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ABSTRACT An explosion field is random and nonuniform, and test sensors can be damaged by fragments
during blast wave monitoring. When accurately and comprehensively obtaining the experimental data and
the dynamic distributions from an explosion field, the quantity and positioning of sensors during blast wave
monitoring are important parameters. In this paper, an optimization method of sensor placement based on
an improved inertia and adaptive particle swarm optimization (IIAPSO) algorithm is proposed to solve
this problem. This work considers two new aspects: 1) the adaptive mutation mechanism and the inertia
weight into classic particle swarm optimization (PSO) and 2) the propagation law of blast waves, the data
errors and the probability of sensor damage during IIAPSO. These mechanisms are employed to enhance
the global search ability and to increase data accuracy. First, the 12 benchmark functions are utilized to test
the performance of the IIAPSO. The performance of the IIAPSO is compared with PSO, linear decreasing
weighted particle swarm optimization (LDW-PSO) and adaptive particle swarm optimization (APSO) in
terms of parameter accuracy and convergence speed. The results confirm that the proposed IIAPSO is more
successful than PSO, LDW-PSO and APSO algorithms. Finally, the IIAPSO is used to optimize the sensor
placement in an explosion field. The simulation and experimental results show that the feasibility of this
algorithm is demonstrated.

INDEX TERMS Explosion field, sensor placement optimization, inertia and adaptive particle swarm
algorithm, fitness function, damage uncertainty.

I. INTRODUCTION
In the development, production and use of weapon systems,
blast damage effectiveness evaluation relies on comprehen-
sive and accurate experimental data and a dynamic parameter
distribution for the explosive field [1]–[4]. Explosion is a
complex transient process accompanied by high temperature,
high pressure and strong electromagnetic field [5], [6]. The
random nonuniform rupture of a shell causes an anisotropic
shockwave, and shockwave propagation will also be affected
by the irregular reflection of the ground. So the extreme
conditions in an explosion make the dynamic parameter mea-
surements very challenging [4].
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During a blast experiment, most of the sensor layouts
in an air blast are circular around the TNT. A circular
layout facilitates the reconstruction of the spatial blast wave-
form [4]. However, the experimental costs are high, and an
improper sensor layout for blast wave monitoring can cause
high coupling data, reducing the relevant characteristic value
of the test data. In addition, sensors can be damaged by
fragments during the test, and large errors can occur between
the results of shock wave field reconstruction based on the
limited test data and the actual results. Thus, it is vital to
optimize the sensor layout in a shock wave field to save test
costs and improve the experimental performance to reflect the
overall blast wave generated by TNT.

Sensor layout optimization is a common problem in
engineering tests. The initial research began in the field
of aerospace. In 1991, Kammer [7] proposed a sensor
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placement method that was based on ranking the contribu-
tion of each candidate sensor location to the linear indepen-
dence of the corresponding target model partitions. In 2007,
Lianzhen et al. [8] proposed a multi-object sensor placement
optimization method in bridge health monitoring and struc-
tural model testing. In 2014, Liu et al. [9] presented a multi-
objective fuzzymatter-element method to optimize the sensor
quantity in a refrigerator car. Guo et al. [10] utilized travel
time tomography with the subregion and multi-scale cell
partition method to develop a method for optimizing sensor
placement in uniform explosions. Bhushan et al. [11] and
Farzin et al. [12] determined optimization problems based on
the minimal cost requirements or sensor failures to achieve
the desired reliability of the system. However, few studies
have made progress in sensor placement optimization con-
sidering random, nonuniform and test sensor damage for blast
wave monitoring.

Thus, it is necessary to develop a new sensor placement
scheme in explosions for better shock wave measurement
and reconstruction in the future. In this paper, a new method
for sensor placement optimization in an explosion field is
proposed that adopts an improved adaptive particle swarm
algorithm (IIAPSO). The attenuation law of the shock wave
in the propagation is applied to the criterion of data acqui-
sition at the sensor placement. In addition, the data error
and the probability of sensor damage are added into the
fitness function so that the established fitness discriminant
model established is consistent with the real test. This paper
is organized as follows. The propagation law of the shock
wave is introduced in Section II. The IIAPSO algorithm
is proposed in Section III, the 12 benchmark functions are
utilized to test the performance of the IIAPSO. The sensor
placement optimization based on the IIAPSO algorithm is
implemented in Section IV, and the numerical simulations
and experimental test is used to test the feasibility of IIAPSO.
Finally, we conclude this paper in Section V.

