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ABSTRACT Bearing failure often occurs in rotating machinery. Fault diagnosis method based on vibration
signals has been studied for many years. Considering complementary information of the vibration signals
from different directions, this article proposed an applied model of a correlation probability box based on
G-Copula function for diagnosing bearing faults. First, to avoid constructing binary Copula function directly
from the definition of binary Copula function, a new function is defined, and a construction method of binary
G-Copula function is proposed based on the new function. Then, the correlation probability box model is
established based on a joint cumulative distribution of the G-Copula function to increase the independent
of the input data in the support vector machine (SVM) model, and the aggregated widths of the correlation
probability box model can be used to monitor a development of the bearing failure. Finally, the experimental
results showed that the proposed method obtain the better classification accuracy than other data processing
study.

INDEX TERMS Bearing failure, copula function, correlation probability box, support vector machine,
classification.

I. INTRODUCTION
The fault diagnosis technology of bearings has become an
important means and key technology to ensure the safety and
stability of production systems in the development of modern
industry [1]. However, ‘‘The bearing signal has strong nonsta-
tionary randomness, which includes not only the irreducible
uncertainty which cannot be reduced by further empirical
study brought by the accuracy of the equipment (although the
equipment may be better machined), but also the epistemic
uncertainty brought by the operator during the collection
of bearing data, it can generally be reduced by additional
empirical effort [2]’’.

The idea of probability box (p-box) was ‘‘origi-
nally put forward to express pure ‘epistemic uncertainty’
with ‘interval’, and has experienced cross research with
fuzzy theory [3], DS evidence theory [4], Boolean logic
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reasoning based on traditional probability theory [5],
Kolmogorov method with sparse samples [6], etc. The
p-box theory not only integrates random algorithms such as
Bayesian reasoning and evidence theory, but also artificial
intelligence algorithms such as neural network, expert system
and fuzzy set theory’’ [7]. The applications of p-box involve
failure probability assessment of fault system [8], uncertainty
assessment of dynamic response of vibration system [9],
reliability design of automobile gearbox in the absence
of experimental data [10], finite element modeling and
parameter optimization of rocket edge shell structure [11],
multi parameter uncertainty correlation in damping oscil-
lator [12], mechanical reliability system architecture and
assessment [13], error accumulation expression and evalu-
ation of measurement system [14], etc. For the p-box in an
application of the bearing diagnosis, the p-box model can
well achieve the fusion of the irreducible and epistemic uncer-
tainty [15], [16]. However, data cross between the different
p-boxes reduces correct recognition rates of a classifier.
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‘‘In 2009, we proposed firstly a new way for the bearing
fault diagnosis based on the p-box theory by collecting uncer-
tainty of the time-domain signals of the bearing, because the
p-box theory owns significant advantages in dealing with the
uncertainty of bearing signals. However, in previous work
on bearing fault diagnosis, for the sake of mathematical
simplicity, the random variable of the p-box was considered
to be independent [15]. In practical engineering, the corre-
lations among uncertain parameters are objective; although
there is duplication between correlation information, there
is also complementary information associated with the cor-
relation information. However, research on how to estab-
lish the correlation model between the p-boxes is rare, and
no complete method is available to measure the aggregated
uncertainty information of correlation models.’’ Copula func-
tion, as a tool to describe the dependence rules between
variables, overcomes the shortcomings of traditional linear
correlation coefficient in studying the nonlinear relationship
of variables [17]. To reduce the computational complexity
caused by complex correlation, Zhang et al. [18] proposed
a method of association decision fusion based on regular Fuji
copula. Nyaga et al. [19] introduced a high flexibility copula
modeling method based on the sensitivity and specificity of
binary beta distribution. On the basis of the random corre-
lation of wind power ramp characteristics, Cui et al. [20]
established a conditional probability prediction model based
on Copula theory. Based on copula theory for correlation
investigations of wind farms, Wang and Luo [21] proposed
a two-stage filtration method to evaluate different types of
copulas. Li et al. [22] derived a quantitative reproducibility
score with a mixed copula model to fit a curve. To counteract
low resolution, poor illumination and noise issues, copula
probability models based on Gabor wavelets for face recog-
nition were proposed by Li et al. [23]. The copula parameter
estimator and bootstrap confidence intervals were derived
by Calabrese and Osmetti [24]. A wind power forecasting
error model based on dynamic copula theory was proposed by
Li et al. [25] to obtain accurate error intervals for forecasts.
Liu and Liu [26] applied copula theory to build the joint
probability distribution between a power and capacity of an
energy storage system. Based on the stochastic interdepen-
dence between random variables such as the wind speed
and load demand, the probability distribution of correlated
random variables was established by Yu and Ghadimi [27].
A random deviation from a Dempster Shafer structure (DSS)
or the p-box can be considered, and take the interval formed
by the cumulative likelihood and the quantile of the cumula-
tive confidence function as the sample [28]. Hence, these the-
ories of constructing a correlation model can also be applied
to the p-box because of the corresponding transformation
relationship between the p-box structure and the correlation
structure.

Based on the inversion of Sklar’s theorem, the binary
copula function is directly obtained from the binary joint
distribution function. This article based the function method
proposes a new class of functions i.e., functions G; based on

the definition of function G, a new method of constructing
binary Copula function is proposed i.e., G-Copula function,
which enriches the methods of constructing binary Copula
functions. To reduce data cross between the different p-boxes,
a model of probability box based on a joint cumulative dis-
tribution of the G-Copula function is described in the current
study.

The remainder of this study is organized as follows. Basic
notions of the p-box and the Copula function are first given in
Section II. In Section III, the definition of function G is given,
and some notation and concepts related to function G are
introduced to study the construction of G-Copula function,
followed by a correlation p-box (cp-box) model based on the
joint cumulative distribution of G-Copula function. Fitting
effects of the Frank-Copula, Clayton-Copula and G-Copula
functions for bearing data are demonstrated based on devi-
ation squares; a comparison is made with other diagnostic
algorithms and in detail the novelty of the proposed cp-box
method is explained in Section IV. Finally, conclusions are
shown in Section V.

