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ABSTRACT Accurate state-of-health (SOH) diagnosis and remaining useful life (RUL) prediction of
lithium-ion batteries (LIBs) play an extremely important role in ensuring safe and reliable operation of
electric and hybrid vehicles. However, due to the complex electrochemical properties, it is difficult to achieve
the goal of accurate diagnosis and prediction. Here, we propose a novel data-model fusion method to perform
accurate SOH estimation and RUL prediction for LIBs, which considers nonlinear dynamics of not only
discharging process but also charging process. A long short-term memory (LSTM) network is first employed
to model battery SOH dynamics. A neural network (NN) model is then developed to describe battery capacity
degradation mechanism according to the prior knowledge extracted from the charging process. Finally,
an unscented Kalman filter (UKF) algorithm is incorporated with the LSTM network and NN model to
filter out the noises and further reduce the estimation errors. Different from the traditional model fusion
approaches, this proposed method uses full information from all sensors, and with no need for any physical
model. Experiments and verification demonstrate both the effectiveness of this proposed method and its
superior modeling performance as compared with several commonly used methods.

INDEX TERMS State-of-health diagnosis, remaining useful life prediction, long short-term memory, model

fusion, unscented Kalman filter.

I. INTRODUCTION

In recent years, with the rapid development of energy storage
technology, LIBs have been widely used in the field of engi-
neering applications, e.g., electric vehicles (EVs), hybrid EVs
and so forth, due to the advantages of high energy density,
high power density, and long lifetime [1], [2]. One of the
most important issues in the application of LIBs is to meet
the safety-critical and energy-efficient requirements, in which
effective SOH diagnosis and RUL prediction are considered
as a key enabler, because the electrical properties, stability
and safety alterations often change with battery SOH and
RUL [3], [4]. SOH is defined as a percentage of internal resis-
tance or capacity, which is utilized to describe the aging level
of battery in each charge-discharge cycle. And RUL is defined
as the number of remaining useful charge-discharge cycles
at a specific cycle, which is calculated by the k-step-ahead
projection of SOH [5], [6]. Therefore, the estimation accuracy
of SOH directly affects the results of RUL prediction.
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Accurately estimating SOH and predicting RUL are of
great significance to provide the performance variance and
ensure the reliable operation of battery during its whole stor-
age life time. However, the complex internal electrochemi-
cal properties and unpredictability of physical measurements
lead to the considerably complicated degradation behaviors
of LIBs. Thus, it is considered as a great challenge to perform
an accurate SOH estimation and RUL prediction.

Several lines of past work have contributed to estimate
SOH and predict RUL of a battery. Some intelligent algo-
rithms are applied to estimate SOH by using process parame-
ters such as voltage, temperature and current measurements.
Generally, these processes and algorithms can be classified
into the following two categories: 1) Mode-based method; 2)
Data-driven method.

A. MODE-BASED METHOD

Mode-based methods are conducted to capture the degrada-
tion dynamics based on the models that are used to describe
the dynamic properties of battery, such as electrochemical
models [7], equivalent circuit models [8], or empirical models
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[9]. These estimation methods are often implemented by
using the advanced filtering techniques, such as particle filter
(PF) [10], extended Kalman filtering (EKF) [11], [12], slide
mode observer [13], and Lyapunov-based adaptive observer
[14], [15]. These methods could obtain good robustness and
are also easy to conduct for online estimation, but they all
require precise mathematical models. This is very difficult to
satisfy in actual industrial processes due to lack of sufficient
physical insights of aging dynamics.

B. DATA-DRIVEN METHOD

Benefitting from the massive historical data and no request
of an explicit physical model, the data-driven methods have
been widely used in the field of battery SOH and RUL dynam-
ics in recent years. These modeling methods are usually
conducted by using a large number of offline data to train
and establish the nonlinear approximate models between the
input and the output features. The commonly used methods
include EKF method [16], Wiener model [17], NN model
[18], [19], Gaussian regression model [20], support vector
machine (SVM) [21], fuzzy logic model [22], and deep learn-
ing method [23], [24]. Although these methods have numer-
ous successful applications in estimating SOH and predicting
RUL, they do not consider the dynamic natures of battery
aging mechanism, especially the aging dynamics between
the two adjacent cycles. This may lead to poor performance
in practical applications due to the presence of noise and
uncertainty. Besides, the deep knowledge extracted from the
charging process is also not considered, which can be applied
to optimize the traditional data-driven methods.

