.

III. CROSS-FACE APPROACH BASED ON FCA
At a conceptual level, our overall Cross-face centrality
approach contains the following key elements. First, we build
the formal context and construct the concept lattice of the net-
work. Second, we extract from the lattice the set of concepts
that represent cross k-cliques and face bridges in the social
graph. Third, we calculate the Cross-face centrality measure
to identify key nodes.

A. CONSTRUCTING THE FORMAL CONTEXT OF A
NETWORK
We first build the formal context of the social network ϒ =
(G, I) by computing the symmetrical modified adjacency
matrix [20] as follows:

K̃ = (G,G, I) =


(gi, gj) = 1 If ∃ (gi, gj) ∈ I, i 6= j
(gi, gj) = 1 if i = j
(gi, gj) = 0 Otherwise.

(8)

In Eq. (8), we assign 0 to the element of K̃ in the row i and
column j if the object (node) gi is not linked to the object gj
in the network ϒ . Otherwise, we assign 1 to it. For example,
the constructed formal context K̃ of our toy graph in Figure 1
is represented in Table 1.We then construct the concept lattice
K̃ from the formal context, as it is shown in Figure 2 (left).

TABLE 1. The formal context K̃ for the toy network of Figure 1.

B. EXTRACTING CROSS CLIQUES AND FACE BRIDGES
By analyzing the constructed lattice L(K̃), it is possible to
spot certain concepts within which the intent is equal to the
extent, which can be defined as:
Definition 16 (Symmetrical Concept): A formal concept

c = (A,B), with extent A and intent B, is called a symmetrical
concept if A = B, i.e., its extent is identical to its intent.
We use C̃ to denote the set of all the symmetrical concepts in
a network ϒ .
Proposition 1: Given a network ϒ and its corresponding

concept lattice L(K̃), a symmetrical concept c̃ = (Ac̃,Bc̃) ∈
L with Ac̃ ≡ Bc̃ and |Ac̃| = k > 2, represents a k-clique
Q = {gi : gi ∈ Ac̃} in ϒ .

Proof: A symmetrical concept represents a unit square
matrix of size k - as a sub-matrix of the modified adjacency
matrix - and hence a k-clique since it is a maximal square
in the formal context. Assume now that Q = {gi}ki=1 is a
k-clique of ϒ with k > 2. Then, from Definition 1, for
any two objects gi, gj ∈ Q, there exists an edge (gi, gj) in
ϒ that links the two objects. Based on Eq. (8), the obtained
k × k modified adjacency matrix K̃(Q,Q, IQ) that expresses
the clique Q obviously represents a matrix consisting of all
1’s. Such a matrix coincides with the symmetrical concept
c̃ = ({gi}ki=1, {gi}

k
i=1) in which both extent Ac̃ and intent

Bc̃ involve only the objects {gi}ki=1 of Q. This entails that a
k-clique that contains the node set Q = {gi : gi ∈ A} is
identical to a symmetrical concept c̃ = (Ac̃,Bc̃) such that
Ac̃ ≡ Bc̃ = {gi}ki=1.
Proposition 2: Given a network ϒ and its corresponding

concept lattice L(K̃), a symmetrical concept c̃ = (Ac̃,Bc̃) ∈
L, with Ac̃ ≡ Bc̃ = {gi, gj}, |A| = 2 has at most two upper
covers and represents a corresponding bridge (gi, gj) in ϒ .

Proof: The proposition is held once we prove that: (1)
a symmetrical concept c̃ = (Ac̃,Bc̃), with Ac̃ ≡ Bc̃ =
{gi, gj}, |A| = 2 is a bridge if it has at most two upper
covers, (2) a bridge is represented by a symmetrical concept
with an extent and intent involving only the two objects of the
bridge.

For the first part, suppose that cu = (Acu ,Bcu ) is an upper
cover of c̃. From Definition 9, we have Bcu ⊆ Bc̃ = {gi, gj}.
This means that Bcu can be equal to one of the four possi-
bilities ∅, {gi}, {gj} or {gi, gi}. If Bcu = ∅, then cu is the
Supremum. This actually implies that the nodes {gi, gi} ∈ Bc̃
are not linked to any other nodes in the graph, which in turn
means that c̃ is not a bridge. Thus, this possibility, i.e., Bcu =
∅, contradicts with the assumption that c̃ represents a bridge.
If Bcu = {gi, gi}, then we have that Bcu = Bc̃ and Acu = Ac̃.
This means that cu ≡ cu, which can not also occur since it
contradicts with the lattice theory, i.e., it is not possible that
a concept and its upper cover have symmetrical extents and
intents. Now, we still have only two possibilities {gi} and {gj}
that can represent upper covers of c̃. This implies that c̃ is a
bridge when it has at most two upper covers, each of which
has an intent that is equal to either {gi} or {gj}.

