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ABSTRACT Hazardous material road transport accidents pose a serious threat to public life, property and
the environment. Therefore, studying the factors influencing road transport accidents involving hazardous
materials can help identify the main causes behind them and contribute to the adoption of specific and
targeted measures to reduce casualty rates and improve traffic safety. However, most existing research either
adopted methods based on statistical analysis or neglected to further evaluate the spatial relationships. This
study aims to use the eXtreme Gradient Boosting (XGBoost) algorithm to analyze hazardous material road
transport accident data from seven regions of China. Considering the rarity of these events, the classification
performance of different methods is compared based on precision, recall, F-score and Area Under Curve
(AUC). The results indicate that the proposed XGBoost method has the best modeling performance. There
is some variation between regions in the features that have a significant impact on accident severity.
The influence of the same feature on the severity of an accident even varies from region to region.
The aforementioned results provide a theoretical basis for exploring the issues, sustainability, challenges,
and tasks of safe transportation activities for hazardous materials in the future. These results can help
regions develop targeted prevention and response policies to efficiently reduce the incidence and severity
of accidents.

INDEX TERMS Feature analysis, hazardous materials, road transport accident, transport safety, XGBoost.

I. INTRODUCTION
In recent years, with the continuous development of China’s
economy, the market demand for hazardous chemicals has
increased, of which 95% of hazardous materials come from
different places than their destination and more than 50% are
transported by road [1]. In 2018, the volume of hazardous
chemicals transported by road in China reached 1.86 billion
tons. The rapid increase in the frequency of transportation has
led to a significant rise in the frequency of hazardous chem-
ical road transport accidents. In addition, since hazardous
materials are flammable, explosive, corrosive and poisonous,
accidents often lead to more serious secondary injuries, caus-
ing a series of social problems, such as damage to the eco-
logical environment and increased casualties and property
losses. According to the U.S. Department of Transportation’s
report on hazmat accidents (2009-2018), 145,971 (87.90%)
of the 166,065 hazmat accidents occurred while in transit,
and the number of highway-related incidents is increasing
every year (12,730 in 2009 and 17,923 in 2018) [2]. In China,
from 2006 to 2017, 3,974 incidents involving the transport of
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hazardous materials resulted in the loss of 5,203 lives. This
finding indicated that more than one person was killed every
day in China as a result of a hazardous materials incident
[3]. On March 1, 2014, two tanker trucks carrying methanol
collided in a road tunnel in Shanxi Province, causing a fire
that killed 40 people. On June 13, 2020, a vehicle transporting
liquefied petroleum gas exploded during transport in Zhe-
jiang Province, causing the collapse of nearby houses and
factories, killing 20 people and injuring 175 others [1].

Over the past decades, the issue of hazardous mate-
rial transportation has been a very active area of research.
However, most studies have focused on the direct costs of
hazardous material transport or quantifying the potential
losses that can result from an accident [4]–[6]. Research
on the factors influencing the severity of hazardous mate-
rial road transport accidents has been limited. Moreover,
most research has merely described the characteristics of an
accident or explored the relationship between the features
and the severity based on statistical methods. Statistical
models can quantitatively describe the functional relation-
ship between a phenomenon and certain factors. Andersson,
an early pioneer in the study of hazmat accidents, used
statistical methods to analyze 570 hazmat accidents from
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1986 to 1987 and determined that the type of hazardous
material, type of road, type of truck for transportation,
and location of the area had a significant impact on the
severity of the accidents [7]. Yang et al., 2010 conducted
a statistical survey of hazmat road transport accidents that
occurred in China from 2000-2008 and found that 46.6% of
the accidents were caused by poor road conditions, 13.7%
were caused by driver error and 9% were caused by mis-
management [8]. Zhang et al. found that 1632 accidents
involving hazmat trucks occurred in China from 2006 to
2010; the majority of them resulted in hazardous material
spills, followed by explosion (15.1%) and fire (5.3%), and
leakage was often the cause of subsequent explosion or fire
[9]. A total of 708 accidents involving hazardous materials
on Chinese highways from 2004 to 2011 were analyzed by
Shen et al. [10]. Their study identified that 56% of those
accidents resulted in hazardous material spills and that vehi-
cle defects and human error were the main causes of hazmat
accidents. Ma et al. [11] used an ordered logit model to esti-
mate the probability of hazmat accidents of different severity
levels and applied elasticity theory to analyze the factors sig-
nificantly influencing the severity of hazmat accidents. They
found that the factors that dramatically influence the severity
of road hazmat accidents are illegal behavior, unsafe driving
behavior, accident responsibility, vehicle problems, vehicle
type, weather, lighting, road level, and regional distribution.
Duan [12] analyzed hazardous chemical accidents in China
for the period spanning 2000 to 2006 and found that the more
developed southeast coastal areas had a higher incidence of
accidents and deaths than other regions. Poku-Boansi et al.
[13] found that vehicle speed, the presence of a spill and
the population density at the accident road had a significant
effect on the severity of road transport accidents involving
dangerous goods. A random parameters ordered probit model
was established by Xing et al. [14] to explore the influence of
contributing factors on the severity of accidents. The results
indicated that higher injury severity may be related to hazmat
type, mishandling, driver fatigue, speeding, tunnels, slopes,
county roads, dry roads, winter, darkness, more than two
vehicles, rear-end accidents, and explosions. The results of
a study by Fabiano et al. [15] showed that road alignment,
meteorological factors and the frequency of transport vehicle
traffic significantly affect the risk of road transport of danger-
ous goods. Azimi et al. [16] employed a random parameter
logit model to study the injury severity of large truck rollover
crashes in the state of Florida, and they identified that crashes
tend to be more severe when there are hazardous material
spills.