Therefore, in order to further improve the accuracy of diag-
nosis and prediction, some combined model-based and data-
driven methods are proposed to overcome the limitations of
the aforementioned methods. These methods, include Brow-
nian motion model and PF method [25], [26], exponential
model and PF method [27], NN and PF method [28], and
SVM and PF method [29], are employed to track the degra-
dation behavior of battery capacity. In these methods, the PF
algorithm is conducted based on the physical model; but, it’s
very difficult to obtain the explicit physical model in practical
applications due to the complex nonlinear dynamic feature of
LIBs. In addition, these methods have poor performance of
long-term prediction because they are not suitable for big data
processing. Thus, these methods have some limitations.

Inspired by model fusion methods, in this paper, we pro-
posed a novel data-model fusion method to estimate SOH and
predict RUL for LIBs. A LSTM network was first trained to
model the complex SOH dynamics according to the discharge
voltage, temperature, and current measurements. In addition,
it is well known that the NN modeling method represents the
nonlinear behavior of a time series well; given this, it was
used here to establish the state space model for describ-
ing battery capacity degradation mechanism. Then, a SOH
estimator combining the aforementioned two models and
UKF algorithm was proposed to filter out the noises and
reduce the estimation errors. Unlike the traditional model
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fusion methods, this modeling method fully considers the
data information of all sensors, and does not require any
physical models. Besides, the deep transcendental knowledge
extracted from the charging process is considered in the
modeling process. In addition, this proposed method makes
full use of the advantage of both machine learning and model-
based filtering technique. Thus, it can effectively improve the
estimation performance of SOH and RUL of LIBs.

This paper is organized as follows: Review of LSTM
network is described in Section II, modeling and methods
in Section III, experiments and verification in Section IV,
summary and conclusion in Section V.

Il. REVIEW OF LSTM NETWORK

As a variant of recursive neural network (RNN), the LSTM
network has been widely used in the field of state estimation
of LIBs, because it has been proven to have strong robustness
to dynamic load, hysteresis, aging, and parameter uncertainty.
By using an input gate, a forget gate, and an output gate,
the LSTM unit can decide what to remember and what to
forget, and is thus capable of dealing with long-term depen-
dencies. In LSTM framework, the output can be represented
by the composite function as follows:

fi = oWy - i1 + Wip - x; + by) (1)
ir = 0 (Whi - hy—1 + Wi - x¢ + bi) @)
¢ =frc—1+i -G 3)
with
¢ = tanh(Whe - hy—1 + Wae - X1 + be) “4)
0r = 0(Who - hy—1 + Wxo - X1 + bo) 5
h; = oy - tanh(cy) (6)

where the initial hidden state Cy, is set to a zero matrix;
o (+) is the sigmoid function; tanh(-) is the hyperbolic tangent
function; f;, iy, 0;, c; are the forget, input, output gates, and
memory cell, respectively; #4; is the output of the hidden
layer at time ¢. Every gate can be seen as a single layer fully
connected neural network model with a sigmoid function. Its
input is a vector, which consists of the time series output of
the previous time and the input of the current time. Its output
is a real vector between 0 and 1, which is able to control the
memory and forgetting degree of previous information and
current information. Each gate has its set of network weight
matrix and bias that are denoted by W and b. The subscripts
of W represent the transformation occurring between the two
respective components, such as W represents the weight
connecting the time series output of the previous time and
the forget gate output, W, represents the weight connecting
the input of the current time and the forget gate output, by
represents the bias of forget gate.

lIl. MODELING AND METHODS

The main purpose of this study is developed a novel data-
model fusion method to provide a prognostic framework
for SOH and RUL of LIBs, as indicated in Fig. 1. Herein,
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a LSTM network is first developed to represent battery SOH
dynamics, a NN-based state-space model is then constructed
to describe the aging mechanism of battery. Finally, an UKF
algorithm is incorporated with the two models to estimate
SOH and predict RUL.

A. LSTM-BASED SOH MODELING

1) DEFINITION OF SOH AND RUL

SOH is a health index to describe the aging status of battery
in each charge-discharge cycle, which is usually represented
by parameters such as capacity, internal resistance or number
of cycles [30]. In this work, the capacity ratio is selected
to define battery SOH; and SOH in the kth cycle can be
described by the following equation:

SOH; = 2 x 100% @)
Co
where SOH;, and Cj represent the SOH and capacity in the
kth cycle, respectively; Cy is the nominal capacity.