For the second part, let Bc̃ = (gi, gj) be a bridge between
two components Ti and Tj of ϒ such that gi ∈ Ti and
gj ∈ Tj. From Eq. (8), the 2 × 2 modified adjacency matrix
of Bc̃ defines a unit matrix JBc̃ . Now, since each object of
the bridge Bc̃ belongs to a different component, then its JBc̃
matrix represents also a sub-matrix in the one-mode formal
context K̃ such that: (i) (gi, gp) = 0 ∀gi ∈ Ti and gp ∈ Tj\{gj}
and (ii) (gj, gp) = 0 ∀gj ∈ Tj, and gp ∈ Ti \ {gi}. This
indeed implies that the modified adjacency matrix JBc̃ of the
bridge can be used to extract from K̃ a symmetrical concept
c̃ = ({gi, gj}, {gi, gj}) where both its intent and extent contain
the two nodes of the bridge.

Now before explaining what is a face bridge, the first
thing we do is to formulate what are non-influential (or non-
actionable) nodes from the viewpoint of FCA.
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FIGURE 2. (left) The concept lattice L(K̃) of our example network in Figure 1. The symmetrical concepts which appear in yellow, cyan and green
capture the k-cliques, key bridges and non-influential bridges respectively. (right) Their corresponding k-cliques and face-based bridges in the
graph network of Figure 1. Pursuant to the Cross-face centrality, the most influential nodes for transmitting the virus are {6,9}, the next less
important ones are {1,2,3,4,5}, the second less important ones are {7,8,10,11,12} and the least important node is {13} which has a cross-face
centrality equals to 0. The darkness degree of red color reflects the influential rank of the node.

Definition 17 (Non-Influential Node): For a symmetrical
formal concept c̃i = (Ac̃i ,Bc̃i ) ∈ C̃, a node g ∈ Bc̃i is
non-influential if its removal from c̃i (and accordingly from
the graph G) does not violate the closure conditions of other
symmetrical concepts C̃ \ {c̃i} that involve it:

∀c̃j ∈ C̃ \ {c̃i} and g ∈ Bc̃j , (Bc̃j \ {g})
′′
= Bc̃j . (9)

That is, the subset of symmetrical concepts that contain
node g still maintain their local conceptual structures even
after removing g from their extents and intents. Intuitively,
this means that the node g is not important since taking it
off from the graph G does not affect the essential connec-
tivity of the network (e.g., the collapsing of other symmet-
rical concepts). For example, in our toy graph of Figure 1,
the node 13 is non-influential in the symmetrical concept
c̃ =

(
{7, 13}, {7, 13}

)
. This is because its removal from G

does not result in the loss of connectivity of other nodes in
the graph.

In fact, the definition 17 raises an interesting question of
how to determine the non-influential nodes in a given sym-
metrical concept? Fortunately, the faces of the symmetrical
concept, w.r.t. its the upper covers, can provide it with pieces
of information as to what its non-influential nodes would be.
For example, by contrasting the intent of the symmetrical
concept c̃ = ({2, 3}, {2, 3}) with the intent of its upper cover
c̃u = ({1, 2, 3, 5}, {2}) we can infer that the object {2} is key
object in c̃. Thus, an effective strategy here to answering this
question is to contrast the symmetrical concept with its upper
covers through faces to identify its potential non-influential
nodes. That is, the set of faces of a symmetrical concept c̃ =
(Ac̃,Bc̃), w.r.t. its upper covers U(c̃), share the non-influential
nodes in its intent Bc̃:

∀g ∈ {∩cu∈U (c̃)f (c̃, cu)} H⇒ (Bc̃j \ {g})
′′
= Bc̃j ,

∀c̃j ∈ C̃ \ {c̃} and g ∈ Bc̃j . (10)

For instance, the symmetrical concept
(
{3, 6}, {3, 6}

)
has

two faces f1({3, 6}, {6}) = {3} and f2({3, 6}, {3}) = {6}
respectively. The intersection of these two faces is empty,
which means that there is no non-influential nodes in
the symmetrical concept

(
{3, 6}, {3, 6}

)
. On the contrary,

the symmetrical concept
(
{7, 13}, {7, 13}

)
has only one face

f1({7, 13}, {7}) = {13}, indicating that it has a non-influential
node 13.