Statistical models have been used to successfully explore
the factors influencing the severity of traffic accidents. A sta-
tistical model is an a priori hypothesis about the potential
relationship between the variables of interest to determine the
effect of the independent variable on the dependent variable
after understanding the statistical characteristics, such as the
data collection method and the estimated quantity. However,
in practice, there is a possibility that the a priori assumptions

do not represent the real situation of the variables, leading
to inappropriate inferences [17]. In addition, related studies
have pointed out that statistical models are more suitable for
exploring the relationships embodied in data with smaller
sample sizes and narrower characteristics [18], [19].

In contrast, machine learning models, as nonparametric
tools, do not assume relationships between endogenous and
exogenous variables and have no or few presuppositions
about the explanatory variables. These models are more
adaptable and can process high-dimensional data quickly; the
larger the sample size is, the better the analysis. Furthermore,
these models have the ability to classify dependent variables
by calculating the highest significant explanatory variables
[20], [21]. Currently, machine learning research is focused on
decision trees (DTs), random forests (RFs), artificial neural
networks (ANNs), support vector machine (SVM), etc. [22]–
[24]. However, algorithmic processes such as ANNs and
SVM are performed as if in a black box, making it difficult to
see the process and directly obtain differences in the effect
of different features on accident severity [25]. Tree-based
algorithms are a common approach in machine learning
algorithms. These algorithms have progressed from single
decision trees to random forests based on bagging algorithms
to gradient boosting trees. In a continuous improvement pro-
cess, eXtreme Gradient Boosting (XGBoost) has improved
the basic framework of a gradient boosting machine (GBM)
by optimizing the system and enhancing the algorithm to
offset all parallelization overheads in computation [26]. Addi-
tionally, borrowing regular terms corrects the inherent over-
fitting of a tree model. Ultimately, XGBoost has demon-
strated the distinctive capability to solve a variety of classifi-
cation problems and is widely recognized among researchers
for its accuracy, simplicity, and interpretability. Soleimani
et al. [27] used XGBoost to determine the relative impor-
tance of the variables used to close a crossing based on
accident data occurring at 18,485 road-rail grade crossings
in the United States. The model accuracy was 0.991, which
was higher than that of decision trees (0.984) and random
forests (0.987). Bahador et al. [28] applied XGBoost and
SHapley Additive exPlanations (SHAP) for real-time acci-
dent detection and characterization. The results showed that
XGBoost can robustly detect accidents with 99% accuracy,
79% detection and a 0.16% false alarm rate. It was also pro-
posed that characteristics such as speed, population, network,
land use, and weather conditions had a significant impact
on the probability of accidents. Ma et al. [26] conducted a
spatial analysis of the leading factors for the 3,146 traffic
fatalities that occurred in Los Angeles in 2010-2012 based on
a methodological framework of XGBoost and grid analysis
and identified eight factors as the most influential. The influ-
ences were, in descending order, drunk driving, involvement
in parties, rear-end collisions, lighting conditions, pedes-
trian involvement, motorcycle involvement, day of the week,
and time of day. Zhang et al. [29] modeled the hierarchi-
cal relationship between material properties and their deep
semantics occurring in the same image by the GS-XGBoost
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algorithm, which has been applied in different scenarios such
as large-scale product image retrieval, robotics, and industrial
inspection. Shi et al. [30] applied XGBoost to urban fire
incident prediction.