RUL represents the number of cycles that is available
before the battery fails. The capacity value of battery failure
is called end of life (EOL) threshold, which is often regarded
as the capacity reaches 70-80% of the initial value. The
definition of EOL is given as follows:

EOL =Cy - n ®)

where 7 is a coefficient n € [0.7, 0.8].
The actual and predicted RUL are separately given as:

RUL = Tgor — T; 9
RUL = Tgor — T, (10)

where Tror and fEOL are the cycles at the actual and pre-
dicted EOL, respectively; T is the current charge-discharge
cycles of battery.

2) LSTM-BASED SOH MODELING

According to Eq. (7), estimating SOH is equivalent to esti-
mate battery’s capacity. The capacity training model can be
established by using the following equation:

w1 D (1n

where Cy is the actual capacity in the kth cycle; x; , is a
historical input vector at sampling time ¢ from the kth cycle;
w is the sliding window (SW) length; f(-) is a LSTM model
established by using Egs. (1)-(6). By using the collected
dataset, this LSTM model is easily constructed using the back
propagation through time (BPTT) training algorithm accord-
ing to the modeling error Ey (¢). In this paper, the SW length is
setas w € [1, m], and m is the length of x ;. It is important to
note that x; ; can be either any of measured voltage, current,
temperature and sampling time or any combination of these
parameters.

When i > 1, the on-line prediction of capacity based on
LSTM model at cycle number k4-i can be obtained as follows:

’xlg+i,t+w—1]) (12)

h h
Ck Zf([xk,p xk,t+]’ e

~ _ 7 0 0
Crori =X i Xeqio1r
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where é’kﬂ- represents the predicted capacity in the k + ith
cycle; x; +i,¢ 18 the online observed vector at sampling time ¢
from k + ith cycle; f (+) is the trained LSTM model. Note that
the data structure of x it is the same as that of x; ;. When
the capacity of battery is obtained, the SOH can then be easily
calculated by using model (7).

B. NN-BASED CAPACITY DEGRAATION MODELING
Charging of battery was often carried out in a constant current
(CC) and constant voltage (CV) mode. Generally, in the
CV stage, the battery current will change in different aging
times, which can be considered as exponentially related to
the number of cycles. In addition, the charged capacity also
changes with the aging times during the CV stage. Hence,
an exponential function can be used to escribe the charged
current dynamics during the CV stage, which is given as
follows [31]:

I(t) =a-exp(=B-1)+y 13)

where [ is the charging current; ¢ is the sampling time; «, 8
and y are the model parameters, which need to be identified
using the sampling data.

Here, two polynomial function models are used to describe
the relationship among the model parameter B, charged
capacity Qy, and the cycle number k&, respectively, which are
given as follows:

Br=a -k +ay kK> +az-k+ay (14)
Oevik = b1 k> + by - k> + b3 -k + by (15)

where  is obtained by model (13); Q. is the charged capac-
ity during the CV stage, which can be obtained by using
ampere hour integration method; ay, az, a3, a4, b1, b2, b3 and
by are the model parameters that need to be identified; & is
the cycle number.

Here, the battery capacity Cy is used as the state variable
to describe the degradation mechanism of battery. The model
parameter fB; in Eq. (14), charged capacity Q. x during
the CV stage in Eq. (15), and Cy_; are taken as the input
variables. Thus, the state-space equation can be expressed by
using the following equation:

Cr = W(Cr—1, B, Oevi) + 1k (16)

where Cy is the capacity in the kth cycle; i(-) is an unknown
nonlinear function; r; denotes the modeling error. It’s usu-
ally very difficult to find a definite analytic expression for
model (16) because of the complex electrochemical reaction
process.

Hence, a RBF neural network model is used here to approx-
imate model (16) to describe the aging dynamics between the
two adjacent cycles because it can achieve high prediction
accuracy without requiring prior knowledge. The output of
kth cycle is represented as follows:

h
1
=Y opiexp(—— [v — i) (17)
1 207,
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FIGURE 1. Framework of SOH estimation and RUL prediction.