On the basis of proposition 2 and Equation 10, we can
leverage the faces of symmetrical concepts, with intent size 2,
to formulate the key bridge1 by defining it as follows:
Definition 18 (Face Bridge): Given a social graph ϒ and

its corresponding concept lattice L(K̃), a symmetrical con-
cept c̃ = (Ac̃,Bc̃) ∈ L, with Ac̃ ≡ Bc̃ = {gi, gj}, |Ac̃| = 2,
is called a face bridge {gi, gj} in ϒ iff there is no intersection
among all its faces as:

∩d∈U (c̃)f (c̃, cd ) = ∅. (11)

In Eq. (11), the intersection of the faces informs the sym-
metrical concept c̃ what are its non-influential objects. If the
intersection results in an empty set, then the two end nodes of
its corresponding bridge are key. As such, it is a key bridge,
and we thereby denote it as a face bridge. Note that, based
on Proposition 2, a symmetrical concept, with intent size 2,
must have at most two upper covers, i.e., |U(c̃)| ≤ 2, and
in turn possesses at most two faces. Now, since each face
must involve at least one node, then a key property is that
the condition in Eq. (11) can not be satisfied when c̃ is a
meet-irreducible concept. This because the meet-irreducible
concept often has only one face. Thus, we could leverage
the meet-irreducible property to accelerate the process of
identifying face bridges. That is, instead of computing the
faces of the symmetrical concept as in Eq. (11), we can simply

1Note that the bridge is key when none of its two end nodes is non-
influential.
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verify whether it is not a meet-irreducible one that has two
upper covers (i.e., two faces) or not:

1c̃ =

{
1, |U(c̃)| = 2
0, otherwise.

(12)

where, in Eq. (12), we specify the extracted symmetrical
concept with intent size 2 as a face bridge by validating
whether it is not a meet-irreducible, i.e., it contains two faces.
That is, a symmetrical concept with intent size 2 that has two
faces is a face bridge by default. On the contrary, it is certainly
not a face bridge when it is meet-irreducible, i.e., has only one
face.

In the sequel, we use C̃>2 and C̃=2 to denote the subsets
of symmetrical concepts that represent k-cliques and face
bridges, respectively. For instance, as shown in the lattice
of Figure 2 (left), C̃>2 contains four symmetrical concepts(
{1, 2, 5}, {1, 2, 5}

)
,
(
{1, 4, 5}, {1, 4, 5}

)
,
(
{6, 7, 8}, {6, 7, 8}

)
,

and
(
{9, 10, 11, 12}, {9, 10, 11, 12}} that represent four

k-cliques {1, 2, 5}, {1, 4, 5}, {6, 7, 8}, {9, 10, 11, 12}, while
C̃=2 includes four symmetrical concepts

(
{2, 3}, {2, 3}

)
,(

{4, 9}, {4, 9}
)
,
(
{3, 6}, {3, 6}

)
, and

(
{6, 9}, {6, 9}

)
that rep-

resent four face bridges in the graph network of Figure 1.
Note that the bridge {7, 13} is not a face bridge since its cor-
responding symmetrical concept

(
{7, 13}, {7, 13}

)
violates

the indicator function of Eq. (12), by having only one upper
cover. At this point, we have paved the way for Cross-face
centrality.

C. CROSS-FACE CENTRALITY
Definition 19 (Cross-Face Centrality CFc): The Cross-

face centrality of a node (or object) g ∈ G, in a given graph
network ϒ , can be computed as:

CFc(g)=

Cross-cliques containing g︷ ︸︸ ︷
|{c̃ ∈ C̃>2 | g ∈ Ac̃|}

|C̃>2|
+

Face-bridges containing g︷ ︸︸ ︷
|{c̃ ∈ C̃=2 |g∈Ac̃,1c̃=1|}

|C̃=2|
.