II. RELATED WORK
A. BASIC NOTIONS OF P-BOX
A cumulative probability distribution function (CDF) of a
random variableX is not be expressed by a single curve, as the
estimated value x̂ of X is not a single scalar value [2], [15].
Considering estimated value x̂ ∈

[̂
x i, x̂ i

]
, upper and lower

bounds of the CDF is given by:

F̄ (x) = 1− P(X > x) (1a)

F (x) = P(X ≤ x) (1b)

where F (x) and F (x) are upper and lower bounds of the
CDF, respectively; P denotes a lower probability measure.[
F (x) ,F (x)

]
is called as the p-box; then the random vari-

able X with uncertainty is limited in it. For a single scalar
value, Eqs. (1a) and (1b) are equivalent, and the CDF can be
expressed by a single curve; For an interval, the schematic
diagram of CDF can be plotted in Fig. 1.

In Fig. 1, the area of¬ corresponds to the lower probability
measure P(X > x) of Eq. (1a); the area of ¯ corresponds to
F (x) = P(X ≤ x); the area of 1−¬ corresponds to F̄ (x) =
1− P(X > x), i.e., the sum of the areas of ­, ® and ¯. The
difference between Eqs. (1a) and (1b) is the area of ­ and ®,
which is not equivalent.

B. BASIC NOTIONS OF COPULA FUNCTION
A vector of random variables X = (X1,X2, . . . ,Xn)T

with marginal distribution functions (FX1 (x1),FX2 (x2), . . . ,
FXn (xn)) is considered, and the marginal distribution func-
tions can be satisfied by following expression [29]:

F(x1, x2, . . . , xn) = C(FX1 (x1),FX2 (x2), . . . ,FXn (xn)) (2)

where F(x1, x2, . . . , xn) is the joint cumulative distribution
function, and C is the Copula function. If the marginal
distribution function FXi (xi)(i = 1, 2, . . . , n) of the random
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FIGURE 1. Schematic diagram of the p-box definition.

variable is a continuous function, then C can be
uniquely determined. The probability density function
f (x1, x2, . . . , xn) of F(x1, x2, . . . , xn) is given by

F(x1, x2, . . . , xn) = c(FX1 (x1),FX2 (x2), . . . ,FXn (xn))

×

n∏
i=1

fXi (xi) (3)

where c(FX1 (x1),FX2 (x2), . . . ,FXn (xn)) and fXi (xi)(i =

1, 2, . . . , n) are the probability density functions of the Cop-
ula and Xi(i = 1, 2, . . . , n), respectively.

III. CONSTRUCTIONS OF G-COPULA FUNCTION AND
CP-BOX MODEL
A. CONSTRUCTION OF FUNCTION G
Two accelerometers are considered in this study, each of
which can obtain bearing vibration signals. ‘‘In most cases,
bearing signals collected from a sensor follow a random
distribution because of the measurement errors of the sensor,
the different positions of themeasurements and the variability
in working conditions [15].’’ Therebefore, the signals based
one accelerometer is considered as a random variable, then a
vector of random variables (X ,Y ) can be obtained from two
accelerometers.
Definition 1: A binary function C(u, v): I2 → I = [0, 1]

is called Copula, which satisfies: (1) boundary condition:
C(u, 0) = C(0, v) = 0, C(u, 1) = u and C(1, v) = v;
(2) 2-increasing: VC ([u1, u2]× [v1, v2]) = C (u2, v2) −
C (u2, v1) − C (u1, v2) + C (u1, v1) ≥ 0 for ∀0 ≤ u1 ≤
u2 ≤ 1, where VC ([u1, u2]× [v1, v2]) is called the volume
of C on rectangle [u1, u2]× [v1, v2] [30]. This volume is the
second-order difference of C on rectangle [u1, u2]× [v1, v2],
i.e., VC ([u1, u2]× [v1, v2]) = 1

v2
v11

u2
u1C (u, v).

Definition 2: Let ϕ be a continuous and absolutely decreas-
ing convex function in [0, 1]→ [0,∞], where ϕ(1) = 0. The
generalized inverse function of ϕ is expressed as ϕ[−1] within
[0,∞]→ [0, 1], which can be defined as:

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)
0, ϕ(0) ≤ t ≤ ∞

(4)

Then C is called Archimedes Copula, i.e., C(u, v) =
ϕ[−1](ϕ(u) + ϕ(v)), and function ϕ is called the generator of
Archimedes Copula function C .
Definition 3: Let g(x) be function G, which satisfies the

following conditions: (1) g(x) is the increasing concave func-
tion within [0, 1], i.e., g·(x) ≥ 0, g··(x) ≤ 0, g(0) = 0,
and g(1) = 1, where superscript ‘·’ indicates derivation,

similar in other places; (2) Let 2g·(x) + xg··(x) ≤ 0 for all
x ∈ [0, 1].
Definition 4: Let F(x) and G(y) be marginal distribution

of the random variables X and Y , respectively, and its joint
distribution function is Copula C(u, v). For Copula C(u, v),
an upper dependence coefficient λU and a lower tail depen-
dence coefficient λL are respectively defined as:

λU = limu→1−
1− 2u+ C (u, u)

1− u
(5a)

λL = limu→0+
C (u, u)

u
(5b)

For λU and λL within (0, 1] , between X and Y satisfy upper
tail dependence and the lower tail dependence; as λU and λL
are zero, between X and Y are upper tail independence and
the lower tail independence.

This article is based on function G to study the construc-
tion of binary Copula function, so the research of function
G is important. Before processing, some notation and con-
cepts related to function G must be introduced in here (see
Appendix A for the proof):

(1) the weighted linear combination of function G is still
function G, i.e., gi(x), (i = 1, 2, . . . , n) is a function G, then
n∑
i=1
λigi (x) is still a function G, where

n∑
i=1
λi = 1 and λi > 0;

(2) the expansion transformation of function G is still
function G, i.e., g1 (x) is a function G, then g2 (x) =
g1 (αx) /g1 (α) is still a function G for ∀0 < α ≤ 1;

(3) any composition of function G is still function G, i.e.,
let g1 (x) and g2 (x) be functions G, then g (x) = g2 (g1 (x))
is still function G.

