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ABSTRACT Manual inspection and harvesting of ripening tomatoes is time consuming and labor intensive.
Smart agriculture can emphasize the use of digital horticultural resources for farming and can increase farm
sustainability; to that end, we proposed a fuzzy Mask R-CNN model to automatically identify the ripeness
levels of cherry tomatoes. First, to annotate the images automatically, a fuzzy c-means model was used
to maintain the spatial information of various foreground and background elements of the image. Then,
a Hough transform method was applied to locate the specific geometric edge positions of the tomatoes. Each
data point of the image space was annotated to a JavaScript Object Notation file. Second, annotated images
were trained with Mask R-CNN to identify each tomato precisely. Finally, to prevent preharvest abscission
of tomatoes, a hue–saturation–value color model and fuzzy inference rules were used to predict the ripeness
of the tomatoes. A trigonometric function with Euclidian distance was calculated from the origin of calyx
and stem to the bottom of the tomato to obtain the position of the pedicle head and dissect the fruit in
a timely manner. For detection of 100 tomato images, Mask R-CNN achieved an accuracy of 98.00%. The
ripeness classification of tomatoes achieved overall weighted precision and recall rates of 0.9614 and 0.9591,
respectively. Thus, automatic tomato harvesting applications can empower farmers to make better decisions
and enhance overall production efficiency and yield.

INDEX TERMS Automatic annotation, detection of tomato ripeness, fuzzy c-means, Mask Region-based
Convolutional Neural Network (Mask R-CNN), hue–saturation–value (HSV) color model.

I. INTRODUCTION
Tomato cultivation is one of the most globalized horticultural
industries, as tomatoes are extensively consumed worldwide.
Relative to other crops grown worldwide, tomato cultivation
quantities are three times higher than those of potatoes and
six times more than rice [1]. On a global scale, The Food
andAgriculture Organization of the United Nations estimated
that the world annual production for tomatoes in 2016 was
179 508 401 metric tons. However, in 2017, tomato produc-
tion grew by 1.6%, with an estimated production of approxi-
mately 182 301 395metric tons [2]. Cultivation of tomatoes is
economically crucial, especially in rural and suburban areas
of most developing countries [3]. Additionally, it is true that
quality–yield measurement not only benefits consumers but
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also economically benefits the farmers who toil diligently,
day and night, to produce yields of the highest possible qual-
ity. Harvesting is an essential task in horticultural activity.
Maturity at harvest is a vital factor that determines the storage
life and final fruit quality, flavor, juiciness, and texture.

When immature fruits are harvested, they are of poor
quality and are often incapable of ripening; immature fruits
are eventually susceptible to internal deterioration and decay.
Conversely, delayed harvesting of fruits and vegetables can
markedly increase chances of fruit damage, resulting in dras-
tic postharvest loss. To control the quantitative or qualitative
losses of preharvest and postharvest vegetables, it is therefore
crucial to understand the delicateness of vegetables, physio-
logical maturity conditions, and methods of timely harvest-
ing, as well as other factors. The loss of quality of tomatoes
constitutes a major challenge for tomato cultivators. Monitor-
ing the growth of tomatoes and harvesting them at the breaker
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stage reduce the chance of cracking or damage and also help
the farmers to control the ripening progression. Typically,
detection of any type of disease and evaluation of the stage of
ripeness in fruits or vegetables are conducted through manual
inspection and evaluation according to the farmer’s personal
experience. At the same time, farm production entails a
number of challenges and must overcome unfavorable agro-
climatic conditions such as soil degradation, lack of water,
climate change, and natural calamities (droughts, floods, and
hailstorms) that destabilize farms. Thus, the refinement of
various horticultural practices with innovative technologies
can intensify the strategic advantages of agricultural pro-
duction. To overcome such obstacles to farming, this paper
proposes an innovative system for perceiving different stages
of maturation in tomatoes that are cultivated in open fields.
To implement a feasible real-time system, tomato images
acquired from open fields are identified and segmented using
fuzzy c-means method. Then, acquired images are automati-
cally annotated to filter the images of interest. Mask R-CNN
is used to estimate the precise position of each tomato,
thereby improving the obtained segmentation for more useful
experimental results. Finally, a hue–saturation–value (HSV)
color model is used to predict the ripeness of the tomato and
the appropriate schedule for timely harvesting.