In general, the literature on the analysis of factors influenc-
ing the severity of hazardousmaterial road transport accidents
is limited and has mainly focused on accident descriptions
using statistical methods, with few studies applying machine
learning algorithms to the analysis of factors influencing
the severity of hazardous material road transport accidents.
In addition, the previously small sample size and failure
to account for inter-regional variability has created knowl-
edge gaps in identifying key influences and predicting crash
severity. The purpose of this paper is to analyze the factors
influencing the severity of hazardous material road traffic
accidents in seven regions of China. The severity of an
accident was divided into property damage only, injury and
fatal, depending on the casualty. The nonparametric machine
learning algorithm XGBoost was applied in this paper for
data preprocessing and exploration of key risk features, and
its performance was compared with that of four other com-
mon classification algorithms. The comparison showed that
XGBoost outperforms the other algorithms in terms of classi-
fication accuracy. The knowledge gained from this study can
provide a theoretical basis for the government and transport
enterprises to formulate effective preventive measures, rescue
programs and material reserve plans to minimize a series
of social problems, such as casualties, property damage and
environmental pollution.

The remainder of this paper is organized as follows:
Section II provides an introduction to the XGBoost

algorithm. Section III describes the data sources and pro-
cessing procedures. Section IV presents the results of the
model assessment and data analysis, and improvement
recommendations are made based on the results of the data
analysis.

II. METHODOLOGY
A. XGBoost
XGBoost is a C++ optimized implementation of a GBM
[26], [31], [32]; complexity is introduced into themodel when
measuring the efficiency of the algorithm, so the objective
function of XGBoost is expressed as:

Obj =
∑m

i=1
l
(
yi, ŷi

)
+

∑K

k=1
�(fk) (1)

where i represents the ith sample in the dataset, m indicates
the total amount of data imported into the kth tree, and K
stands for all trees created. When only t trees are created,
the equation should be

∑t
k=1�(fk). yi represents the true

label, ŷi represents the predicted value, and � represents an
equation that measures the complexity of the tree model from
the structure of the tree.

When t trees are created, the predicted value ŷi in the
traditional loss function can be expressed in the following
manner:

ŷ(t)i =
∑t−1

k=1
fk (xi)+ ft (xi) = ŷ(t−1)i + ft (xi) (2)

It follows that the traditional loss function is related to all
trees that are well established. ŷi contains the results of all
tree iterations [29], thereby establishing a direct link between
the structure of the tree and the model effect. The objective
function can be expressed as:

Obj =
∑m

i=1
l
(
y(t)i , ŷ

(t−1)
i + ft (xi)

)
+

∑t−1

k=1
�(fk)+ ft

(3)

The objective function can be expressed as follows after
expansion based on Taylor’s formula:

Obj =
∑m

i=1

[
l
(
y(t)i , ŷ

(t−1)
i

)
+ ft (xi) gi +

1
2
(f t (xi))

2hi

]
+

∑t−1

k=1
�(fk)+�(ft) (4)

where gi =
∂l
(
y(t)i ,ŷ

(t−1)
i

)
∂ ŷ(t−1)i

and hi =
∂2l
(
y(t)i ,ŷ

(t−1)
i

)
∂2(ŷ(t−1)i )

are

the first- and second-order derivatives of the loss function
l(y(t)i , ŷ

(t−1)
i ) over ŷ(t−1)i , respectively.

The constant term is irrelevant to the result of the tth iter-
ation, so the constant terms l

(
y(t)i , ŷ

(t−1)
i

)
and

∑t−1
k=1�(fk)

are removed from the objective function. The objective func-
tion can be expressed as:

Obj =
∑m

i=1

[
ft (xi) gi +

1
2
(f t (xi))

2hi

]
+�(ft) (5)

The structure of the tree is redefined according to for-
mula (6),

ft (xi) = wq(xi) (6)

where q (xi) denotes the leaf node where sample xi is located.
wq(xi) denotes the score obtained by this sample falling in the
q (xi) leaf node of the tth tree.
If a tree contains a total of T leaf nodes, where the index of

each leaf node is defined as j, then the weight of the samples
on the leaf nodes is wj. The complexity of the model �(f )
can be expressed as:

�(ft) = γT +
1
2
λ
∑T

j=1
w2
j (7)