Here, wy,; is the weight of the kth cycle connecting hid-
den layer and output layer; ci; is the center; vy =
[Ck—1, Bk, Ocv.k] is the input vector; okz is the width; A is
the number of hidden neurons. By using the identified data
from each cycle, this NN model is easily constructed using
the traditional gradient descent algorithm according to the
modeling error of Eg(t).

For n > 1, the on-line prediction of capacity based on NN-
based model at cycle number k + 7 can be updated as follows:

Cran = W(Cron—1, Brtn» Ocvktn) (18)

where é’Hn is the predicted capacity at cycle number k + n;
the predicted capacity é‘k+n,1 , ﬁk+n, and ch, k—+n are used as
the online inputs for RBF network; IA1(~) is the trained RBF
model.

C. UKF-BASED MODEL FUSION METHOD

UKF is a model-based filtering algorithm on account of dis-
crete system, which specializes in dealing with uncertainty
and nonlinearity. This algorithm has a better ability to strip
noise out of a stream of data, and can achieve better estimated
performance for the nonlinear systems and is easier to imple-
ment compared with the EKF method. In UKF approach, UT
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transformation is used to deal with the nonlinear transfer of
mean value and covariance, thus it is no need to compute
the Jacobi matrix and perform any form of approximation to
the nonlinear system function [32]. Therefore, it can greatly
reduce the computational complexity. Hence, an UKF algo-
rithm was used to incorporate with the LSTM network and
NN model to filter out the noises and further reduce the
estimation errors to obtain an optimized estimation of battery
SOH.

1) UKF ALGORITHM

Consider a nonlinear system y = f(x), where x is an n-
dimensional state vector with mean vector x and covariance
matrix Py, the posterior statistics of y is determined by 2n + 1
sigma points y; with corresponding weights W; according to:

Xo =X
Xi =X+ (n+ DG/Pi
Xitn = % — (1 + M)(/Poizn
Wit = A/(n+ 1)
W§ = a/(n+ 1)+ (1 —a® + B)
W = W =1/{2(n+ 1)}

19)
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where A = a(n+ k) —n is the scaling factor, and adjusting its
value can improve the accuracy; (-); represents the ith column
of the matrix; « determines the distribution of sigma points
around the mean vector, which is usually set as « € [0, 1];
and k is usually set as k = 3 — n; B is the state distribution
parameter.

In this paper, o and § are empirically chosen as 0.01 and
2.The sigma points are projected through the nonlinear sys-
tem process y; = f(x;)- The mean and covariance of y are
obtained as follows:

2n

yi=)_ Wiy (20)
i=0
2n

Py =Y WiGi—»oi—»" @1
i=0

Generally, UKF has a predictive updating structure. For
each time step k, firstly, the state mean vector and covariance
matrix are predicted based on the state vector in step k-
1; then, in the update step, the predicted mean vector and
covariance matrix are updated based on the new measured
values obtained in the current time step.

2) SOH ESTIMATION BASED ON THE PROPOSED METHOD
LIB is a strongly nonlinear system due to its complex electro-
chemical reaction process, which leads to different properties
under different conditions; this thus brings great difficulties
to the observation. Considering the advantages of data-driven
methods in modeling process, a data-model fusion method
is proposed here to estimate battery SOH and predict RUL.
In particular, this proposed model fusion method is performed
only using the information of all sensors. In the process of
online estimation SOH, model (11) is chosen as the mea-
surement function, and the measurement vector is the outputs
of LSTM network. Model (16) is used as the state transition
function, and the state vector C is the output of model (18).
The UKF algorithm is used to filter out the measurement
noise and reduce some other uncertainties, and update the
estimation vector of SOH. The state-space model is described
as follows:
State function:

Ci = W(Cr—-1, Bk, Qevyk)

h
1
= ;wk,iexm—;kz [ve —exiD+q 2

Measurement function:

LSTMy =f(Ix) 1o Xf ps 2 X D=Crtp  (23)

where g ~ N(0, Q) and p ~ N(0, R) are the Gaussian state
noise and measurement noise, respectively. This data-model
fusion method fully considers the characteristic parameters
of charging and discharging process such as current, volt-
age, temperature and capacity. At the same time, the UKF
algorithm is applied to reduce the measurement noise and
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uncertainty. Therefore, this proposed method can effectively
improve the estimation accuracy of SOH.