Thismethod can help growers to discover optimallymature
tomatoes and determine whether they should be picked or
not. In this manner, the quality of harvested tomatoes can be
enhanced.

The structure of the remainder of this paper is as follows.
Section II explains related image processing techniques that
can assist in tomato quality assessment and ripeness detec-
tion. Section III describes the materials and method adopted
in the proposed system. Section IV presents the experiment
results and analyzes the data sets. Section V provides conclu-
sions and directions for future study.

II. RELATED WORK
Digitalization in agriculture technology significantly trans-
forms farming, overcomes farming challenges, and raises
farming efficiency with better environmental, social, and
economic sustainability by lowering production costs and
retaining better yields of production with high efficiency.

In the early twenty-first century, the employment of com-
puter vision with object detection has provided a new method
for precision farming that has enabled farmers to accurately
perform soil mapping, crop scouting, disease detection, visual
inspection of fruits, fruit grading, fruit counting, and yield
estimation without human intervention. Scholars have pub-
lished numerous studies intended to assist in the quality
assessment of fruits and vegetables based on texture and color
feature extraction. Wan et al. [4] used color feature values
with a backpropagation neural network classification tech-
nique to classify the maturity levels of Roma and Pear tomato
varieties, yielding an accuracy of 99.31%. Zhao et al. [5]
used L∗a∗b∗ color space and luminance in-phase quadrature-
phase (YIQ) color space with wavelet transformation image

fusion features to recognize mature tomatoes. Arefi et al. [6]
designed an algorithm for harvester robots to recognize and
localize ripe tomatoes using combinations of morphological
features and RGB, HSI, and YIQ spaces. Their accuracy
rate was 96.36%, but their harvester robot did not recognize
and localize occluded tomatoes. To reduce the influence of
illumination and occlusion in tomato detection, Liu et al. [7]
introduced histograms of oriented gradients with support vec-
tor machine (SVM). Their method achieved 90.00% accu-
racy, 94.41% precision, and 92.15% F1 metrics. However,
their method is unsuitable when more than 50% of the
blocked area has overlapped and occluded tomatoes. Numer-
ous researchers have tried various sensors and have applied
machine learning or deep learning techniques to overcome the
challenges of recognizing tomatoes under varying illumina-
tion, overlapping, and occlusion conditions. Nyalala et al. [8]
combined SVM and Bayesian-ANN to estimate mass and
volume values of cherry tomatoes based on depth images
from both two-dimensional (2D) and three-dimensional (3D)
images.

Yuan et al. [9] designed a robust cherry tomato detec-
tion algorithm based on a single-shot multibox detector.
Moreover, the method was compared with various base net-
works of VGG16, MobileNet, and InceptionV2 networks.
InceptionV2 achieved an average precision of 98.85%.
Hu et al. [10] combined Faster R-CNN and intuitionistic
fuzzy sets for automatic detection of a single ripe tomato on a
plant. Wu et al. [11] adopted a bilayer classification strategy
with multiple-feature analysis and a weighted related vector
machine classifier to recognize ripening tomatoes. However,
markedly limited numbers of tomato samples have been used
in most relevant deep learning experimentation. With classi-
fiers (and especially neural networks), it would become prob-
lematic if correct classification of tomato ripeness entailed
increases in classification error rates. To overcome the exist-
ing challenges, we developed a system to enhance recognition
efficiency in complex environments.

1. Unlike other studies, the present study accomplished
automatic annotation of examined tomatoes.

2. Relative to competitor systems, our system more
accurately detected different physiologically levels of
tomatoes from the immature green to mature stage
of harvesting, namely the immature (green), breaker
(green to tannish yellow), preharvest (orange), and har-
vest (red) stages.