Then, the procedure of a construction method of function
G is described by the following steps. Firstly, based on the
definition 3, the following expression is considered:

2y· + xy·· = a(x) (6)

where a(x) ≤ 0 for all x ∈ [0, 1]. Then, its homogeneous
linear differential equation is expressed as 2y· + xy·· = 0;
two special solutions of the homogeneous equation are y1 =
1/x and y2 = 1, respectively. The general solution of Eq. (6)
satisfies y = C1(x) 1x+C2(x); substituting the general solution
into Eq. (6), we have 2C ·2(x) + C

··

1 (x) + xC
··

2 (x) = a(x); the
supplementary condition is considered in here, i.e.,C ·1(x)y1+
C ·2(x)y2 = 0, followed by equations:C ·1(x)

1
x
+ C ·2(x) = 0

2C ·2(x)+ C
··

1 (x)+ xC
··

2 (x) = a(x)
(7)

Solving Eq. (7), we have C1(x) = −
∫
xa(x)dx + γ1 and

C2(x) =
∫
a(x)dx + γ2, where γ1 and γ2 are constants.

Finally, the general solution of g(x) can be expressed as
g(x) = C1(x) 1x + C2(x).

Employing above procedure, functions G, i.e., g(x), can be
given based on the general solution of Eq. (6), as a(x) ≤ 0
can be obtained within [0, 1].
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B. CONSTRUCTION OF G-COPULA FUNCTION
Based on function G, a new method for constructing binary
Copula function can be given by following procedure.
Let g(x) is a function G, i.e., g(x) satisfies the boundary
conditions:

C(u, 0) = u · 0 · g(u)+ ug(0)− ug(u)g(0) = 0 (8a)

C(0, v) = 0 · v · g(0)+ 0 · g(v)− 0 · g(0)g(u) = 0 (8b)

C(u, 1) = ug(u)+ ug(1)− ug(u)g(1)

= ug(u)+ u− ug(u) = u (8c)

C(1, v) = 1 · vg(1)+ 1 · g(v)− g(1)g(v)

= v+ g(v)− g(v) = v (8d)

and satisfies 2-increasing: for ∀u1 ≤ u2 and u1, u2, v1, v2 ∈ I ,
we have

VC ([u1, u2]× [v1, v2])

= C (u2, v2)− C (u2, v1)− C (u1, v2)+ C (u1, v1)

= (v2 − v1)(u2g(u2)− u1g(u1))+ (g(v2)− g(v1))

+ [u1(g(u1)− u1)− u2(g(u2)− u2)] (9)

For ∀u1 ≤ u2, v1 ≤ v2, we have (v2 − v1)(u2g(u2) −
u1g(u1)) ≥ 0 and g(v2)−g(v1) ≥ 0, because g(x) is increasing
within [0, 1]. Let ω = (u1g(u1) − u1) − (u2g(u2) − u2),
and h(x) = xg(x) − x for all x ∈ [0, 1], where h(x) is
monotonically decreasing. Then ω = h(u1) − h(u2), h·(x) =
g(x) + xg·(x) − 1 and h··(x) = 2g·(x) + xg··(x). Based on
the condition 2g·(x) + xg··(x) ≤ 0 for all x ∈ [0, 1], h·· ≤
0 can be inferred; then h·(x) is monotonically decreasing
within [0, 1], and h·(x) is less than or equal h·(0) in which
h·(0) = −1 < 0. For ω = h(u1) − h(u2) and u1 ≤ u2, ω
is greater than or equal zero; for ∀u1 ≤ u2, ∀v1 ≤ v2 and
u1, u2, v1, v2 ∈ I , we have VC ([u1, u2]× [v1, v2]) ≥ 0; then
C(u, v) is 2-increasing. Hence, the C(u, v) is a binary Copula
function, i.e., G-Copula function, and can be expressed by
C(u, v) = uvg(u) + ug(v) − ug(u)g(v), where the function g
is the generator of G-Copula function.

Similarly, G-Copula function can be also given by fol-
lowing procedure: (1) boundary conditions are the same as
Eq. (8); (2) 2-increasing: for ∀u1 ≤ u2 and u1, u2, v1, v2 ∈ I ,
we have

VC ([u1, u2]× [v1, v2])

= C (u2, v2)− C (u2, v1)− C (u1, v2)+ C (u1, v1)

= (v2 − v1)(u2g(u2)− u1g(u1))

+ (u2 − u1)(g(v2)− g(v1))+ u1(g(u1v2)− g(u1v1))

− u2(g(u2v2)− g(u2v1)) (10)

For ∀u1 ≤ u2, v1 ≤ v2, we have (v2 − v1)(u2g(u2) −
u1g(u1)) ≥ 0 and (u2 − u1)(g(v2)− g(v1)) ≥ 0, because g(x)
is increasing within [0, 1]. Let ω = u1(g(u1v2)− g(u1v1))−
u2(g(u2v2) − g(u2v1)) and h(x) = x(g(xv2) − g(xv1)) for all
x ∈ [0, 1]. Then h(u1) − h(u2) is ω; [g(xv2)+ xv2g·(xv2)] −
[g(xv1)+ xv1g·(xv1)] is h·(x). Let u(x, y) be g(xy)+ xyg·(xy)
for ∀x, y ∈ [0, 1], then h·(x) satisfies u(x, v2)− u(x, v1), and

FIGURE 2. Average discretization method of the cp-box.

uy(x, y) satisfies x(2g·(xy)+xyg··(xy)). Based on the condition
2g·(x) + xg··(x) ≤ 0 for all x ∈ [0, 1], 2g·(xy) + xyg··(xy) ≤
0 is obtained, and uy(x, y) is less than or equal zero for
∀x, y ∈ [0, 1], i.e., u(x, y) is monotonically decreasing about
y for all x. Based on v1 ≤ v2, h·(x) is less than or equal
zero, and satisfies u(x, v2) − u(x, v1) for all x ∈ [0, 1].
Therebefore, h(x) is monotonically decreasing within [0, 1],
and ω is greater than or equal zero in which ω = h(u1) −
h(u2). For ∀u1 ≤ u2, ∀v1 ≤ v2 and u1, u2, v1, v2 ∈ I ,
we have VC ([u1, u2]× [v1, v2]) ≥ 0, then C(u, v) satisfies
2-increasing. Hence, the C(u, v) is also G-Copula function,
and can be expressed by C(u, v) = uvg(u)+ ug(v)− ug(uv).