3) RUL PREDICTION BASED ON THE PROPOSED METHOD
When RUL prediction is carried out, the prediction model
is established using the history data of battery; and then the
model is applied to conduct multi-step prediction. Assuming
that the length of SW is w, the number of real values in the
previous sliding window is k; and then the predicted SOH
value at 7 step are given as follows:

M@ = g(st sty st D (24)
§Z+1 = M([:S:[, o ) S;)_w+]])
(25)

S 0
s St—w4k+1, Sl*WJrk’ e

where g(-) denotes an unknown nonlinear function; M (-)
denotes the trained model; sf’ denotes the history data of SOH
at ¢ prediction step; 5;41 is the online prediction SOH at # + 1
step. Note that the ¢ 4 1 prediction step represents the ¢ + 1th
cycle, not the sampling time in acycle. s;_, ,; is the observed
value of SOH, which is updated by models (22) and (23).
Here, the LSTM network is selected to train the model (24).
Based on this, the SOH value at Ti-th charging-discharging
cycle can be predicted. If the predicted SOH reaches the EOL
threshold, the battery RUL can be obtained by model (10).

It should be noted that the proposed method in this paper
is trained on dataset obtained from 18650 LIBs, and the same
architecture can be trained on a completely different battery.
However, the architecture and network parameters, such as
the learning rate, will not change. In practical application, if it
is a completely different type of battery, it needs to retrain the
network framework. If the battery type is the same, then the
training results in this paper can be directly applied.

IV. EXPERIMENTS AND VERIFICATION

In this section, we extracted the features that effectively
reflect the aging natures of LIBs, and the collected data
was conducted to model and verify the effectiveness of the
proposed modeling architecture.

A. DATA DESCRIPTION

The 18650 LIBs used in this paper are from the NASA Ame-
sPrognostics Center of Excellence with the rated capacity
of 2Ah. And the chemistry of li-ion cell is indicated in Table 1
[33]. The experimental data were collected from the bat-
tery prognostics test bed, including power supply, DC elec-
tronic load, electrochemical impedance spectroscopy (EIS),
voltmeter, thermocouple sensor, thermal chamber, peripheral
component interconnect (PCI) extensions for instrumentation
chassis based on data acquisition, and experimental control
conditions. The LIBs used here were run through three differ-
ent operational profiles (charge, discharge, and impedance) at
different ambient temperatures. Charging process was carried
out in a constant current (CC) mode at 1.5A until the battery
voltage reached 4.2V, then continued in a constant voltage
(CV) mode until the charge current dropped to 20mA. After
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TABLE 1. Li-ion cell chemistry.

8wt% PVDF binder
Positive 4wt% SFG-6 graphite
Electrode 4wt% carbon black
84wt% LiNiong00v15Alov0502
Negative 8wt% PVDF binder
Electrode 92wt% MAG-10 graphite
Electrolyte 1.2 M LiPFs in EC: EMC (3:7 wt%)
Separator 25um thick PE (Celgard)
2.5 T T T
=
Tis ‘ 1
- > N NM\
Q
s B33 |
§* B34
0.5 B36 | |
B41
B42
0 n . .
0 50 100 150 200

Cycle number

FIGURE 2. Discharged capacity versus cycle number.

that, different exciting current were used to discharge until
the battery voltages reached 2.7, 2.5, 2.2 and 2V. Note that all
the charging models were the same, but the cutoff voltage for
different batteries were different.

In order to verify the effectiveness of the proposed method,
the batteries (B33, B34, B36, B41, and B42) run at two
different ambient temperatures are selected here. Where bat-
teries B33, B34 and B36 were run at temperature of 24°,
batteries B41 and B42 were run at 4°C. The features of dis-
charge process, including current, temperature, voltage, and
capacity, were extracted. During the experiments, the num-
ber of cycles of batteries B41and B42 were shorter because
they discharged at a lower ambient temperature. Thus,
in order to increase the number of cycles and fully verify the
effectiveness and correctness of the proposed architecture,
the data sets of batteries B41land B42 were combined with
B36 datasets. In the experiments, a total of 197 cycles were
collected, and each cycle contained a charging-discharge pro-
cess. The degeneration capacity curves for all the selected
batteries were indicated in Fig. 2.