3. Our model can detect tomatoes efficiently despite
environment challenges such as varying illumination,
overlapping fruits, or occlusion of leaves and branches.

4. Our platform can streamline tomato picking by detect-
ing the right position of the pedicle head.

III. MATERIALS AND METHODS
This section describes the data acquisition process, materials,
and methods (including contour detection, feature extraction,
and segmentation) that enable the effect of the classifier.
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A. DATA COLLECTION AND PREPROCESSING
Tomato images with dimensions of 1108 × 1478 pixels
per image were collected from a greenhouse cooperative
farm located in Tainan, Taiwan. All collected images were
screened carefully; we selected 900 images after excluding
defective items. To extract highly relevant features and to
overcome any overfitting of the data set, images were aug-
mented as follows:
• Translation: Images were randomly shifted −10 to
10 pixels.

• Flipping: Images were horizontally (mirror image)
flipped.

• Gaussian filtering: Images were blurred for effective
smoothing of noise.

We generated 2000 data items after data augmentation; the
obtained data set was divided into a training set and a vali-
dation set at a ratio of 80:20. Finally, another 20 test samples
depicting 100 tomatoes were used for testing.

B. FUZZY C-MEANS SEGMENTATION
Fuzzy c-means (FCM) is an unsupervised method developed
by Dunn in 1973 [12] that was further improved by Bezdek
in 1981 [13]. This fuzzy-logic-based clustering algorithm is
widely used for solving multiclass and ambiguous problems.
FCM is an iterative optimization method in which one sample
can be assigned to more than one cluster. It is directly imple-
mented on a data matrix to generate a membership function
that represents the degree of association of the samples with
each cluster. For instance, each image pixel has a specific
membership degree associated with each of the cluster cen-
troids. Then, the membership of each pixel is calculated and
represented by a membership value between 0 and 1. This
specifies the strength of the association between that image
pixel and a particular cluster centroid.

FCM partitions every image pixel into a collection of
the M fuzzy cluster centroids with respect to certain given
conditions. Initially, let N be the total number of pixels
in a given image and let m be the exponential weight
of the membership degree. The minimization of objective
function Om of the FCM is defined as [13]

Om(U ,V ) =
∑N

j=1

∑M

k=1
umjkd

2
jk (1)

where ujk is the degree of membership of the jth pixel in the
kth cluster, djk is the distance between the jth pixel and the
kth cluster center, and Om(U,V) is the performance index that
measures the weighted sum of distance djk between the jth
pixel and the kth cluster center. The membership degree of
the jth pixel to the kth cluster center indicates themembership
value ujk , where ujk ∈ [0, 1]. A membership value close
to 1 represents that the pixel belongs to the corresponding
cluster. If Uj = (uj1, uj2, . . . , ujM )T is the set of membership
degrees of the jth pixel associated with each cluster center,
xj is the jth pixel in the image, and vk is the kth cluster center,
thenU = (U1,U2, . . . ,UN ) is themembership degreematrix
and V = (v1, v2, . . . , vM ) is the set of cluster centers.

The FCM algorithm can be explained as follows:
Step 1: Set the initial parameters, such as the number

of clusters V , convergence error ε, and the number of
iterations s to 0.
Step 2: Calculate U (s) according to V (s), defined as

ujk =
1∑M

g=1 (
djk
dgk

)
2/(m−1) , 1 ≤ j ≤ N (2)

If djk = 0, then ujk = 1; then, set the other membership
degrees of this pixel to 0.
Step 3: Calculate V (s+1) according to U (s), defined as

Vk =

∑N
j=1 u

m
jkxj∑N

j=1 u
m
jk

, 1 ≤ k ≤ M (3)

Step 4: Update U (s+1) according to V (s+1) using (3).
Step 5: Finally, compare U (s+1) with U (s). If ||U (s+1)

−U (s)
|| ≤ ε, then stop execution. Otherwise, repeat step 2.