II. PROPAGATION LAW OF SHOCK WAVE
An ammunition explosion near the ground is equivalent to
a semi-infinite space explosion, and the propagation law of
the shock wave near the ground is similar to that in infinite
space. The overpressure peak1p can be obtained by formula
(1) [13]–[15].

1p =


0.076

R̄
+

0.255

R̄2
+

0.65

R̄3
(
1 < R̄ ≤ 15

)
1.07

R̄3
− 0.1

(
R̄ ≤ 1

) (1)

where R̄ = r
3√ω

is the scaled distance, m/kg1/3, r is the
standoff distance of the place of measurement from the center
of the explosion, and ω is the weight of the explosive in
kilograms [16].

The shock wave propagates in the form of a sphere. The
continuous diffusion during the propagation process will
cause the positive pressure time of the shock wave to lengthen
continuously. Meanwhile, the peak overpressure will rapidly

FIGURE 1. Blast overpressure-distance-time waveform.

decrease exponentially. The propagation law of shock wave
overpressure with distance and time is shown in FIGURE 1.

p (t) = 1p
(
1−

t
τ

)
e
−αt
τ (2)

where τ is the positive pressure time,

τ =
(
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)
·

3
√
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α is the attenuation coefficient,

α=


0.5+1p 1p ≤ 0.1Mpa

0.5+1p
(
1.1−(0.13+0.21p)

t
τ

)
0.1Mpa < 1p

≤ 0.3Mpa
(4)

The propagation law is used as a constraint for subsequent
shock field reconstruction.

III. IIAPSO ALGORITHM
A. CLASSIC PSO ALGORITHM
PSO is a global random search algorithm inspired by birds
flocking in search of food [17]. In D-dimension space,
the basic update formula of PSO of the d-th component of
particle i is defined as follows [10], [18].

vid (k + 1) = wvid (k)+ c1ξ
(
pbestid (k)− xid (k)

)
+ c2η

(
gbestd (k)− xid (k)

)
(5)

xid (k + 1) = xid (k)+ vid (k + 1) (6)

where vi is the i-th particle velocity, xi is the i-th particle
position, pbest is the personal best position, gbest is the global
best position, k is the number of iterations, and w is inertia
weight, i.e., 0 < w < 1; c1 and c2 are the learning factors,
where c1 is used to regulate the step size of particle to pbest
and c2 is used to regulate the step size of particle to gbest ; ξ
and η are the random numbers with uniformly distribution in
the range [0, 1].

B. THE PROPOSED IIAPSO ALGORITHM
PSO is simple and easy to implement, but it is easy to
be trapped in the local optimum and the convergence rate
decreasing in the later period of evolution [19]–[21].
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FIGURE 2. Flow chart of IIAPSO algorithm.

In this paper, an adaptive mutation mechanism and iner-
tia weight were introduced to balance the local exploration
and the global exploration and obtain the great advan-
tages of the convergence property and avoid premature
convergence.

In PSO, the initial population in an optimization problem
may locate far away the real optimal solution, so in the
proposed method, considering a variable step size M (k) for
mutation operator, it starts with a big mutation step size to
increase the chance of searching new areas, and a small step
size is used when the local solution reaches a near optimum
solution. When a particle is selected to mutate, a Gaussian
random disturbance is added to it as Equation (7) [21].

x ′id (k + 1) = xid (k + 1)+M (k) · γ (7)

where γ is a random variable with a Gaussian distribution
(mean is 0, variance is 1), M (k) is a variable step size and
defined as Equation (8).

M (k) = xmax · (tanh (fitness_gbest/0.6)) (8)

where xmax is the maximum particle position, tanh(·) is a
hyperbolic tangent function, fitness_gbest is the global best
fitness.

In addition, to achieve better solution accuracy, the inertia
weigh in Equation (5) is expressed as follows:

w = wmax −

(
k

kmax

)2

(wmax − wmin) (9)

where wmax and wmin are the maximum and minimum inertia
weights, and kmax is the maximum number of iterations.
IIAPSO algorithm is used to find the best system param-

eter. The flow chart of IIAPSO algorithm is shown in
FIGURE 2.

C. EVALUATION CRITERIA
¬ The mean fitness function [22] is the average of the fitness
function value obtained from running the algorithm N times,
as shown in Equation (10).