(13)

That is, in Eq. 13, the Cross-face centrality computes the sum
ofCross-clique2 andFace-bridge terms. The numerator of the
cross-clique one simply counts the number of symmetrical
concepts, with intent sizes greater than 2, that involve the
node g. Thus, it quantifies the portion of cross k-cliques,
in the graph network ϒ , which the node g belongs to. From
a conceptual perspective, the cross-clique term can be con-
sidered as an efficient way of computing the cross-clique
connectivity [6], [7] of the node g. In the face-bridge term,
we count the number of the face bridges that involve the
node g. Thus, it quantifies the portion of the key bridges that
contain the node g in the graph. Note that the numerators of
both Cross-clique and Face-bridge terms are unnormalized
quantities. Thus, the denominators in Eq. 13 serve as normal-
ization constants to scale the two terms between 0 and 1.

2Note that the cross-clique of a node is the number of overlapping cliques
to which it belongs.

At a high level, the intuition behind the Cross-face cen-
trality of a node is two-fold. First, it measures how the node
locally influences its neighbour nodes through its existence
in the cross cliques. Second, it quantifies whether the node
is globally crucial in linking densely connected regions of
the network through its presence in key bridges. Figure 2
(right) makes it easier to understand the guiding idea of
the cross-face centrality. It initially nominates the nodes
{2, 4, 6, 9} as the highest influential ones. This is because
those nodes are involved in both cross cliques and face
bridges. It then picks out from the list {2, 4, 6, 9} the nodes
that exist in a higher number of both cross-cliques and face
bridges, and it thereby specifies {6, 9} as the most influential
ones. Other nodes such as {1, 3, 5} and {7, 8, 10, 11, 12} are
designated in the next less-levels of importance since they
are evenly involved in either cross-cliques or face bridges.
The node {13} is involved in neither cross-cliques nor face
bridges, and the cross-face thereby does not suggest it as a
key node.

Algorithm 1 gives the pseudo-code for computing the
Cross-face centrality of all nodes in the graph ϒ . The algo-
rithm takes as input the set of all extracted symmetrical
concepts C̃. For each node gi ∈ G, it iteratively counts the
number of cross k-cliques in C̃ that involve gi (lines 5-11).
It then counts the number of face bridges that involve gi
(lines 12-18). Subsequently, it computes the Cross-face cen-
trality CFc(gi) of a node gi (line 19). Finally, it returns a
list containing the Cross-face centrality measures CFc of
all nodes in the graph (line 21). Note that, based on the
obtained Cross-face centrality list, we can rank the nodes in a
descending order according to their importance. For instance,
as shown in Figure 2 (right), based on the list of cross-face
centrality for our graph of Figure 1, the most key nodes
for transmitting the virus are {6, 9}, the next less important
ones are {1, 2, 3, 4, 5}, the second less important ones are
{7, 8, 10, 11, 12} and the least important node is {13} which
has a cross-face centrality equals to 0.
Computational Complexity: In algorithm 1, we need to

store all nodes and symmetrical concepts. Thus, it requires
a space complexity of O(nc̃ + n), where nc̃ = |C̃| is the
number of symmetrical concepts.3 Then, for each node in
G, we iterate through all symmetrical concepts in C̃ to count
the number of cross-cliques and face bridges that contain
the node. Thus, it takes a time complexity of O(n × nc̃) for
computing the Cross-face centrality of all nodes in a given
graph network.

IV. EXPERIMENTAL EVALUATION
The goal of our experimental evaluation was to investigate the
following key questions.
• (Q1) Is the Cross-face centrality more accurate than
state-of-the-art centrality measures?

• (Q2) Is cross-face centrality performing fast compared
to prominent centrality measures?

3Note that nc̃ is equal, at most, to O(n) in the worst case scenario of the
network.
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Algorithm 1 Computing Cross-Face Centrality (CFc) for All
Nodes in Network
Input: Set of symmetrical concepts (C̃).
Output: Cross-face centrality measures (CFc) of all nodes.
1: CFc← ∅
2: for i← 1 to |G| do
3: count1← 0; count2← 0
4: nc̃=2← 0; nc̃>2← 0
5: for each concept c̃j = (Aj,Bj) ∈ C̃ do

// Counting cross-cliques that contain the node gi
6: if |Aj| > 2 then
7: nc̃>2← nc̃>2 + 1
8: if gi ∈ Aj then
9: count1← count1 + 1
10: end if
11: end if

// Counting face bridges that contain the node gi
12: if |Aj| == 2 and 1c̃ == 1 then
13: nc̃=2← nc̃=2 + 1
14: if gi ∈ Aj then
15: count2← count2 + 1
16: end if
17: end if
18: end for
19: CFc[i]← (count1/nc̃>2)+ (count2/nc̃=2)
20: end for
21: Return CFc

• (Q3) Is the Cross-face centrality approach correlated to
other state-of-the-art centrality measures?