C. HOUGH TRANSFORM
The Hough transform (HT) [14] is an efficient method for
extracting geometric shapes by independently considering
geometric data composed of edge points from a digital
image [15]. The key notion of the standard HT is to define
a mapping between an image space and a parameter space
such that every edge point in the edge map of a tomato is
transformed to all possible lines that could pass through that
point. In the case of circle detection, if a circle is in the image,
then it is defined as

(x − cx)2 +
(
y− cy

)2
= r2 (4)

where (cx , cy) are the coordinates of the circle center, and r
is the radius. To transform a 2D input edge image I (x,y) to a
3D accumulator matrix A(cx , cy, r), the HT for the circle is
described as follows [16]:

Algorithm 1 Pseudocode for Hough circle
Input: Image I (x, y)
Output: Detect circle
Initialize: Accumulator array A(cx , cy, r) to zeros
for all x:
for all y:
If I (x, y):

forall cx :
for all cy:

r =
√
(x − cx)2 +

(
y− cy

)2
A(cx , cy, r)← A(cx , cy, r)+ 1

end for
end for

end for
end for

For ellipse shape detection, we adopted the methods
of [17], [18]. An ellipse consists of five unknown parameters,
which can be denoted as follows. Let point c be the center
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position of the ellipse; (cx , cy) denotes the coordinates of
point c, α and β represent the half-lengths of the major and
minor axes, respectively, and θ denotes the angle between the
major axis and the x-axis. Consider an arbitrary ellipse with
points p and q as the foci of the ellipse and with point c as
the center position. For each pixel, (x1, y1) and (x2, y2) can
be used to calculate the four parameters {cx , cy, α, θ} for the
assumed ellipse as follows:

cx =
x1 + x2

2
(5)

cy =
y1 + y2

2
(6)

α =

√
(x2 − x1)2 + (y2 − y1)2

2
(7)

θ = tan−1 (
y2 − y1
(x2 − x1)

) (8)

Fig. 1 shows an arbitrary ellipse with foci p and q with
center c. To calculate the half-length of the minor axis β, let
d be the arbitrary point on the contour of the ellipse. Because
p and q are the foci of an ellipse, the sum of the line segments
lp,d and lq,d can be estimated as follows [17]:√

(dx − px)2 + (dy − py)2

+

√
(dx − qx)2 + (dy − qy)2

= 2α (9)

FIGURE 1. Arbitrary ellipse with foci p and q, and center c .

where

px = cx − cos |θ |
√
α2 − β2 (10)

py = cy − sin |θ |
√
α2 − β2 (11)

qx = cx + cos |θ |
√
α2 − β2 (12)

qy = cy + sin |θ |
√
α2 − β2 (13)

Thus, for a given arbitrary point on the contour of the ellipse,
the value of β can be derived using (9) to (13):

β =

√
α2δ2 − α2γ 2

α2 − γ 2 (14)

where

δ =

√
(dx − cx)2 + (dy − cy)2 (15)

γ = cos |θ | (dx − cx)+ sin |θ |(dy − cy) (16)

D. MASK R-CNN
In this section, a scheme for tomato instance segmentation
based on Mask R-CNN is explained. Mask R-CNN [19], [20]
is an intuitive extension of Faster R-CNN with additional
object segmentation for a manageable number of candidate
object regions of interest, enabling locations and shapes
of object instances to be attained accurately. Mask R-CNN
can accurately mark object regions with bounding boxes and
can extract object regions from the background at the pixel
level. Additionally, the picking points of a tomato pedicle can
be localized easily by analyzing the shape and edge features
of the mask images generated from Mask R-CNN [21], [22].

Fig. 2 displays the architecture of Mask R-CNN tomato
instance segmentation.

FIGURE 2. Architecture of Mask R-CNN.