MEAN =
1
N

N∑
k=1

xk (10)

where xk is the best fitness value obtained at run k .
 The mean squared error (MSE) [21] is calculated by

Equation (11).

MSE =
1
N

N∑
k=1

e2 =
1
N

N∑
k=1

[
xk − x̂k

]2 (11)

where xk and x̂k are real and estimated values at run k ,
respectively.

® Standard deviation (SD) [22] gives the variation of the
fitness function value obtained from running the algorithm
N times, as shown in Equation (12). It is an indicator of the
stability and robustness of the algorithm.

SD =

√√√√ 1
N − 1

N∑
k=1

(xk −MEAN)2 (12)

D. SIMULATION COMPARISON OF IIAPSO AND
DIFFERENT POPULAR PSO VARIANTS
To evaluate the performance of the IIAPSO algorithm,
12 benchmark functions (including Rastrigrin function,
Sphere function and Ackley function, etc) are used to test
PSO, linear decreasing weighted particle swarm optimization
(LDW-PSO), adaptive particle swarm optimization (APSO)
and IIAPSO algorithm. The functions are given by the
TABLE 1.

The inertia weigh in LDW-PSO is expressed as follows:

w = wmax −
k

kmax
(wmax − wmin) (13)

The inertia weigh in APSO is expressed as follows:

w = 0.5 (1+ tanh (fitness_gbest/0.6)) (14)

The tested dimensions were 30. Correspondingly, the max-
imum number of generations was set as 3000, and the popu-
lation size was 20. For the experimental setting, 30 runs of
the algorithm were performed; c1 = c2 = 2, w = 1 in
PSO, wmax = 0.9 and wmin = 0.4 in LDW-PSO, APSO and
IIAPSO.

The performance measurements for the 12 benchmark
functions are listed in TABLE 2. The performance results are
exhibited in terms of MEAN, MSE and SD. From the data in
TABLE 2, it can be seen that the IIAPSO algorithm is superior
to PSO, LDW-PSO andAPSO in terms of optimization ability
and stability.
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TABLE 1. Test functions.

FIGURE 3. 64 sensor placement model.

IV. SENSOR PLACEMENT OPTIMIZATION BASED ON
IIAPSO ALGORITHM
Ideally, the more sensors you have deployed, the more com-
prehensive the test data will be, assuming that 64 sensors are
evenly distributed around the explosion center, as shown in
FIGURE 3. The sensor position is expressed as x(r, θ) under
polar coordinates. During an actual test, if R̄ is too large,
the pressure is beyond the killing range; if R̄ is too small,
the sensors are easily damaged. Therefore, the scaled distance
R̄ is generally required to be 1∼8, i.e., r varies (from 3 m to
10 m) away from the explosion center, and the angle between
the adjacent radii is θ = 45◦. The vertical distance between
the explosion source and the ground is 1.5 m, and the TNT
weighs 4 kg.

TABLE 2. Simulation results.

Combinedwith the shockwave propagation law in terms of
Equation (1)∼(4) and the biharmonic spline surface interpo-
lation algorithm (BSSIA) [15], the overpressure field model
of the shock wave with 64 points is obtained, as shown in
FIGURE 4.

The above IIAPSO algorithm is used to optimize the
model.

A. FITNESS FUNCTION
A fitness function is used to evaluate the rationality of the
optimized sensor layout.

During an actual test, due to the damage characteristics of
ammunition, some test devices will be hit by fragments and
lose data. At the same time, the data errors will be caused
by obstacles or depressions in the propagation process of the
shock wave. The data errors and the probability of device
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FIGURE 4. Overpressure field model constructed with 64 points.

damage are added into the fitness function to obtain the
optimal IIAPSO solution.

Setting the quantity of sensors as n, psn is the interpolation
pressure optimized by IIAPSO, and p64 is the interpolation
pressure for 64 given ideal distributions. M is the number of
interpolation data, and the uncertainty ui can be expressed as

ui =

√√√√√ M∑
j=1

(
psn

(
xj
)
− p64

(
xj
)

p64
(
xj
) )2/

(M − 1) (15)

The impact of shock wave vibration on the data uncertainty
of the measuring point near the detonation center is greater
for the fragmentation produced by the explosion of ammu-
nition. The measurement uncertainty of testing points um is
determined the distance of the detonation center, as shown in
Equation (16).

um =

√√√√ n∑
j=1

U2
mj

(
xj
)/

(n− 1) (16)

where n is the quantity of sensors, Umj is the measurement
uncertainty of a single point, it is close to linear distribution
as shown in Equation(17).