To find robust answers, we first selected the following four
real-world social networks which have different complex
structures, and they thereby facilitate the validation of various
scenarios.

A. DATASETS
• Email [21], which is a network of e-mail interchanges
between members of the University Rovira i Virgili
(Tarragona). Each node represents a user and an edge
indicates that two users have exchanged emails.

• Netscience [22], which is a co-authorship network of
scientists working on network theory and experiment.

• USAir97 [23], which is a NorthAmerican transportation
network. The nodes represent airports and the edges
represent routes between airports.

• Jazz musicians [24], which is a collaboration network
between Jazz musicians. Each node represents a jazz
musician and each edge denotes a cooperation between
two musicians in a band.

A brief statistics of the networks is summarized in Table 2.4

4Datasets are available at: http://www-personal.umich.edu/ mejn/netdata/
https://github.com/gephi/gephi/wiki/Datasets

TABLE 2. A brief statistics of the social networks, which includes the
number of nodes (|G|), the number of edges (|I|), the average
degree (8), the average clustering coefficient (9), the average shortest
path length (�) and the density (2).

B. METHODOLOGY
Subsequently, we compared the results of our proposed
Cross-face centrality with the following measures:
• Closeness [19], a prominent diameter-based centrality
• Betweenness [9], a state-of-the-art geodesics-based
centrality

• Eigenvector [11], a state-of-the-art centrality that
assesses the importance of a node based on its connec-
tions to other highly influential nodes in a network.

• k-shell [5], a state-of-the-art decomposition-based cen-
trality measure that evaluates the importance of node
according to its location within the network. In k-shell,
the decomposition process is repeatedly used to remove
all nodes with a degree of less than k , where k is
incrementally increased from the value 1. As a result,
the k-shell value is assigned to the inner nodes on
the k-th layer after discarding the outer nodes. The
process of decomposition is completed when all nodes
are removed. At a high level, the k-shell provides the
coarse-grained importance of nodes such that the inner
ones often have a high influence. The detailed explana-
tion for k-shell formula has been elegantly provided in
[25], [26].

• Heatmap [27], a recently proposed centrality measure
that efficiently identifies influential nodes in the network
by comparing the farness (i.e., the global network infor-
mation) of a node with the average sum of farness of its
adjacent nodes (i.e., the local network information). The
Heatmap centrality of a node gi, in a graph network ϒ ,
can be calculated as:

Hc(gi)=
∑
gj∈G

d(gi, gj)−

∑
gj∈G agigj ×

∑|G|
k=1 d(gj, gk )∑

gj∈G agigj
.

(14)

• Degree [4], which can serve as a good baseline for
comparison.

To evaluate the lists of nodes ranked by all the centrality
measures, we need to compare them with the ranked list
that is obtained by the real spreading process of the nodes.
Thus, we applied the following traditional schema [28]–[30]
to validate the performance of a tested centrality measure:

1) Compute the centrality measure for all nodes, and then
record the node ranking list

2) Use SIR model [28] to simulate the spreading ability
of the nodes. In the SIR model, every node belongs to
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one of the susceptible states: the infected state or the
recovered state. At each step, we set only one node to
be infected, the other nodes are susceptible nodes, and
then investigate the information spreads in the network.
Every infected node can infect its susceptible neigh-
bours with spreading (also called infection) probability.
Note that instead of considering the recovered state of
each node, we focus on the influence within a time
t = 10 since the spreading in early stage is found to be
more important in practice. At the end of the SIR simu-
lation process, we calculate the spreading efficiency for
every node, and then record the node influence ranked
list

3) Based on the centrality-based ranking list and the
one generated by the SIR model, we record the joint
score list L = {(xi, yi)}ni=1, where xi and yi are the
centrality-based and SIR-based measures of a node
gi ∈ G, respectively. For any two randomly selected
pairs (xi, yi), (xj, yj) ∈ L, if both (xi < xj) and (yi < yj)
or if both (xi > xj) and (yi > yj), they are said to be
concordant. If both (xi < xj) and (yi > yj) or if both
(xi > xj) and (yi < yj), they are said to be discordant.
If (xi = xj) and (yi = yj), then the pair is neither
concordant nor discordant.