Specifically, for feature extraction over an entire tomato
image, we compared both the backbone networks of Mask
R-CNN, ResNet-50 and ResNet-101 feature pyramid net-
work (FPN) models. For comparison, we considered the
prediction rate and computational time of the Mask R-CNN
model. To validate the performance, we used 20 images with
100 tomatoes. ResNet-50 FPN shows an accuracy of 97%
with an average time interval of 1.45 sec in each tomato detec-
tion whereas the ResNet-101 FPN shows an accuracy of 98%
with time interval of 1.65 sec in each tomato detection.
Since accuracy is more concerned, we adopted ResNet-101
architecture that includes stacked convolutional layers,
a pooling layer, and residual connections. The model com-
prises five convolutional blocks; the first block uses a
convolutional layer size of 7 × 7, and the second to
fifth blocks are confined to convolutional layers of sizes
1 × 1, 3 × 3, and 1 × 1. We employed FPN methods to
improve the network backbone to extract relevant semantic
and spatial information for tomatoes of various sizes. Then,
feature maps generated from the backbone were sent to the
region proposal network (RPN) to create regions of interest
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for each feature map with anchors. This defined the scores
and position coordinates of the foreground and background
of the tomato image. RPN predictions helped the anchor to
select the best bounds for the target tomato and to fine-tune
its position and size. If multiple anchors overlap each other,
the anchor with the highest foreground score is recorded and
the rest are discarded, after which we obtain the final regional
proposal and pass it on to RoIAlign. Our system computes
the value of each sampling point of the feature map through
bilinear interpolation to reduce the feature losses that might
be caused by the spatial quantization.

Finally, regions of interest generated from the RPN layer
are sent to the fully connected layer to create bounding
boxes and segmentation masks for the target tomatoes.
Fig. 3 depicts the architecture of Mask R-CNN tomato
instance segmentation.

FIGURE 3. (a) Original tomato images; (b) segmentation masks and
bounding boxes for the target tomatoes.

E. RIPENESS DETECTION
Tomatoes often ripen from the bottom up; through a gradual
process, color changes first for a small portion of the skin,
and eventually, the color of the entire skin indicates ripeness.
However, tomato harvesting is influenced by the climate and
varies by the variety that is grown. Tomatoes that have been
harvested at the right time taste excellent and yield flavor
far superior to the flavor of fruit that has been picked early.
Overripe tomatoes typically ripen off the vine, which can
lead to untimely decay that can destroy a large portion of
the harvest. To judge various stages and harvesting periods of
tomatoes, tomatoes are divided into four categories according
to harvestability as defined as follows:
• Immature (completely green).
• Breaker (green to tannish).
• Preharvest (surface is light red).
• Harvest (fully colored tomato).

To accurately predict the level of tomato maturity in the
bounding boxes obtained from the Mask R-CNN, tomato
ripening classification is mainly completed through the fol-
lowing steps.
Step 1: Convert RGB images to HSV color space to accu-

rately identify the color features of the tomato.
Step 2: Determine the color channels of red, orange, yel-

low, and green from HSV to extract and analyze the maturity

of varied tomato colors. The HSV color range distribution is
shown in Table 1.

TABLE 1. HSV Color Space Distribution Range.

Step 3:Calculate the pixel ratio distribution for color chan-
nel intensity based on HSV color range from the original
tomato.
Step 4: Implement the fuzzy inference rule to designate

different levels of tomato maturity.
A classical flowchart of tomato maturity classification is

presented in Fig. 4.

FIGURE 4. Classification of tomato maturity.

The established fuzzy system includes four membership
function inputs to represent ratios of red, orange, yellow, and
green channels from the HSV color space; these map to an
output classifying various levels of tomato maturity. From the
color intensity of the tomato surface, each attribute function
has four semantic linguistic variables—XS, S, M, L—that
represent extra small, small, medium, and large, respectively.