Umj
(
xj
)
= axj + b (17)

where a is the slope, b is the intercept. According to the
statistics, Umj = 1% at r = 3 m, the Umj = 0.5% at
r = 10 m, from which the coefficients of a and b can be
obtained.

According to the statistical probability of the sensors being
hit by fragmentation during a static detonation test over more
than 20 years, the quantity and distribution of the fragmen-
tation are different due to differences in the ammunition

and installation form, and the damage probability of sensors
arranged at different test radii is nonlinear, which is related
to the distance from the measuring point to the detonation
center. Hence, the optimal sensor distribution can be obtained
by maximizing the quantity of sensors arranged sensors n.
The uncertainty ud is

ud =

√√√√ n∑
j=1

U2
dj

(
xj
)
/(n− 1) (18)

where Udj is the damage probability of the sensors.
There are many factors affecting the undetermined equa-

tions except for the above analysis, but the value by minimiz-
ing ui, um and ud can be used as a judging index with regard
to optimizing sensor distribution.

It is hoped that the reconstruction shock wave field
obtained by the optimized sensor distribution is as close as
possible to the shock field reconstructed at 64 sensors, so the
function of the optimization problem is

min f (x) = ub =
√
u2i + u

2
m + u

2
d

where X = [xk1, xk2, · · · , xkn]
s.t. xkj ∈ I64

(19)

The contribution of this paper is to use the IIAPSO algo-
rithm to minimize the ub so that the actual sensor placement
in an explosion can be optimized for better reconstruction in
the future.

B. OPTIMIZATION PROCESS BASED ON
IIAPSO ALGORITHM
IIAPSO is used to obtain the optimal value of ub and the
sensor distribution. To make the sensor distribution meet the
engineering requirements, the position xi is calculated each
time and rounded while searching for overlap points. If there
are overlap points, one position is kept, and the rest are
replaced with random integers. The detailed process is as
follows:

Step 1. Produce a particle. The D-dimension particle is
produced by selecting a distribution model randomly accord-
ing to the quantity of sensors, which is expressed as x =
(r1, r2, . . . , rn; θ1, θ2, . . . , θn), where ri and θi are the radius
and angle of i-th sensor, respectively, and n is the quantity of
sensors, where D = 2n.
Step 2. Initialize vi and xi for particle i. The position xi

is rounded, and overlap points are determined. If there are
overlap points, keep one and replace the rest with random
integers.

Step 3. Calculate the fitness function ub and initialize pbest
and gbest .
Step 4. Update the inertia weight, the variable step size, the

particle velocity and position according to formulas (5)∼(7)
and calculate the fitness. The position xi is rounded, and
overlap points are determined. If there are overlap points,
keep one and replace the rest with random integers.
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FIGURE 5. Simulation result by PSO, LDW-PSO, APSO and IIAPSO.

Step 5. Update pbest . The fitness value of each particle is
compared with the fitness value of pbest , and pbest will be
replaced if the former is better than latter.

Step 6. Update gbest . The fitness value of each particle is
compared with the fitness value of gbest , and gbest will be
replaced if the former is better than latter.

Step 7. Record the fitness value of gbest for each iteration.
Step 8. If the algorithm reach the maximum number of

iterations, stop the operation and output the result; otherwise,
return to Step 4.

C. NUMERICAL SIMULATIONS AND EXPERIMENTAL TEST
1) SIMULATION COMPARISON OF PSO, LDW-PSO,
APSO AND IIAPSO
PSO, LDW-PSO, APSO and IIAPSO are applied to optimize
the sensor distribution of FIGURE 3. The fitness function
ub is used to test the PSO, LDW-PSO, APSO and IIAPSO
algorithms. For the experimental setting, each algorithm is
run 30 times for each sensor distribution, the population size
is 30, the max iteration number tmax = 3000, the inertia
weight wmax = 0.9, wmin = 0.4, the particle velocity v ∈
[−7, 7], and position x ∈ [1, 64].