By bringing the structure of the tree into the loss function
and defining the set of samples contained on a leaf with index
j as Ij, the objective function can be transformed into the
following equation (8):

Obj =
∑T

j=1

[
wj
∑

i∈Ij
gi+

1
2
w2
j (
∑

i∈Ij
hi+λ)

]
+γT (8)

B. CROSS-VALIDATION
In k-fold cross-validation, the training set is split into k
subsets. For each of the k ‘‘folds’’, the following proce-
dure is followed. A model is trained using the k−1 folds
as training data. The resulting model is validated on the
remainder of the data (i.e., these data are used as a test set
to compute performance measures, such as accuracy). The
k-fold cross-validation then reports a performance measure
that is the average of the values computed in the loop.
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FIGURE 1. Confusion matrix and formulas for calculating accuracy, TPR,
FPR, precision, recall, and F-score.

This method is computationally costly but does not waste
much data, which is a tremendous advantage in problemswith
very small sample sizes. Previous tests have shown that the
use of cross-validation improves the results of the model [33],
and 10-fold cross-validation is widely used.

C. MODEL ASSESSMENT INDICATORS
1) CONFUSION MATRIX
The confusion matrix and the metrics associated with it,
accuracy, true positive rate (TPR), false positive rate (FPR),
precision, recall, F-score, receiver operating characteristic
(ROC), and the area under the ROC curve (AUC), were used
to evaluate the model in this study [34].

A confusion matrix is a specific table layout that allows
visualization of the performance of an algorithm. Each col-
umn of thematrix represents the instances in a predicted class,
while each row represents the instances in an actual class,
making it easy to see the numbers of false positives (FP), false
negatives (FN), true positives (TP), and true negatives (TN).
This approach allows more detailed analysis than the mere
proportion of correct guesses (accuracy). The four outcomes
and calculation formulas for assessing indicators are shown
in Figure 1 as follows:

2) ACCURACY
Accuracy is a composite metric that reflects how many of
all samples are correctly predicted and is one of the most
commonly used metrics for assessing predictive performance
in classification mandates. In general, the higher the accuracy
rate is, the better the classifier.

3) TRUE POSITIVE RATE (TPR) AND FALSE POSITIVE RATE
(FPR)
TPR indicates the proportion of samples that the classifier
predicts to be positive as a percentage of the number of
samples that are actually positive and measures the classi-
fier’s ability to identify positive examples. FPR expresses the
proportion of samples that the classifier predicts to be positive
among the actual number of negative samples.

4) PRECISION, RECALL AND F-SCORE
Precision can be defined as a measurement of accuracy, i.e.,
the proportion of positive samples that are predicted to be
correct among the total number of samples predicted to be
positive.

Recall is a metric of completeness, i.e., the number of
positive samples predicted correctly as a percentage of the
number of actual positive samples. F-score is the harmonic
mean of precision and sensitivity. The best values for preci-
sion, recall and F-score are close to 1, and the worst values
are close to 0 [35].

5) RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE
AND AREA UNDER THE ROC CURVE (AUC)
ROC is a curve with FPR as the horizontal coordinate and
TPR as the vertical coordinate, and this curve reflects a
combination of the continuous variables of sensitivity and
specificity. The larger the AUC is, the better the diagnostic
performance [36].

III. DATA
A. DATA COLLECTION
The data used in this paper were collected by the Dangerous
Chemicals Registration Center of the Ministry of Emergency
Management of the People’s Republic of China. The data
represent the occurrence of road transport accidents involving
hazardous materials in seven regions of China over the five-
year period from 2015-2019. Based on the real situation of
the raw data and with reference to the factors affecting the
safety of road transport of dangerous goods listed in the
European Agreement concerning the International Carriage
of Dangerous Goods by Road (EUR), Highway Routing
of Hazardous Materials: Guidelines for Applying Criteria
(U.S.), and Regulations on the Administration of Dangerous
Chemicals Safety (CN) documents, 19 features were initially
selected as the independent variables of the model. These
features are accident forms (direct accident form: DAF, final
accident form: FAF), driver attributes (qualification: QU,
fatigue: FAT), vehicle attributes (vehicle type: VT, vehicle
safety status: VSS, device security status: DSS, moving state:
MS), road attributes (road type: RT, road alignment: RA,
traffic signal: TS, intersection: INT, segment type: ST), envi-
ronmental attributes (surface condition: SC, season: SEA,
month: MON, time of day: TOD, weather: WEA), and type
of hazardous materials: HM. The severity level of an accident
was determined by the number of casualties and was divided
into three levels (property damage only: O, injury: I, and
fatal: F).