C. ESTABLISHMENT OF CP-BOX MODEL BASED ON
G-COPULA FUNCTION
An unknown parameter of G-Copula function can be esti-
mated by moment method or plausibility function. Then,
confidence interval for the joint cumulative distribution
of G-Copula function can be constructed based on the
Kolmogorov-Smirnov method [31], [32]. Considering the
confidence level α, the confidence bounds can be expressed
as:

Fβ (β) = max {Pl(β)− ε, 0} (11)

Fβ (β) = max
{
Fβ (β)+ ε, 1

}
(12)

where Pl(β) is the plausibility bound of the joint cumu-
lative distribution, ε is confidence capacity and satisfies

ε =

√
ln
(
2
/
β
)/

2. The cp-box model can be composed by

the plausibility upper bound Fβ (β) and belief lower bound
Fβ (β).
According to the average discretization method, subinter-

vals of equal length 1
/
n are used in this study [15]. Based on

Fig. 2, a focal element interval A with a mass function m (A)
for the cp-box can be expressed as:

Ai,j =
[
Pl−1i

(
1
n

(
j−

1
2

))
,Bel−1i

(
1
n

(
j−

1
2

))]
,

j = 1, . . . , n mi(Ai,j) =
1
n

(13)

where Pl−1i and Bel−1i are inverse functions of the plausibil-
ity (Pl) function and the belief (Bel) function, respectively.
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FIGURE 3. Schematic block diagram of the rotating machinery test rig.

A discrete DSS is related to the interval with mass value
by the following expression:(

[xi, xi],
1
n

)
, (i = 1, 2, . . . , n)

where ‘‘xi ≤ xi; additionally, xi 6= xi−1 when xi = xi−1.
The width of different focal element interval can be obtained
through the uncertainty measurement method. The weight of
a single focal element interval can be obtained by multiplying
the corresponding mass value, because different focal ele-
ment interval is independent of each other’’.

‘‘A basic feature of the cp-box can be obtained by accumu-
lating all uncertainty probability of theDSS. The basic feature
called an aggregated width can be expressed as’’:

ω1 =

n∑
i=1

(mi ×
∣∣xi − xi∣∣) (14)

‘‘where xi and xi are the upper and lower bounds of the focal
element interval respectively; mi is the mass value of the
corresponding focal element interval’’.

‘‘Similarly, in order to measure more cp-box information,
more features can be expressed as’’:

ω2 =

n∑
i=1

(mi × log2
∣∣xi − xi∣∣) (15)

ω3 =

n∑
i=1

(mi × log2(1+
∣∣xi − xi∣∣)) (16)

ωi(i = 2, 3) is also the scalar values.

IV. RESULTS AND ANALYSIS
To demonstrate the validity of the method proposed in this
article, the method is applied to a pattern recognition system
of the experimental signal of rotating machinery including
the bearing fault. Schematic block diagram of the rotating
machinery test rig as shown in Fig. 3.

The physical layout of the test rig is shown in Fig. 4.
The three-phase asynchronous motor (Siemens, 3∼, 3.0hP) is
connected to the main shaft (830 mm) through the coupling.
The torque-speed sensor is installed between the shaft to
provide load. Two accelerometers (PCB ICP M603C01) are
arranged in the horizontal (i.e., _H) and vertical (i.e., _V)
directions to pick up the vibration signals. The experimental

FIGURE 4. Layout of the rotating machinery test rig.

FIGURE 5. The amplitude of the bearing signals under eight conditions.

bearing is a 30305 SKF tapered roller bearing; the number
of balls is 13, rolling element diameter 9.06 mm, contact
angle 28◦, bearing pitch diameter 44.6 mm, respectively.
Single faults, which are 0.5 mm deep and 0.5 mm wide, are
processed in the inner race, the outer race and the rolling
elements to simulate bearing failure by using wire cut electri-
cal discharge machining technology [33], [34]. The sampling
frequency and sampling time are 1000 Hz and 5.5s, respec-
tively. The average value of motor speed is 1085.7 r/min.
Before proceeding, a handheld sensor (YE5501 sensitivity
calibrator) was used to calibrate the ICP accelerometers; a
laptop with LabVIEW software was used to control the test
rig.

Tang et al. [15] point out ‘‘the uncertainty of bearing
signal (i.e. the unknown signal transmission path) is the main
feature of bearing signal, because it always exists and changes
from the generation of health signal to the formation of fault
signal; the collection of bearing signal uncertainty provides
a new method for rolling bearing diagnosis’’. Therebefore,
for the bearing signals without preprocessing techniques (i.e.,
wavelet transform of the vibration signals, high-pass filtra-
tion, bandpass filtration, etc.), the amplitude-frequency sig-
nals under five conditions along the horizontal and vertical
directions are shown in Fig. 5, where ‘‘H stands for healthy
bearing, IR stands for inner race fault, OR stands for outer
race fault, RE stands for rolling element fault, and IORRE
stands for inner race, outer race with rolling element faults’’.
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Comparing the bearing signals obtained along the hori-
zontal and vertical directions, we infer that the bearing data
collected under the same bearing conditions have duplication
and complementary information features in Fig. 5. This result
may be because the accelerometer arranged in the vertical
direction is located in the nonload-bearing region of the
bearing pedestal and the radial clearance between the rolling
elements and the inner race and outer race passing through
this region is very small; thus, the impact of the rolling
elements and outer race fault and the impact of the rolling
elements and inner race fault yield similar signals. However,
the accelerometer arranged in the horizontal direction is close
to the load-bearing region of the bearing pedestal, and the
radial clearance between the rolling elements and the inner
and outer races changes considerably due to the bearing
load. Hence, the bearing signals in the horizontal and vertical
directions are similar, but there are also obvious differences.