Consequently, we considered the following two metrics to
assess the accuracy and the scalability of the results:

1) The Kendall’s tau rank correlation coefficient τ :

τ =
2(nc − nd )
n(n− 1)

, (15)

where nc and nd are the number of concordant and
discordant pairs in L, respectively. A high τ value
indicates that the centrality measure could produce an
accurate ranked list. The ideal case is when τ = 1
where the ranked list generated by the centrality mea-
sure is symmetrical to the ranked list generated by the
real spreading process.

2) The average elapsed time ξ :

ξ =

∑
gi∈G ti
n

, (16)

where ti is the elapsed times for computing the under-
lying centrality measure of a node gi ∈ G.

All the experiments were run on an Intel(R) Core-i7 CPU @
2.6GHz computer with 16 GB of memory under macOS
Mojave. We implemented all considered indices as an exten-
sion to NetworkX Python package. For extracting the formal
concepts from the lattice, we make use of theConcepts 0.7.11
Python package, which is implemented by Sebastian Bank.5

C. RESULTS
We conducted our experimental evaluations through three
experiments.

5Publicly available: https://pypi.python.org/pypi/concepts

Experiment I: The first experiment was dedicated to
answering Q1. In the SIR model simulation, each infected
node can infect its susceptible neighbours with a spreading
probability β. Thus, in line with the scheme explained above,
we repeatedly computed the joint list L of each centrality
measure and the real spreading of the nodes while increasing
the spreading probability β in the range (0, 0.1] with incre-
ments of 0.01. On that basis, at each increment step, we cal-
culated the corresponding evaluation metric τ in Eq. (15).
Figure 3 displays The Kendall’s tau correlation coeffi-

cient τ between the the seven tested centrality measures and
the ranking list generated by the SIR model, with a spreading
probability β ∈ (0, 0.1] and at a given time t = 10.
Overall Cross-face outperforms all the centrality measures
compared, achieving the most accurate Kendall coefficient
τ on Netscience, USAir97 and Jazz musicians networks.
For the Email network, Cross-face has the highest τ value
when the spreading probability β ≤ 0.03 or β ≥ 0.08,
otherwise Eigenvector slightly competes with Cross-face.
The Eigenvector comes close behind Cross-face on USAir97,
but considerably further behind on both Netscience and Jazz
musicians networks. Heatmap is clearly more accurate than
closeness on all the tested networks. K-shell is more accurate
than degree on Netscience, USAir97 and Email networks,
but it is outperformed by degree on Jazz musicians network.
Closeness outperforms betweenness on both USAir97 and
Jazz musicians networks, and on the contrary, betweenness
is better than it on Email and Netscience networks when
β ≥ 0.07 or β ≤ 0.03, respectively. Eigenvector
is more accurate than both closeness and betweenness
on Email, USAir97 and Jazz musicians networks when
β ≤ 0.03. On both Netscience and USAir97 networks,
the Heatmap outperforms K-shell, but K-shell is marginally
more accurate than it on both Email and Jazz musicians
networks when β < 0.03. Remarkably, all the centrality mea-
sures are positively correlated at the whole range of spreading
probability.
Experiment II: This experiment was performed to answer

Q2. We are interested here in assessing the performance of
the centrality measures. That is, we reran Experiment I while
reporting their computational time as in Eq. 16. Figure 4
shows the average elapsed time ξ of the seven centrality mea-
sures on the four underlying networks. Overall, the cross-face
dominates all other centrality measures on all networks
tested. It finishes eight times faster than the betweenness, five
times faster than both closeness and heatmap, and at least
two times quicker than k-shell on Email, USAir97 and Jazz
musicians networks. It also clearly prevailed over the eigen-
vector by a significant margin on all four networks. Degree
is very competitive with cross-face on Email, Netscience and
Jazz musicians networks, but cross-face is 1.25 times faster
than it on USAir97 network. Apart from cross-face, and on
all networks, the eigenvector is marginally faster than the
closeness by at least a factor of 1.75. In addition, the closeness
is considerably faster than betweenness, and competes with
heatmap on Emails and Netscience networks. Eigenvector
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FIGURE 3. The Kendall’s tau coefficient τ between the tested centrality measures and the ranking list generated by the SIR model, with β ∈ (0,0.1],
at t = 10 on the four underlying datasets: (a) Email, (b) Netscience, (c) USAir97 and (d) Jazz musicians.