B. DATA PREPROCESSING
The complexity of hazardous material road transport inci-
dents and the lack of specialization in the collection of
information on hazardous material road transport incidents
mean that there are always shortcomings in our raw data, and
preprocessing is often required before the data can be applied
to themodel. The preprocessing process in this study involved
data cleaning and data formatting.

1) DATA CLEANING
Highly relevant data will be removed from the dataset
[37]. Highly relevant data (correlation coefficient above 0.5)
include data that are strongly correlated with the target and
data that are tightly correlated with each other.
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FIGURE 2. Description of multicollinearity between variables.

The results of a correlation analysis of the data are dis-
played in Figure 2, where one of each pair of features with a
correlation coefficient greater than 0.5 is removed to alleviate
the correlation problem and reduce the computational cost.
In summary, this study excluded two highly correlated fea-
tures. The number of features was reduced to 17. The cleaned
dataset and its attribute descriptions are listed in Table 1.
The number of hazardous material road transport accidents
in each region of China is shown in Figure 3.

2) DATA FORMATTING
Most of the features collected in this study are not sequential
but categorical nominal variables, for which only the use of
dummy variables can convey the most accurate information
possible to the algorithm [38]. In the data, season, road
type, etc., are nominal variables that need to be converted
to dummy variables using unique hot coding. For example,
in the raw dataset, the categorical data for SEA have four
independent labels, including spring, summer, fall and winter.
After a one-hot encoder was applied, four dummy variables,
SEA_1, SEA_2, SEA_3, and SEA_4, were given to indi-
cate the season in which an accident occurred. In this way,
the 17 categorical features were formatted into 91 dummy
object variables.

IV. RESULTS AND DISCUSSION
A. XGBOOST MODEL
The experiment was run on a computer with 8 GB of running
memory, an Intel (R) Core (TM) i3-3110M CPU, and a
Windows 10 operating system. The coding environment was
Python 3.8.2.

1) MODEL PERFORMANCE ASSESSMENT
To further test the performance of XGBoost, four popu-
lar models, logistic regression (LR), multilayer perceptron
(MLP), random parameters logit model (RPLM), random
forest (RF) and SVM, were used to compare the performance,
and 10-fold cross-validation was used to stabilize the results.
The results are shown in Figure 4.

2) XGBOOST PERFORMANCE ANALYSIS
The results describing the performance of the classifier for
the seven regions, calculated from the confusion matrix, are
shown in Table 2.

East China, Northwest China and Central China are the
regions with more hazardous material road transport acci-
dents in China, and the performance of the model for those
regions is superior to that for the other regions. This finding
may be due to the fact that there are fewer accident records in
the other regions. These results clearly demonstrate that the
model may not obtain the desired predictive accuracy when
the dataset is too small.

B. FEATURE IMPORTANCE
The combination of feature importance and XGBoost’s deci-
sion rules allows for a more definitive and comprehensive
exploration of the main features that have an impact on
the severity of hazardous material road transport accidents
in each region. Specific effective measures and suggestions
can be proposed to enhance the safety of hazardous mate-
rial road transport. The main features affecting the severity
of hazardous material road transport accidents in different
regions are listed in Figure 5. Table 3 lists the occurrences
of accidents (property damage only, injury, and fatal) with
and without the relevant features. More specific details will
be discussed in the next section.

C. FEATURE ANALYSIS
The impact of each characteristic on the severity of hazardous
material road transport accidents in the local area is analyzed
based on the main risk characteristics of each region.

1) EAST CHINA
The following results can be obtained from Figure 5 and
Table 3. In East China, the features that have the greatest
influence on the severity of hazardous material road transport
accidents include HM, SC, MS, FA, and TOD (in order of
importance).

Road transport accidents involving Class III and VIII
hazardous materials accounted for 78% of all accidents, and
the probabilities of serious and major accidents were higher
than those of other types of hazardous materials (I: 48%
VS 38%; F: 8% VS 7%). Frequent transport may be the
underlying cause, and the flammable, explosive and corrosive
properties of hazardous substances increase the likelihood of
a serious accident [9].