A. ESTABLISHMENT OF MARGINAL DISTRIBUTION
The health bearing data along the horizontal and vertical
directions are considered as the random variable X and
Y , respectively. To reduce fluctuations of the signal over
time, the health bearing data are divided into 30 groups
and the average value of each group is calculated. Then,
acceleration sequences of the health bearing data for the
horizontal and vertical directions are {xi, i = 1, 2, . . . , 30}
and {yi, i = 1, 2, . . . , 30}, respectively; eight data are used as
segmentation points, and the whole number axis is divided
into nine segments. empirical distributions can be given by:

Fn(x) =



0, x < 0.0031;
1/15, 0.0031 ≤ x < 0.0146;
1/6, 0.0146 ≤ x < 0.0186;
1/3, 0.0186 ≤ x < 0.0529;
13/30, 0.0529 ≤ x < 0.0647;
2/3, 0.0647 ≤ x < 0.1182;
13/15, 0.1182 ≤ x < 0.2163;
29/30, 0.2163 ≤ x < 0.3821;
1, x ≥ 0.3821;

,

Gn(y) =



0, y < −0.0851;
1/10, −0.0851 ≤ y < 0.0184;
1/6, 0.0184 ≤ y < 0.0285;
11/30, 0.0285 ≤ y < 0.0623;
1/2, 0.0623 ≤ y < 0.0902;
2/3, 0.0902 ≤ y < 0.1472;
13/15, 0.1472 ≤ y < 0.2337;
29/30, 0.2337 ≤ y < 0.3596;
1, y ≥ 0.3596;

The joint distribution of two random variables is generated
by their respective marginal distribution and corresponding
copula function based on the Sklar’s theorem [30]. The health
bearing data are analyzed, and frequency histograms are

FIGURE 6. The frequency histograms of the health bearing data; top:
along the horizontal direction; bottom: along the vertical direction.

TABLE 1. Parameter Estimation and Error Sum of Squares for the
Distribution Functions of the Bearing Data Along Different Directions.

simulated along the horizontal and vertical directions in the
health bearing data. Unknown parameters of the distribu-
tions can be estimated by moment method; and error sum
of squares for theoretical values and empirical values of
the distributions can be calculated in which the distribution
corresponding to the minimum error sum of squares is the
distribution function of the health bearing data. Then, the fre-
quency histograms are simulated along the horizontal and
vertical directions as shown in Fig. 6.

Based on Fig. 6, the exponential distribution Exp(λ) and
the gamma distribution Ga(θ, µ) are respectively used to
simulate the overall density function of the health bearing
data along the horizontal direction; the gamma distribution
Ga(θ, µ) and the chi-square distribution χ2(n) are respec-
tively used to simulate the overall density function of the data
along the vertical direction. Using sample mean instead of
population mean and sample variance instead of population
variance, the parameters of each distribution are estimated by
moment method; then the distribution function of X and Y
corresponding to the minimum sum of error squares of each
distribution and the corresponding empirical distribution of
the bearing data is selected. Parameter estimation and error
sum of squares for the distribution functions of the bearing
data along different directions are listed in Table 1.

In Table 1, for the bearing data along the horizontal direc-
tion, the error sum of squares for the exponential distribution
and its empirical distribution is the smallest; the error sum
of squares for the chi-square distribution and its empirical
distribution is the smallest along the vertical direction. There-
before, the exponential distribution and the chi-square distri-
bution are selected to establish the marginal distributions of
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TABLE 2. Three Types of Copula Functions.

the health bearing data. Based on the establishment of the
marginal distribution for the health bearing data, marginal
distributions of the other bearing conditions (i.e., IR, OR,
RE and IORRE) were established; the calculation results
showed that chi-square distribution, exponential distribution,
chi-square distribution and gamma distribution were selected
to establish the marginal distribution of IR, OR, RE and
IORRE respectively.

B. PARAMETER ESTIMATION OF COPULA FUNCTION
MODEL
Archimedes Copula was widely used in many fields because
of its simple structure, convenient construction. In this study,
Frank-Copula, Clayton-Copula function and G-Copula func-
tion are used to measure the correlation of the health bearing
data along the horizontal and vertical directions. The gener-
ator and parameter range of three types of Copula functions
are listed in Table 2.

Estimating the unknown parameters in Frank-Copula,
Clayton-Copula and G-Copula functions, concrete expres-
sions of the Copula functions can be constructed. Based
on the acceleration sequences {xi, i = 1, 2, . . . , 30} and
{yi, i = 1, 2, . . . , 30}, Kendall rank correlation coefficient τ̂
of samples for (X ,Y ) can be calculated by:

τ̂ =
2

n(n− 1)

∑
1≤i<j≤n

sign(xi − xj)(yi − yj) (17)

where sign(x) is a sign function, and calculated by:

sign(x) =


1, x > 0
0, x = 0
−1, x < 0

(18)

Kendall rank correlation coefficient of (X ,Y ) for the health
bearing data is τ̂ = 0.5310. For general binary Copula
function, the overall Kendall rank correlation coefficient τ
and Copula function C(u, v) can be expressed as:

τ = 1− 4
∫∫

I2

∂C(u, v)
∂u

∂C(u, v)
∂v

dudv (19)

For the health bearing data, the overall Kendall rank correla-
tion coefficient τ is− β

18 based on the G-Copula function. For
special Copula functions (Archimedes Copula), the overall
Kendall rank correlation coefficient τ and the generator ϕ(t)

of Copula function C(u, v) can be expressed as:

τ = 1+ 4
∫ 1

0

ϕ(t)
ϕ·(t)

dt (20)

Using Frank-Copula and Clayton-Copula functions, we can
calculate the overall Kendall rank correlation coefficients of
the (X ,Y ) i.e., τ = α

α+2 and τ = 1+ 4[D1(η)−1]
η

, whereD1 (η)

is given by:

D1 (η) =
k
η

∫ η

0

t
et − 1

dt (21)

Based on the nonparametric estimation, Kendall rank cor-
relation coefficient of the sample is used as the estimated
value of the overall Kendall rank correlation coefficient, i.e.,
τ̂ = τ . Then, the estimated values of parameters are obtained
in different Copula functions. The estimated values of Frank-
Copula, Clayton-Copula and G-Copula functions are calcu-
lated as: η = 6.3301, α = 2.2644 and β = −8.8465,
respectively.