As shown in Fig. 2, it is obvious that the capacity of all
the selected LIBs degrade with the cycle number increases,
but the degradation rates of all batteries are different. This
is because the discharge capacities are related to several
parameters, such as charge current and voltage, discharge
voltage, current and temperature, etc. In addition, it can also
be seen the battery capacities are not always declining, but
suddenly rising in a relatively smooth stage at some times.
This is because the ion concentration inside the battery tends
to balance due to the diffusion effect. This phenomenon is
called battery self-charging effect, which is mostly obvious in
type B33 and B34. Besides, the maximum observed capacity
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FIGURE 3. SOH modeling process using LSTM.

of B33 is lower than 1.4Ah (EOL) at 143th cycle, which
implies the serious performance degradation.

B. OFFLINE TRAINING FOR THE PROPOSED METHOD

1) TRAINING FOR SOH ESTIMATING MODEL

In this section, the discharge datasets of B34, including the
temperature, voltage, and current measurements, were used
to train SOH estimating model, and the rest battery datasets
were used for online prediction. During the training process,
the w is set as 20; the data sets of the first 80 cycles were
used for modeling, and the remaining data were used for
validation. For the LSTM network, according to the practical
experience and prior process knowledge, the initial learning
rate and break error were set as le-2 and le-6, respectively.
And the max iterations was set as 300. The model output and
absolute error over the whole training data and validation data
are shown in Fig. 3.

Two evaluation criteria, including root mean square error
(RMSE) and mean absolute percentage error (MAPE), are
used here to evaluate the estimating accuracy of SOH, which
are given as follows:

RMSE = | > (C(k) — C(k))*/m (26)
k=1
1 & Ctk) = Clk)
MAPE = — ) | ——— (27)
n ;; Ck)

where m is the total cycle number, C(k) and C (k) represent
the real and predicted capacity, respectively.

2) TRAINING FOR CAPACITY DEGRADATION MODEL

Here, the charge datasets of B34 were used for training the
capacity degradation model, and the rest battery datasets were
used for online prediction. Firstly, the current data of CV
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FIGURE 4. Coefficient 8 and charged capacity during the CV stage.

stage was used to identify the model parameters 8 and Q..
Then, we fitted the nonlinear relationship between 8 and Q.
with respect to the cycle number according to models (14) and
(15). The fitting results of these two parameters were shown
in Fig. 4. Then, a RBF network was used to train the capacity
degradation model. In the training process, the data sets of the
first 80 cycles were used for modeling, while the remaining
data sets were used for validation. According to the practical
experience and prior process knowledge, the initial learning
rate and break error were set as le-2 and le-4, respectively.
And the max iterations was set as 200. The model output and
absolute error over the whole training data and validation data
are shown in Fig. 5.
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3) TRAINING FOR RUL PREDICTION MODEL

There is no need to perform the inputs selection for RUL
prediction model due to its capacity-to-capacity structure. Its
training process was the same as the SOH modeling process.
The w is set as 30. The data sets of the first 80 cycles were
used for modeling, and the remaining data sets were used for
validation. The initial learning rate and break error were set
as le-2 and le-6, respectively, And the max iterations was set
as 300. The model output and absolute error over the whole
training data and validation data are shown in Fig. 6.

C. ONLINE VERIFICATION BASED ON THE PROPOSED
METHOD

1) ONLINE ESTIMATING FOR SOH

By using models (12) and (18), the datasets from B33, B36,
B41, and B42 were used to evaluate the performance of
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FIGURE 7. SOH prediction results and estimation errors.

the proposed method. SOH estimation results and estimation
errors over the whole cycle numbers for the four cells are
indicated in Fig. 7.

As shown in Fig. 7, it is obvious that the proposed method
was capable of tracking battery SOH dynamics for both high
and low ambient temperatures with a good approximation
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TABLE 2. Comparison of SOH estimation accuracy on RMSE.

Method B33 B36 B41 B42
NN [18] 9.716e-4 | 7.125¢-4 0.0036 0.0031
LSTM [23] 9.333¢e-4 | 6.858¢-4 0.0024 0.0022
Proposed method 1.777e-4 1.521e-4 | 2.523e-4 | 6.899¢-4
TABLE 3. Comparison of SOH estimation accuracy on MAPE.
Method B33 B36 B41 B42
NN [18] 0.5732 0.0184 0.5744 3.6281
LSTM [23] 0.0537 0.0157 0.4431 3.3119
Proposed method 0.0079 0.0046 0.0324 0.0541

error. This means that the proposed modeling method can be
used to estimate SOH under a wide temperature range.