Accidents occurring on dry pavement accounted for 83%
of the total accidents. The casualty probability of accidents
that occurred on dry pavement is significantly lower than
that of the other road surface conditions (I: 41% VS 66%;
F: 6% VS 14%). This is mainly because the high friction
coefficient of dry pavement enables drivers to prevent an
accident in time. However, on wet pavement with a lower
coefficient of friction, the adhesion between a vehicle and the
pavement is less, and it is not easy to control vehicles, which
exacerbates the seriousness of an accident [14]. East China is
located in China’s eastern coastal and southeastern regions,
with a temperate and subtropical monsoon climate, more rain
in summer, and more snow in winter, further exacerbating the
above situation.

Sixty-one percent of the total number of accidents
occurred while the vehicle was traveling straight ahead.
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TABLE 1. Descriptive statistics of features.

The probability of a fatal crash occurring when the vehicle
is traveling straight ahead is less than that of other moving

states (F: 6%VS 10%). The primary reason is that when going
straight, the driver is already relatively well acquainted with
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FIGURE 3. Accident distribution in different districts.

FIGURE 4. Comparison of models.

TABLE 2. XGBoost performance metrics for the 7 districts.

the surrounding environment and can deal with a potential
accident that is happening in time. However, when turning,
avoiding or going downhill, the road transport environment
is relatively complicated and unfamiliar; these conditions not

FIGURE 5. The significance of features.

only increase the accident rate but also increase the sever-
ity of an accident if the driver fails to respond in a timely
manner [16].

Twenty-three percent of all accidents in the region occurred
with drivers who were fatigued while driving. Injuries and
fatalities are more likely to occur in a fatigued state than
in a non-fatigued state (I: 64% VS 40%; F: 12% VS 6%).
The reason for this is that when fatigued, drivers are slow
to become aware and react. When an accident is immi-
nent, a fatigued driver is unable to assess the danger or
take the correct avoidance measures in time. This dramat-
ically increases the number of potential fatalities in traffic
accidents [39].

Accidents at 15:00 and 16:00 in the afternoon accounted
for 15% of the total number of accidents, which was signif-
icantly higher than the average. The rate of fatal accidents
was higher than that at other times of day (F: 9% VS 7%).
The main reasons include the fact that East China exerts strict
control over the transportation times of hazardous materials,
and these measures reduce the accident rates at night and
in the early morning. After driving for a long time, truck
drivers become fatigued at 15:00-16:00 and lose the ability to
judge the driving environment around them, thus increasing
the severity of accidents [40].

2) NORTH CHINA
From Figure 5 and Table 3, we can reach the following
findings. InNorth China, DAF, RT, FA, RA, SEA, andHMare
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TABLE 3. Casualties for the selected features.

identified as key determinants of severity in accidents, in that
order.

In 78% of the accidents, the direct accident forms
involved spills, rollovers and two-vehicle rear-end collisions.
Accidents with the above direct accident forms were less

likely to result in fatalities than those with other direct
accident forms (F: 2% VS 3%). Possible causes include
the following: in comparison to the direct forms of acci-
dents described above, an explosion leaves very little time
for people to escape. Fall down accidents generally occur
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on treacherous roads or at bridges, making rescue difficult
and thus increasing the severity of an accident. Multivehicle
accidents involve a large number of people, which in turn
increases the potential fatality rate. Similarly, in multivehicle
accidents, those who are not initially injured and decide to
flee their vehicle immediately are still at risk [10].

Fifteen percent of the total crashes occurred on urban
roads. The probabilities of injury and fatal levels for haz-
ardous material road transport accidents the occurred on
urban roads were less than those of other road types (I: 40%
VS 62%; F: 0% VS 2%), which is related to the strict regula-
tion of the time of entry of vehicles transporting hazardous
materials on urban roads. More serious accidents on high-
ways and national and provincial roads can be attributed to
the high speed of traffic, complicated traffic mix and number
of parties involved. Lower police control and the poor road
transport environment on rural roads increase the probability
of fatal accidents [11].

Twenty percent of the total accidents occurredwhen drivers
were fatigued. Accidents were more likely to be fatal when
the driver was fatigued (F: 6% VS 1%). This finding may
be due to the fact that fatigued drivers are slower to become
aware and react [41].

The casualty probability for hazardous material road
transport accidents that occurred on straight and curved roads
was significantly higher than that for the other road align-
ments (I: 64% VS 35%; F: 2% VS 0%). Furthermore, 84% of
accidents occurred on straight and curved roads. This result
can be attributed to the fact that the main road alignments
in North China are straight and curved roads. Driving on
straight roads for long periods of time can cause visual
fatigue, or driving on straight roads can be too comfortable
and increase the likelihood of negligent driving, which can
lead to serious accidents. At curves, a large mass of fluid in a
tank can easily lead to overturning due to inertia whenmaking
turns, leading to casualties [15].