Fuzzy inference rules were automatically generated from
the derived color ratio of HSV to mark the best relationship
between the color intensity distribution present on the sur-
face of the tomato and the output variables levels of tomato
maturity. Since there are four input variables and each has
four linguistic terms, this may come up to 44 = 256 fuzzy
rules in total. To quantify the maturity level of tomatoes,
only 19 fuzzy rules were considered based on the real color
intensity distribution of the tomato by omitting the others that
have minimal distribution of colors in prediction of tomato
ripeness. Some of the linguistic hedges are defined as follows:
Rule 1: If (Green is L) and (Orange is XS) and (Red is XS)

and (Yellow is XS) then (classification is Immature).
Rule 2: If (Green is L) and (Orange is XS) and (Red is XS)

and (Yellow is S) then (classification is Immature).
Rule 3: If (Green is S) and (Orange is M) and (Red is XS)

and (Yellow is S) then (classification is Breaker)....
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Rule 17: If (Green is XS) and (Orange is S) and (Red is L)
and (Yellow is XS) then (classification is Preharvest).
Rule 18: If (Green is XS) and (Orange is XS) and (Red is L)

and (Yellow is XS) then (classification is Harvest).
Rule 19: If (Green is XS) and (Orange is XS) and

(Red isM) and (Yellow is XS) then (classification is Harvest).
The membership functions of different color intensity dis-

tributions for the four relevant tomato maturity stages are
illustrated in Fig. 5 to Fig. 8.

FIGURE 5. Membership function of Immature tomato.

FIGURE 6. Membership function of Breaker tomato.

FIGURE 7. Membership function of Preharvest tomato.

FIGURE 8. Membership function of Harvest tomato.

F. LOCALIZATION OF TOMATO STALK POINT
The localization of tomato stalk points for harvesting was
based on instance segmentation. After obtaining the contour
of any tomato from Mask R-CNN, the system can deter-
mine the ripeness of that tomato. The coordinate values of

tomato picking points were calculated using elliptical long-
and short-axis information to obtain the right position of the
pedicle. The localization steps for tomato stalk points are as
follows:
Step 1: Locate the long-axis position from the tomato

contour interest points and record the long-axis coordinates
of those two points as (xm, ym), (xd , yd ).
Step 2: Calculate the long-axis point using (17).

Red_d =
√
(xm − xd )2 +

√
(ym − yd )2 (17)

where Red_d is the Euclidian distance of long-axis.
Step 3: Locate the intersection of the tomato stalk from

(xm, ym) to the pedicle (xt , yt ), as illustrated in Fig. 9, and
cut off the tomato stalk at 1/5 of the length of the tomato
(i.e., approximately 1 cm, independent of the size of tomatoes
based on our measurement on more than 100 tomatoes) away
from (xm, ym), as in (18).

Green_d = Red_d/5 (18)

where Green_d is the Euclidian distance from (xm, ym) to
pedicle (xt , yt ).
Step 4: Calculate the θ angle to obtain the cutting position

of the pedicle head (xt , yt ), as in (19) to (21).

cosθ = (ym − yd )/Red_d (19)

cosθ = |(yt − ym)|/Green_d→ yt (20)

sinθ = |(xt − xm)|/Green_d→ xt (21)

Fig. 9 illustrates the localization of tomato stalk points.

FIGURE 9. Schematic of tomato pedicle estimation.

IV. RESULTS
The results were obtained from the models using a
set of 20 samples with 100 tomato images that had
been excluded from the training set; they are presented
in Table 2.

The approach system was executed with TensorFlow on a
GPU workstation with an Intel Xeon 8 CPU, 32 GB of mem-
ory, and an Nvidia GeForce 11 GB GTX 1080 Ti graphics
card.
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TABLE 2. Accuracy of tomato detection.

A. MASK R-CNN ACCURACY
The final task of the research was to discover the position of
the pedicle, and thus, it was vital to locate the tomato accu-
rately. To evaluate and localize the tomato with the trained
Mask R-CNN, accuracy matrices were implemented, where
accuracy means the ratio between the number of correct
predictions of tomatoes and the total number of predictions.
Mathematically, accuracy is defined as

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(22)

where TP, FP, TN, and FN signify true positive, false pos-
itive, true negative, and false negative rates, respectively.
Fig. 10 presents original images from the 20 test samples.
After localization of the tomato withMask R-CNN, the target
tomatoes are again presented in their original pixel display,
and the background of the tomato image is rendered in
grayscale as presented in Fig. 11. Testing for 20 test sam-
ples with 100 tomatoes yielded an average accuracy rate of
98.00%. Table 2 lists the numbers of correctly and misclassi-
fied tomatoes.