C. CONTRAST OF COPULA FUNCTION MODEL
After the unknown parameters are estimated in different Cop-
ula functions, it is necessary to establish a proper Copula
function model. The optimum Copula function model can be
obtained by comparing different Copula function. Transform
the empirical distribution of the health bearing data along
the horizontal and vertical directions into a sequence (ui, vi),
where ui = Fn(xi), vi = Gn(yi), i = 1, 2, . . . , n, and n
denotes the sample size. The correlation of the health bearing
data along the horizontal and vertical directions is analyzed
by comparing the square deviation between Copula function
and empirical Copula function. Calculate the value of the
i-th empirical distribution function Cn(ui, vi), which can be
calculated by:

Cn(ui, vi) =
1
n

n∑
i=1

I {Fn(xi) ≤ u,Gn(yi) ≤ v}, u, v ∈ [0, 1]

(22)

The sum of the deviation squares between Copula function
value and empirical Copula function value can be expressed
as:

d2 =
n∑
i=1

(Cn(ui, vi)− C(ui, vi))2 (23)

VOLUME 8, 2020 224571



L. Dong et al.: Bearing Data Model of Correlation Probability Box Based on New G-Copula Function

TABLE 3. Comparisons of Copula Model.

TABLE 4. The Upper Tail Correlation Coefficient λU and the Lower Tail
Correlation Coefficient λL Between the Horizontal Direction and the
Vertical Direction.

Then, for three Copula functions selected in this study,
the sum of the deviation squares d2 between the simulated
and real values can be calculated. The fitting degree of Copula
function increases with the decrease of d2. Compare the
three Copula functions, and the comparison results are listed
in Table 3.

For X and Y , the deviation squares d2 between G-Copula
function and empirical Copula function is 0.0113, which is
the smallest in the three Copula functions; the result indicated
that G-Copula function own the optimum fitting effect for the
health bearing data along different directions.

Similarly, we analyzed the other bearing conditions (i.e.,
IR, OR, RE and IORRE), and the experimental results showed
that the fitting results were similar to those of the healthy
bearing data. Hence, G-Copula function are used to mea-
surement the bearing data correlation between the horizon-
tal direction and the vertical direction. According to the
expression of G-Copula function, the upper tail correlation
coefficient λU and the lower tail correlation coefficient λL
between the horizontal direction and the vertical direction
are calculated respectively in the bearing data, as shown
in Table 4.

The upper and lower tails for the bearing data along the
horizontal and vertical directions, with obvious tail correla-
tion, are gradually dependent in Table 4. It shows that when
the output value of one direction increases or decreases to
a certain extent, it will cause the output value of another
direction to fluctuate.

D. MEASUREMENT CP-BOX MODEL
The concrete expression of G-Copula function is applied
in this case based on the estimated parameter, because
G-Copula function is better to measure the correlation of the

FIGURE 7. The cp-boxes of the different bearing conditions.

TABLE 5. The Information of the Aggregated Uncertainty Measurement
for the cp-Boxes.

bearing data. Considering the confidence intervals of the joint
cumulative distribution in which the confidence level is 95%,
the focal element intervalAi,j can be obtained (calculatedwith
Eq. (12)). Accumulating values of the mass function withAi,j,
the cp-boxes of H, IR, OR, RE and IORRE can be obtained
as shown in Fig. 7.

The cp-boxes are composed of the computed on the basis
of the plausibility upper and belief lower bounds as shown
in Fig. 7. It should be noted that there is no data cross between
the different cp-boxes, which means that the cp-boxes are
better to distinguish in the next pattern recognition system.
Before proceeding, it is necessary to measure those cp-boxes.
the information of the aggregated uncertainty measurement
are obtained using Eqs. (13) to (15), as listed in Table 5.

The values of the aggregated width ω1 are less than one
in Table 5, then the values of ω2 are less than zero because of
an effect of log2 (see Eq. (15)). The information of the aggre-
gated uncertainty measurement can be considered as features
of those cp-boxes to input a pattern recognition system.

E. PATTERN RECOGNITION FOR CP-BOX FEATURES
This case addresses the SVM validation in which the cp-box
feature is present in Table 5. ‘‘The correct recognition rate is
used as the target. A total of 100 cp-boxes were obtained from
the bearing signals from each condition. Thus, 500 cp-boxes
were obtained for all five conditions. The feature vector
sets from the 500 cp-boxes were calculated. For a Python
environment-based SVM classifier, a sigmoid function was
selected as the kernel function, and the parameters C and
gamma were set to [1e3, 5e3, 1e4, 5e4, 1e5] and [1e-4, 5e-4,
1e-3, 5e-3, 1e-2, 1e-1], respectively. The parameters C and
gamma were automatically optimized [15]. The input data
were divided into training, validation and testing sets; the
number of feature vectors for each set can be represented as
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FIGURE 8. The classification performances of the different cp-boxes;
(a) cp-box based G-Copula function; (b) cp-box based Frank-Copula
function; (c) cp-box based Clayton-Copula function.

{300, 100, 100}’’. Then, 10-fold cross-validation was used
before the SVMvalidation. Fig. 8 presents case distribution of
five data sets on three-dimensional space, which ismade up of
ω1, ω2 and ω3. Additionally, the classification performances
of the cp-boxes based on Frank-Copula and Clayton-Copula
functions are also displayed in Fig. 8.

The performance of the SVMmodel can be affected greatly
by the input data. With regards to bearing fault diagnosis,
the different fault signal (targeting fault) can be identified
if the input data are independent. The classification perfor-
mance of the cp-boxes based G-Copula function is better
than the cp-boxes based Frank-Copula and Clayton-Copula
functions, as shown in Fig. 8. For G-Copula, Frank-Copula

FIGURE 9. Condition monitoring based on the aggregated width.

and Clayton-Copula functions, correctly classified cases are
96.1%, 88.1% and 79.4%, respectively. This is because that
there is no data cross between the different cp-boxes based
G-Copula function, which increases the independent of the
input data.