Fall and winter have higher fatality rates than spring and
summer (F: 3% VS 1%). In North China, the need for
heating during the fall and winter months leads to a signif-
icant rise in demand for hazardous materials and frequent
transportation, which in turn increases the potential fatality
rate [10]. Moreover, the cooler temperatures in autumn and
winter pose a challenge to the technical safety of vehicles and
equipment [3].

Accidents involving the transport of Class III hazardous
materials have a higher probability of casualties than those
of other types of hazardous materials (I: 60% VS 58%; F:
3% VS 0%). This finding may be attributed to the larger
proportion of Class III hazardous materials (63%).

3) CENTRAL CHINA
The following can be derived from Figure 5 and Table 3.
In Central China, DAF, RT, FAF, FA, and RA, in that
order, are critical features in determining the severity of road
transport accidents related to hazardous materials.

When direct accident forms involve spills, fires, and
two-vehicle collisions, the occurrence probability of injury
or death is lower than that in other direct accident forms
(I: 29% VS 69%; F: 5% VS 10%). The reasons for this result
are similar to those in the previous section (North China).
However, only 36% of the accidents in this region involved
the above direct accident forms.

Accidents on highways accounted for 37% of all accidents
in the region and were more likely to result in fatalities than
accidents on other types of roads (F: 14% VS 5%). This
finding might be attributed to more vehicles on the highway
leading more easily to multivehicle accidents; the more par-
ties involved in an accident, the higher the number of people
to be engaged and the higher the fatality rate. Moreover, it is
prevalent that the higher the speed is, the higher the mortality
rate [42].

Eighty-five percent of accidents in the region ended in a
spill as the final form of the accident. Accidents where the
final accident form was a spill were associated with a much
lower probability of fatalities than that of other final accident
forms (F: 6% VS 23%). This may be explained by the fact
that if the final accident form is a spill, the accident may
mostly be caused by the failure of equipment and not involve
other vehicles. In addition, leaks leave more escape time for
accident participants than rollovers, fires, or explosions.

In 27% of the accidents in the region, drivers were fatigued
at the time of the accident. Fatigued driving revealed higher
rates of injury and death (I: 71% VS 49%; F: 11% VS 7%).
This result is also caused by the poor condition of a driver
when fatigued.

The influence of road alignment on accident severity is
mainly reflected in the probability of fatal accidents. Fatal-
ities are approximately 2.75 times more likely to occur on
straight roads than on other road alignments (F: 11%VS 4%),
mainly because drivers are more relaxed when driving on
straight roads, making themmore prone to drowsy or careless
driving [43]. Worse still, accidents on such road alignments
accounted for 56% of the region’s accidents.

4) SOUTH CHINA
From Figure 5 and Table 3, we can reach the following
findings. In South China, the severity of hazardous material
road transport accidents basically depends on FAF, VT, FA,
RT, and SEA, in that order.

Accidents in which the final accident form was a spill were
more likely to involve injuries and significantly less likely to
result in fatalities than those with other final accident forms
(I: 50% VS 19%; F: 5% VS 24%); the reasons are consistent
with those in the previous section [9]. In addition, 85% of the
accidents ended up in the form of a spill.

Tanker trucks accounted for 87% of all hazardous material
road transport vehicles. Accidents involving tanker trucks had
a significantly higher probability of injury accidents and a
lower probability of fatal accidents than those involving other
vehicle types (I: 49% VS 21%; F: 7% VS 11%). The reasons
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behind this are as follows: tankers are the main vehicles used
to transport hazardous materials, the regulation of tankers
is becoming more systematic, the design and manufacture
of tankers are more sophisticated, and the safety level of
vehicles is increasing [44]. Other vehicles are mostly ille-
gal transport vehicles that evade regulations; for these vehi-
cles, the equipment safety level is not up to standard, and
the driver has a lack of knowledge of hazardous chemical
road transport and rescue, increasing the probability of fatal
accidents [11].

Twenty-four percent of drivers were fatigued at the time
of the accident. Fatigued drivers were more likely than non-
fatigued drivers to be involved in both injury and fatal acci-
dents (I: 56%VS 42%; F: 21%VS4%). This finding is caused
by the poor condition of a driver when fatigued.