B. RIPENESS PERFORMANCE EVALUATION
After the recognition of tomatoes by Mask R-CNN, 98 toma-
toes were classified into the four ripeness stages: immature,
breaker, preharvest, and harvest. The classification process
comprised color feature representation from RGB to HSV
and fuzzy inference categorization. Furthermore, to delineate
the model performance levels, we evaluated the confusion
matrix, precision, recall, weighted precision, and weighted
recall.

Precision quantifies the probability that the tomato matu-
rity class retrievals reflect the tomato maturity stages. Recall
quantifies the proportion of all positive categories of tomato

FIGURE 10. Original tomato test samples.

maturity that are correctly recognized as tomato maturity
stages. Precision and recall are calculated with (23) and (24).

Precision =
TP

(TP+ FP)
(23)

Recall =
TP

(TP+ FN )
(24)

where true positives (TP) are cases in which the model cor-
rectly predicted particular stages of tomatomaturity correctly,
true negatives (TN) are cases in which the model correctly
predicted the tomato that does not belong to particular matu-
rity stages, false positives (FP) are cases in which the model
predicted particular maturity stages but the tomato did not
actually belong to those model maturity stages, and false neg-
atives (FN) are cases in which the model made no prediction
of tomato maturity stage but the tomato actually belonged
to some maturity stage. Regarding the number of correctly
classified samples in each class, we calculated weights for
the original values of tomato maturity, weighted precision,
and recall. We used (25) and (26):

Weighted− precision =

∑n
1Wn × Pn

n
(25)

Weighted− recall =

∑n
1Wn × Rn

n
(26)

where n denotes the tomato maturity stages, Wn represents
the proportion of the number of tomatoes of the nth class
to the total number tomato images, and Pn and Rn are the
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FIGURE 11. Target tomatoes restored to the original pixel.

precision and recall values of the nth class of tomato maturity,
respectively. Table 3 presents the confusion matrix visual-
ization of the algorithm. Each row of this confusion matrix
denotes the instances in a predicted class, whereas each col-
umn signifies the instances in an actual class. The imma-
ture maturity stage generated the highest value of precision,
and the breaker maturity stage obtained the highest value of
recall. Overall weighted precision and weighted recall values
were 0.9614 and 0.9591, respectively. The results are shown
in Table 4.

TABLE 3. Confusion matrix of tomato ripeness.

Varying stages of tomato maturity classification (imma-
ture, breaker, preharvest, and harvest), as predicted by the
proposed model, are illustrated in Fig. 12.

C. DISCUSSION
Many fruit detection and recognition approaches have
been based on multiple features, such as color [23], [24],
shape [25], texture [26], edge, and orientation [27], [28].

TABLE 4. Performance evaluation of tomato detection.

FIGURE 12. Visualization of various tomato ripening stages as detectable
in the test data set. (a) Immature tomato stage, (b) immature, breaker,
and preharvest tomato stages, (c) harvest and immature tomato stages,
and (d) harvest tomato stage.

Color image segmentation [29] is based on intensities of
image pixels; such segmentation can separate similar fruits
from the background according to some homogeneity of color
features in the image. This technique identifies the range of
color intensities based on a color threshold. The target objects
that lie outside the predefined range eliminate the unwanted
pixels of the image. Region-based extraction of the geometric
features of fruits, (including edge contour and whole region
features) can be executed with the strength of neighboring
pixels that have similar values in a specified local region of
interest. However, in some instances, these approaches fail
to identify specific fruits or locate them correctly, especially
in the presence of varying illumination, overlapping fruits,
or occlusion of leaves and branches.

To increase robustness and meet the needs of practi-
cal applications in tomato detection, we adopted a fuzzy
approach with Mask R-CNN [7] to combine information
regarding multiple pixel features, such as the integrity of
color intensity, shape detection, edge orientation, and contour
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segmentation. Subsequently, the system was able to detect
target tomatoes in real-world environments subject to chal-
lenges such asmultiple overlapping fruits, occlusion of leaves
or stems, and shaded tomatoes of uneven illumination.