Additionally, the aggregated width ω1 can be applied to
prevent the bearing failure. The vibration signals of OR are
used as an example, because the outer race with the cen-
tripetal force exerted by the rolling element is easily fail-
ure [35]–[37]. Having recorded vibration data of H and OR
for 24 hours, the corresponding aggregated widthω1 has been
obtained from the cp-boxes based G-Copula function, and
plotted in Fig. 9.

An exponential function is used to fit the curves of H and
OR in Fig. 9. The fitted OR curve has the rising trend which
can be considered as a representment of the development for
the bearing outer race failure. As complementary, the fitted
H curve is also plotted in Fig. 9, which has a relative stable
trend.

F. COMPARISON OF DIFFERENT DATA PROCESSING
METHODS
‘‘A comparison of different data processing study should
be undertaken to demonstrate the advantage of the method
proposed by this article’’. For vibration signals, wavelet
analysis method, a p-box modeling method of raw bearing
data and a composite multiscale fuzzy entropy method have
been demonstrated to be effective for bearing fault diag-
nosis [15], [38], [39]. There should be some rules in the
comparison as follows: (1) the same data should be applied to
different algorithms; (2) the experimental data used should be
converted to unit values; (3) the same SVM model is chosen
as a pattern recognition tool; (4) the results of classification
performance are expressed in percentile (%).

The wavelet analysis has been applied in signal processing
for more than fifty years [38]. For the raw vibration accelera-
tion signals along the horizontal direction, the wavelet DB4 is
used to filter the first two level detail signals with 50% period
expansion. Fig. 10 presents the time domain signals before
and after noise reduction.

Morlet wavelet is used for wavelet multiscale decomposi-
tion i.e.,

ψ(t) = 4

√
1
π
cos (kt) e−

t2
2 (24)
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FIGURE 10. The time domain signals before and after noise reduction;
(a) H; (b) OR.

FIGURE 11. Wavelet multiscale decomposition for the OR signals after
noise reduction.

where the value of wave number k is five in this study. The
result of wavelet multiscale decomposition for the OR signals
after noise reduction is shown in Fig. 11, where the scale
factor ai = {1 : 1.25 : 9.75}.

Before proceeding, the raw vibration acceleration signals
should be demonstrated to be stationary signals, because
amplitude spectrum analysis cannot be applied directly in
nonstationary signals. For the discrete Fourier transform,
the number of sampling points per segment 4096 (i.e., 212)
is used based the current sampling frequency and sampling
time, and the minimum frequency resolution is 1

/
4.096 =

0.244Hz. Hence, according to the minimum frequency res-
olution and characteristic frequency of the outer race (see
Appendix B), the motor speed variation should be limited
in 4 r/min. Fig. 12 presents the motor speed variation with
the time.

The smoothed motor speed fluctuation is limited in 4 r/min
as shown in Fig. 12. To extract the fault characteristic fre-
quency at a certain motor speed, the low frequency signals
in Fig. 11 is reconstructed, and its amplitude spectrum is
shown in Fig. 13.

The characteristic frequency of OR at a certainmotor speed
is 97.1 Hz as shown in Fig. 13, which means that the effective
OR signals can be reflected greatly by the low frequency
signals. Based on the above wavelet analysis, the effective
bearing signals along the horizontal and vertical directions for
H, OR, IR, RE and IORREwere obtained. Then, time-domain
statistical features (i.e., range, mean value, standard devi-
ation, skewness, kurtosis and crest factor) of the effective
bearing signals were extracted to input into the SVM model.
The correct classification of faults and the detailed accuracy
of each class are given in Table 6.

FIGURE 12. The motor speed variation with the time; (a) H; (b) OR.

FIGURE 13. The amplitude spectrum of OR.

TABLE 6. Evaluation of the Success of the Numeric Prediction and the
Detailed Accuracy by Class of the SVM Model.

‘‘The correct recognition rate is 77.5% in Table 6. How-
ever, compared to the correct recognition rate 96.1% from
the proposed method in this article, there is still room for
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FIGURE 14. The results of the p-box modeling method of raw bearing
data.

improvement. It is may be because that the feature extraction
of bearing signal leads to the loss of statistical information
beyond the feature’’.

‘‘The p-box modeling method of raw bearing data can
directly establish the p-box model for the raw bearing data
based on the definition of the p-box [15]. First, the maxima
and minima from each column vector of bearing signals
from the horizontal and vertical directions can be obtained
by the p-box modeling method of raw bearing data. Then,
the Dempster-Shafer structure is obtained based on the max-
ima and minima vectors and discretized according to the
same basic probability assignment. Finally, the upper and
lower bounds of the p-box can be approximated by discrete
sampling. Fig. 14 presents the p-boxes of H, OR, IR, RE and
IORRE within [−0.1, 0.4] based on the modeling method of
raw bearing data’’.

There is data cross between the different p-boxes
in Fig. 14. The information of the aggregated uncertainty
measurement for the p-boxes are obtained using Eqs. (13)
to (15), and inputted into the SVM model. the experimental
results showed that correct recognition rate is 86.1%, which
is smaller than the correct recognition rate 96.1% from the
proposed method in this article.

‘‘Composite multiscale fuzzy entropy is an effective
method to analyze the complexity of time series in bearing
fault diagnosis. It can not only reflect the complexity charac-
teristics of time series from multiple scales, but also has the
advantages of short data and good robustness. Fig. 15 presents
the results of the composite multiscale fuzzy entropy for
each bearing condition based on the current data, where the
value of largest scale is 20, embedding dimension 2, gradi-
ent of exponent function 2, and similarity tolerance 0.15SD
(SD denotes standard deviation of raw bearing data), respec-
tively [39]’’.