The MEANs of ub for the different sensor quantities are
shown in FIGURE 5 and TABLE 3. The results indicate
that ub obtained by PSO, LDW-PSO, APSO and IIAPSO
decreases gradually with the increase of the sensor quantities,
and the MEAN of ub obtained by IIAPSO is superior to
PSO, LDW-PSO and APSO when the sensor quantities is
greater than 6. When the sensor quantities are greater than
18, the MEAN obtained by IIAPSO is less than 5%, but the
change rate is significantly slower.

2) COMPARISON OF OPTIMIZED DISTRIBUTION AND
TRADITIONAL SENSOR DISTRIBUTION
According to themilitary standard, 3∼4 rays from the detona-
tion center with a certain angle are used to lay the sensors, and
each ray may lay 3∼6 sensors. To compare the performance
of the optimized sensor distribution, 20 sensor distributions
are deployed in a ray distribution fashion with four angle
positions (30◦, 45◦, 60◦, 90◦), as shown in FIGURE 6(a).
According to TABLE 3, when the particle dimension n = 20,
the MEAN value of ub is 4.46%, and the sensor distribution
optimized by IIAPSO is shown in FIGURE 6(b). The average

TABLE 3. Optimized results of PSO, LDW-PSO, APSO and IIAPSO.

FIGURE 6. Different sensor distributions.

TABLE 4. Comparison of different sensor distributions.

errors and the maximum errors with the different sensors
distributions are shown in TABLE 4. It is clear that the
indexes in the optimized distribution are superior to those of
the others.
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FIGURE 7. Overpressure field model constructed with 20 points.

FIGURE 8. Measured image.

The overpressure field reconstructed by the optimized dis-
tribution is shown in FIGURE 7. A comparison between
FIGURE 7 and FIGURE 3 shows that the reconstructed peak
distribution and peak contour lines based on the 20-point
optimized sensor distribution are consistent with the 64-point
distribution.

3) EXPERIMENTAL TEST
To further verify the optimization method, 20 shock wave
recorders were installed in an explosion test according to
FIGURE 6(b). The tested ground was concrete, the test
recorders were installed in the center of a square steel plate
with a side length of 400 mm and a thickness of 15 mm, and
the radial parts of the measuring points were arranged on the
steel plate with a 10 mm thickness. Then, 4 kg of cylindrical
TNT was placed 1.5 m above the ground through a wooden
frame, and a steel plate with a side length of 2m and thickness
of 10 mm was laid below the explosion center.

The test data from 20 measuring points are shown in
TABLE 5. FIGURE 8 is the measured image. The overpres-
sure field reconstructed by the 20 tested data points is shown
in FIGURE 9(a), and the peak pressure contour lines are
shown in FIGURE 9(b). It can be seen from FIGURE 8 that
the wave front formed by the explosion is approximately

TABLE 5. Sensor distribution and test peak overpressure.

FIGURE 9. Tested overpressure field model with 20 points.

semi-spherical and slightly protruded outwards on the left
side. As the blast wave velocity is proportional to the pres-
sure, the peak pressure of this direction on the same scaled
distance is greater than in other directions, which is consis-
tent with the reconstructed peak pressure contour lines in
FIGURE 9(b). The MEAN value of reconstruction between
the tested data and the ideal 64-sensor distribution is 5.63%.
It can be seen from FIGURE.7 and FIGURE.9 that they
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are very similar, but in FIGURE.9(b), the contour line of
the marked 1 is different from FIGURE.7(b). The distances
between the contour lines marked 2, 3 and 4 and the sensors
are different. The reasons for such similarity are as follows:
¬ Reasonable measurement points selected by IIAPSO;
 The blast wave generated by the EXPLOSION of TNT
cartridge without metal shell is evenly distributed in all direc-
tions; ® The shock wave is less disturbed when it travels on
the flat surface of cement and steel plate.

V. CONCLUSION
Shock wave tests are expensive and resources are limited,
but the appropriate sensor number and placement are vital to
obtain complete information on the shock wave field in the
case of a certain damage probability, which can reduce mea-
suring point data coupling. An optimization algorithm based
on IIAPSO is proposed for measuring the point optimization
of a nonuniform explosion field. This paper shows that the
ub for different sensor distributions can be improved by the
IIAPSO algorithm. When the mean value of ub is 4.46%,
the quantity of sensors n = 20. The simulation and test
results show that the reconstructed explosion field using the
optimized data is consistent with an explosion image using
64 points, and the optimization algorithm is feasible.
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