The proposed model was tested on 20 samples with 100
tomatoes. The proposed method efficiently detected the fruits
that had varied intensity, color, edges, and orientation. It was
also able to identify plants that contained dense regions and
plants that had one or more fruit regions that were different
from the background, as presented in Fig. 13. Input images
are presented in Fig. 13(a), (c), (e), and (g), whereas the
detected tomatoes are depicted in Fig. 13(b), (d), (f), and (h).
The proposed model is robust for different environmental
conditions and unstructured scenes such as overlapping,

FIGURE 13. (a) Overlapping and vine occlusion, (b) detection of
overlapping tomatoes but failure to detect vine occlusion (which covered
more than 50% of the fruit region), (c) overlapping and immature
tomatoes, (d) detected overlapping and immature tomatoes, (e) shaded
and occluded by leaf, (f) successful detection despite shade, occlusion by
leaves, and different stages of maturity, (g) sunlight variation condition,
and (h) detection under varied illumination.

as depicted in the Fig. 13(a) and (c). Occlusion, inad-
equate illumination, and shading conditions are shown
in Fig. 13(e) and (g). However, in Fig. 13(a), the model
efficiently identified a group of overlapping tomatoes (encir-
cled with blue dots) and two separate tomatoes (encircled
with pink dots) but failed to detect some fruits (encircled
with yellow dots) because more than 50% of the fruit was
concealed by stems.

To validate the proposed model in real time application,
we further compared metrics from tomato detection and
ripeness detection methods with other exiting approaches.
Table 5 shows the performance comparison with other exist-
ing methods. Fig. 14 and Fig. 15 show the histograms of
performance comparison for tomato detection and ripeness
detection, respectively.

TABLE 5. Performance comparison of different existing methods.

FIGURE 14. Histograms of performance comparison. (a) tomato
detection, and (b) tomato ripeness detection.

Overall, our proposed system shows quite efficient perfor-
mance with respect to tomato detection and tomato ripeness
detection. In the tomato detection, our system achieved 100%
precision and 98.00% recall. In tomato ripeness detection,
our model achieved 96.14% precision and 95.91% recall.
Based on the result obtained, our proposed model indicates
superiority of other existing proposed method. Thus, it can
be applied in real practical applications efficiently.
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FIGURE 15. Histograms of performance comparison for tomato ripeness
detection.

V. CONCLUSION
In this article, we present a method based on deep learning
and fuzzy systems for automatic identification of the maturity
stages of tomatoes. Our system can locate the right picking
point of the tomato stalk so that each tomato can be harvested
at the right time. The proposed approach includes four main
phases: first, automatic annotation of tomatoes is performed
through the combination of FCM and HT in a manner that
maintains the spatial information of the image and locates
the specific geometric edges positions of the tomatoes, fol-
lowed by annotation of each data point of the image space
to a JavaScript Object Notation file. Second, localization of
tomatoes is conducted usingMask R-CNN inwhich the local-
ization of a tomato can be automatically mapped back onto
the corresponding positions in the original tomato images to
attain target-area masks of the tomato. Third, color feature
representation from RGB to HSV (which maintains color
integrity of the tomato surface colors and prevents minimum
loss of color information) followed by the fusion of color
scores with fuzzy rules to detect different maturity stages of
the tomatoes is performed. Finally, pedicle harvesting points
are localized on the mask image output from Mask R-CNN
so that the mature tomatoes can be harvested quickly and
conveniently.

The analysis of 100 test images showed that the recognition
accuracy rate, weighted precision, and weighted recall were
98.00%, 0.9614, and 0.9591, respectively. These detection
results prove the system can feasibly recognize ripeness,
ensuring that each tomato can be harvested at the right time.

Future workwill focus on early detection and identification
of tomato diseases on the basis of deep learning and object
detection approaches. If such systems can be delivered, then
tomato plants can deliver higher yields, better quality of sus-
tainable agricultural production, and greater safety for human
health.
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