The predictive capability of this proposed method was also
compared with conventional NN method [18], and LSTM
method [23]. All these methods were carried out by using the
same experimental data, model parameters, and data struc-
ture. For comparison, the error indexes of different modeling
methods, such as RMSE and MAPE, are calculated; where
the smaller the error indexes, the better the prediction perfor-
mance. The error indexes RMSE and MAPE for the test data
of different methods are shown in Tables 2 and 3, respectively.
It is clear that the proposed method performed substantially
better when compared with other existing methods due to its
smaller error indexes. This is because the proposed modeling
method fully considers the data information of all sensors,
and does not require any physical model. Besides, it consid-
ers the dynamic natures of battery aging mechanism, espe-
cially the aging dynamics between the two adjacent cycles.
In addition, it is also because that the proposed method is
carried out by taking advantage of both machine learning and
model-based filtering technique, which suppresses the sys-
tem measurement noises and further reduces the estimation
errors. Thus, it can obtain a better estimation ability than the
traditional modeling method, such as NN method and LSTM
method.

2) ONLINE PREDICTING FOR RUL

Then, we will discuss the battery RUL prediction results.
In this case studies, the B34 and B36 are more suitable
to select as the research object according to Fig. 2. Here,
the EOL values of B34 and B36 were set to 70% and 81%
of the nominal capacity, respectively. The cycle numbers
of 40 and 60 were selected as the starting point (SP) to predict
battery RUL, respectively. The predicted capacities of these
two cells are shown in Fig. 8. Absolute error (AE) was used
to evaluate the RUL prediction results of different methods as
follows:

AE = RUL — RUL (28)

where RUL and RUL are the actual and predicted RUL,
respectively.
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TABLE 4. Comparison of RUL prediction results.

B34 B36
Method SP=40 | SP=60 | SP=40 | SP=60
NN [18] 54 36 103 84
LSTM [23] 56 37 106 86
Proposed method 59 40 108 89
Real RUL 65 45 113 93

As shown in Fig. 8, it is clear that the proposed method
effectively established battery SOH dynamics for different
SP. Further, this proposed modeling method has good predic-
tion ability for battery RUL.

In addition, we also conducted a comparison between the
proposed method and the commonly used RUL prediction
algorithms for different SP. The error index AE of different
SP for the test data was calculated, which are shown in Table 4
and Table 5, respectively. From these two Tables, it is obvious
that the proposed method performed a good predictive ability
for battery RUL as indicated by its smaller error index. This is
because the proposed method uses full data information of all
sensors and does not require any battery models. In addition,
this proposed approach fully takes into account the advantage
of both machine learning and model-based filtering tech-
nique, which further reduces the estimation errors. Thus,
it can obtain a better estimation ability than the traditional
modeling method.

In summary, both of our experimental schemes indicated
that the proposed modeling method performed very well in
estimating SOH and predicting RUL of LIBs. The superiority
of this proposed method compared with other commonly
used algorithms can be further classified from the following
several aspects: First, it uses full data information from all
sensors, and does not require any physical models, which
reduces the mode error caused by battery modeling; in addi-
tion, it full accounts for the dynamic natures of battery aging
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TABLE 5. Comparison of RUL prediction errors.

B34 B36

Method SP=40 | SP=60 | SP=40 | SP=60
NN [18] 1 9 10 9
LSTM [23] 9 8 7 7
Proposed method 6 5 5 4

mechanism, especially the aging dynamics between the two
adjacent cycles. Moreover, this proposed modeling method
take full advantage of both machine learning and model-
based filtering technique, which suppresses the system mea-
surement noises and further reduces the estimation errors.

V. CONCLUSION

In this paper, we propose a novel data-model fusion method
to estimate SOH and predict RUL for LIBs by using machine
learning and model-based filtering technique. This proposed
modeling method fully took into account the dynamic natures
of battery aging mechanism, especially the aging dynamics
between the two adjacent cycles. Moreover, the proposed
modeling method had a model free and data-driven features,
which reduced the model errors and uncertain interference
in battery modeling. In addition, an UKF algorithm was
incorporated with the LSTM and NN to filter out the noises
in the network output, and further improve the accuracy of
SOH and RUL. The effectiveness of this proposed approach
was verified by using four cell cycle experiments, and its
superior estimating ability was demonstrated by comparing
with other traditional methods. In the future, this method
will be extended to SOC and SOH co-estimation considering
battery aging properties.
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