is significantly more faster than k-shell on Emails and Jazz
musician networks, but on the contrary, k-shell is quicker than
it on Netscience network.
Experiment III: Here we concentrate on Q3. The goal

was to compare the most key nodes obtained using different
centrality measures. Table 3 records the top-5 nodes of each
measure in four networks. We use a symbol ‘‘gi A gj’’
to denote that ‘‘node gi is more important than node gj’’.
Succinctly, Cross-face identifies more accurate key nodes
than all other tested centrality measures. On Email network,
the cross-face indicated that 105 A 333 A 23 A 16 A 76.
Degree coincides with the cross-face that the two nodes
105 A 333 are the two most key ones, whether Eigenvector
matches it on that 105 is the top-1 node. Closeness and
betweenness coincide with cross-face for only 333 A 23.
Both of K-shell and heatmap behave differently from cross-
face. As for Netscience network, the cross-face articulates
that 78 A 281 A 150, which is consistent with close-
ness and heatmap, and partially matches betweenness on

that 78 A 150, but contrary to eigenvector and degree.
In USAir97 network, the cross-face elucidates that 118 A
261 A 255, which is identical to eigenvector and degree,
and partially matches with betweenness, k-shell and heatmap.
For Jazz musicians network, the top-1 node 60 is identified
by the cross-face, eigenvector and k-shell, while the other
four centrality detect 136 as the top-1 node. We can also
see that the cross-face and eigenvector identify the nodes
136 and 132 as next less influential nodes. This partially
coincides with degree and k-shell on the node 132, and is
contrary to betweenness, closeness and heatmap.

D. DISCUSSION
In terms of accurate node centrality, the results of
Experiment I, in Subsection IV-C, suggest that Cross-face
outperforms traditional centrality measures such as degree,
closeness, betweenness, k-shell and eigenvector. It improves
the identification of highly central or topologically impor-
tant nodes. This is attributable to the virtue of concurrently
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FIGURE 4. Average elapsed time (in secs) ξ of the seven tested centrality measures: cross-face, closeness, betweenness, degree,
eigenvector, k-shell and heatmap on (a) Email, (b) Netscience, (c) USAir97 and (d) Jazz musicians datasets.

considering local and global aspects of network topology
using its cross-clique and face-bridge terms, respectively.
The cross-clique quantifies the structural embeddedness of
dense regions in a network that involve the node. From a
conceptual viewpoint, it captures the local information on
how the node influences its immediate important nodal neigh-
bours through the lens of adjacent cross-cliques. The face
bridge term quantifies the global role of the node based on
the routing of information along key bridges (i.e., important
geodesics).

From the performance perspective, the results of
Experiment II from the previous section, indicate that the
cross-face is relatively faster than all other tested centrality
measures. In practice, this is due to the fact that cross-face
mainly computes the centrality of all nodes based on the set
of symmetrical concepts C̃, which is frequently quite small
compared to the sets of nodes and edges that are used by all
other tested centrality, i.e., nc̃ � n and nc̃ � m.

Taking the correlation between centrality measures
into consideration, the results of Experiment III,
in Subsection IV-C, elucidate that cross-face centrality pro-
vides unique or correlated node identification based on the
topology of the network. When the network contains a large
number of dense regions (e.g., having a high average cluster-
ing coefficient) with many nodes having high degrees (e.g.,
having a high average degree) and there is a small number of
hole structures, the role of the cross-clique term dominates
the face-bridge one, and here the cross-centrality could be
partially correlated with both degree and eigenvector central-
ity measures. This is because the network tends to decompose
into several cohesive clusters (or communities), on which
the nodes that have high degree are potentially the central
ones. On the flip side of the coin, when the network con-
tains a small number of (semi-symmetrical) dense regions,
the role of the face-bridge term dominates the cross-clique
one, even in the existence of a small number of structural
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TABLE 3. The top-5 nodes ranking using Cross-face centrality (CFc),
Degree centrality (Dc), Betweenness centrality (Bc), Closeness
centrality (Cc), Eigenvector centrality (EVc), k-shell centrality (Ksc) and
Heatmap centrality (Hc) on the tested networks.

holes. This is because the effect of bridges comes to play for
determining the central nodes, and the cross-centrality could
be slightly correlated with betweenness and closeness. For
more clarification, let us consider the toy graph in Figure 5
as an illustrative example.