In Fig. 15, ‘‘the fuzzy entropy of H is larger on the rela-
tively large scale, and changes gently with the increase of the
scale values; the curve of composite multiscale fuzzy entropy
for other bearing conditions shows the obvious decreasing
trend. In this contrastive study, the steps used in this method
can be described as the following: Firstly, Total 1000 sam-
ples were used in this study, i.e., there were 200 samples

FIGURE 15. Composite multiscale fuzzy entropy of the different bearing
data.

for each bearing condition; the feature set was obtained by
calculating the values of composite multiscale fuzzy entropy
for each bearing condition. Then, 60% features were training
set, 20% were verification set and 20% were test set. Finally,
the correct classification of faults can be given by the SVM
model; the experimental results showed that the total correct
recognition rate is 88.6%, which is smaller than the correct
recognition rates 96.1% from the proposed methods in this
article. It is because that the method of composite multiscale
fuzzy entropy requires additional empirical effort in the bear-
ing fault diagnosis [39]’’.

V. CONCLUSION
This study presents a procedure for the detection of bearing
faults by classifying them using a machine learning model,
namely, the SVMmodel. The different Copula functions were
used to analyze the correlation structures between random
variables. Then, the cp-box models were established, and
inputted into the SVM model. Meanwhile, some conclusions
can be obtained as following:

A new G-Copula function has been established based on
a new function G proposed in this article; in the research of
the correlation structures of the bearing data, the experimental
results showed that the fitting performance of G-Copula func-
tionwas better than that of Frank-Copula and Clayton-Copula
functions.

The cp-box models have been established based on the
joint cumulative distribution of G-Copula function; In the
classification performance analysis of the SVM model,
the experimental results showed that there is no data cross
between different the cp-boxes, which increases the inde-
pendent of the input data for the SVM model. Additionally,
the aggregated widths of the cp-boxes can be used to prevent
effectively the bearing failure, which provided great benefits
for applications of the condition monitoring program.

In a contrastive study of the correct recognition rate, the
experimental results showed that the aggregated uncertainty
measurement information of the cp-boxes yield the better
classification accuracy than other diagnostic algorithms.
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APPENDIX A
Proof concept (1): It is known that gi (x) is a function G,
which satisfies all properties of function G; let h (x) =
n∑
i=1
λigi (x), then

h· (x) =
n∑
i=1

λig·i (x) ≥ 0 (A1)

h·· (x) =
n∑
i=1

λig··i (x) ≤ 0 (A2)

i.e., h (x) is an increasing concave function on [0, 1], and

h (0) =
n∑
i=1

λigi (0) = 0 (A3)

g (1) =
n∑
i=1

λigi (1) =
n∑
i=1

λi = 1 (A4)

2h· (x)+ xh·· (x) = 2
n∑
i=1

λig·i (x)+ x
n∑
i=1

λig··i (x)

=

n∑
i=1

λi
(
2g·i (x) + x g

··
i (x)

)
≤ 0,

x ∈ [0, 1] (A5)

Therefore, h (x) =
n∑
i=1
λigi (x) is still function G.

Proof concept (2): It is known that g1 (x) is a function G,
which satisfies all properties of function G. Then,

g·2 (x) = αg
·

1 (αx) /g1 (α) ≥ 0 (A6)

g··2 (x) = α
2g··1 (αx) /g1 (α) ≤ 0 (A7)

i.e., g2 (x) is an increasing concave function on [0, 1], and

g2 (0) = g1 (0) /g1 (α) = 0 (A8)

g2 (1) = g1 (α · 1) /g1 (α) = 1 (A9)

2g·2 (x)+ xg
··

2 (x) = 2
αg·1 (αx)

g1 (α)
+ x

α2g··1 (αx)

g1 (α)

=
α

g1 (α)

[
2g·1 (αx)+ αxg

··

1 (αx)
]

(A10)

Due to 0 < α ≤ 1 and 0 ≤ αx ≤ 1, therefore
α

g1 (α)
> 0, 2g·1 (αx)+ αxg

··

1 (αx) ≤ 0 (A11)

2g·2 (x)+ xg
··

2 (x) ≤ 0, ∀x ∈ [0, 1] (A12)

Then, g2 (x) = g1 (αx) /g1 (α) is still function G.
Proof concept (3): It is known that g1 (x) and g2 (x) are the

functionG, which satisfies all properties of functionG. Then,

g· (x) = g·2 (g1 (x)) g
·

1 (x) ≥ 0 (A13)

g·· (x) = g··2 (g1 (x))
(
g·1 (x)

)2
+ g·2 (g1 (x)) g

··

1 (x) ≤ 0

(A14)

i.e., g (x) is an increasing concave function on [0, 1], and

g (0) = g2 (g1 (0)) = 0 (A15)

g (1) = g2 (g1 (1)) = 1 (A16)

2g· (x)+ xg·· (x)

= 2g·2 (g1 (x)) g
·

1 (x)

+ x
[
g··2 (g1 (x))

(
g·1 (x)

)2
+ g·2 (g1 (x)) g

··

1 (x)
]

= g·2 (g1 (x))
[
2g·1 (x)+ xg

··

1 (x)
]

+ xg··2 (g1 (x))
(
g·1 (x)

)2 (A17)

Due to g1 (x) and g2 (x) are the function G, then

2g·1 (x)+ xg
··

1 (x) ≤ 0 (A18)

g·2 (g1 (x)) ≥ 0, g··2 (g1 (x)) ≤ 0 (A19)

2g· (x)+ xg·· (x) ≤ 0 (A20)

Then, g (x) = g2 (g1 (x)) is still function G.

APPENDIX B
The characteristic frequencies of the different bearing faults
can be expressed as:

fi =
1
2
NBfr

(
1+

Db cos θ
Dc

)
(B1)

fo =
1
2
NBfr

(
1−

Db cos θ
Dc

)
(B2)

fre =
1
2
fr

(
Dc
Db

)[
1−

(
Db cos θ
Dc

)2
]

(B3)

where fi, fo and fre are the characteristic frequencies of the
inner race, outer race and rolling element, respectively; NB is
the number of balls in the bearing, fr the rotating frequency
of the bearing, Db the ball diameter, Dc the pitch diameter,
and θ the contact angle, respectively.
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