FIGURE 5. A toy graph network.

As shown in Table 4, both of degree and eigenvector
can not identify which nodes are influential. The closeness
and betweenness have the nodes {5, 6} as the most impor-
tant, the nodes {1, 3, 7, 9} as the next most important, and
{2, 4, 8, 10} as the least important. Similarly, the Cross-face

TABLE 4. Cross-face centrality (CFc), Degree centrality (Dc), Betweenness
centrality(Bc), Closeness centrality (Cc), Eigenvector centrality(EVc)
centrality measures of the toy graph in Figure 5.

centrality identifies the nodes {5, 6} as the most influential
ones, but on the contrary to betweenness and closeness,
it ranks the nodes {2, 4, 8, 10} as the next most important,
and {1, 3, 7, 9} as the least influential ones.

In other topological scenarios of the network such as a
mixture of dense regions and structural holes, both of the
cross-clique and face-bridge terms could approximately have
the same merits, and here the cross-face centrality is antici-
pated to produce unique results. Apart from Cross-face cen-
trality, it is generally observed that the conceptual distinctions
between other centrality measures do not frequently appear
as empirical differences in networks. This means that two
centrality indices could have distinct theoretical foundations
while showing practically redundant results since they behave
similarly on a given network.

V. CONCLUSION AND FUTURE WORK
The identification of key nodes in complex networks is a key
step in the development of scientific data mining systems.
We believe that there is a clear gap in the existing complex
network analysis literature on how to efficiently exploit FCA
formulations to encapsulate both the cohesion and the short-
est path based centrality concepts in one measure. On that
basis, we proposed Cross-face, a new FCA-based centrality
measure to quantify the importance of a given node within
the network formulation based on its presence in actionable
cross cliques and bridges.

The novelty of the cross-face centrality framework lies
in the following: first, we provide a concept lattice formu-
lation of the network that facilitates the efficient extraction
of its cliques and bridges through the so-called symmetrical
concepts; second, we leverage the faces of those symmetri-
cal concepts to identify key bridges; third, FCA centrality
measurement is defined to quantify the importance of nodes
within the network based on how it influences other nodes
by hybridizing two different but complementary aspects:
cross-cliques and bridges. The thorough empirical study on
several real-life networks (see Section IV) shows that the
cross-face centrality can quantify the importance of nodes in a
more accurate and efficient manner than other state-of-the-art
centrality indices like degree, betweenness, closeness, k-shell
and eigenvector.

There are still a number of points for future work.
We plan to generalize the Cross-face centrality to detect
key nodes in two-mode data and multi-layer networks and
multi-dimensional ones. We also intend to propose an online
variant of Cross-face algorithm applicable to dynamic net-
works. Finally, since the computation of the cross-clique
and face-bridge terms are independent, we will design a
high-speed cross-centrality by parallelizing the calculations
of Eq. (13), and then intensively investigate its efficiency on
more big, dense and complex data networks.

REFERENCES
[1] M. O. Jackson, Social and Economic Networks. Princeton, NJ, USA:

Princeton Univ. Press, 2010.

206912 VOLUME 8, 2020



M. H. Ibrahim et al.: Cross-Face Centrality: A New Measure for Identifying Key Nodes in Networks

[2] M. Jalili, A. Salehzadeh-Yazdi, Y. Asgari, S. S. Arab, M. Yaghmaie,
A. Ghavamzadeh, and K. Alimoghaddam, ‘‘CentiServer: A comprehensive
resource, Web-based application and r package for centrality analysis,’’
PLoS ONE, vol. 10, no. 11, Nov. 2015, Art. no. e0143111.

[3] S. Oldham, B. Fulcher, L. Parkes, A. Arnatkeviciūté, C. Suo, and
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