Accidents on freeways accounted for 61% of all accidents
in the region, and the probabilities of injury and fatal levels
for crashes that occurred on freeways were greater than those
of other road types (I: 50% VS 38%; F: 10% VS 4%). The
possible explanations for the above results are as follows.
First, because the highway road environment is better, when
driving on such a road, a driver will unknowingly increase
speed; second, more vehicles on the highway can easily lead
to multivehicle accidents; the more parties that are involved
in an accident, the higher the number of people to be engaged
and the higher the fatality rate [16].

In summer, accidents were more likely to be fatal (F: 16%
VS 3%), and 35% of accidents occurred in the summer.
These findings are mainly due to the fact that summer is the
main season for road transport of hazardous materials, which
increases the possibility of accidents due to frequent trans-
port. Additionally, high temperatures and heavy rainfall have
a great impact on the transport environment, the technical
safety of vehicles and equipment and the attention of drivers,
further increasing the chances of serious accidents [45].

5) SOUTHWEST CHINA
The following results can be obtained from Figure 5 and
Table 3. In the Southwest, features that have a significant
impact on the severity of road transport accidents involving
hazardous materials include the DAF, FA, SEA, HM, and SC,
in order of importance.

When the direct accident form was a spill, the severity of
an accident was significantly lower than those of other direct
accident forms, and the probability of a fatal accident was
zero (I: 10% VS 70%; F: 0% VS 7%). This may be because
spills are usually caused by the aging of equipment or by a
minor impact, whichwill not readily lead to serious accidents.
However, accidents where the direct accident formwas a spill
accounted for only 13% of the total number of accidents.

According to our results, fatigue has a substantial effect
on the incidence of fatal accidents. Mortality in a fatigued
state is 3.5 times higher than that in a non-fatigued state
(F: 14% VS 4%), and the interpretation of this result is the
same as presented previously. Eighteen percent of drivers
were fatigued at the time of an accident.

The season in which an accident occurs has a dramatic
impact on fatalities. Fatal accidents were more likely to occur
in summer than in other seasons (F: 9% VS 4%), with 36% of
accidents in the region occurring during the summer months.
This is primarily attributed to the fact that summer is the
season with the most frequent transportation of hazardous
materials, the traffic volume is large, the number of parties
involved in accidents is large and the number of people
involved is large, thus increasing the probability of fatal
accidents [18], [46]. On the other hand, summer precipitation
is more frequent in Southwest China, with 78% of days expe-
riencing precipitation and a large amount of precipitation,
approximately 300 mm. Persistent heavy rain reduces road
conditions and a driver’s ability to observe the surrounding
environment, increases the tension of driving and affects the
driver’s ability to control the vehicle, and the likelihood of a
serious accident in this state is greater [45].

The probability of a fatal accident involving Class III
hazardous materials was significantly smaller than that of
other types of hazardous materials (F: 4% VS 9%). In the
Southwest, 64% of accidents involved the transport of Class
III hazardous materials. Unlike other regions, the Southwest
had a lower probability of fatalities from transporting Class
III hazardous materials than from transporting other types
of hazardous materials, and this finding can be traced to the
region’s strict regulations on transporting Class III hazardous
materials.

Road surface conditions have a high correlation with the
probability of fatal accidents. The probability of fatal crashes
occurring onwet pavement was greater than that on other road
surface conditions (F: 21% VS 4%), and 12% of accidents
in this region involved wet road conditions [45]. In addition
to the abovementioned climatic reasons, the complex geo-
graphical environment of the Southwest region causes certain
difficulties for rescue, which is also a reason for the high rate
of fatal accidents.

6) NORTHWEST CHINA
FromFigure 5 and Table 3, we can draw the following conclu-
sions. In Northwest China, the severity of hazardous material
road transport accidents is mainly influenced by DAF, RT,
FAF, SC, FA, and SEA (in order of importance).

Accidents involving the direct accident forms of fires,
rollovers and two-vehicle rear-end collisions accounted for
55% of the total number of accidents in the region. The
probability of a fatal accident was lower under the above
direct accident forms than under other direct accident
forms (F: 8% VS 15%). The reasons for this result are analo-
gous to those in the North China region.

Accidents involving highways and rural roads accounted
for 56% of the total number of accidents in the region.
The probability of fatal hazardous material road transport
accidents that occurred on highways and rural roads was
significantly higher than that on other road types (F: 14%
VS 7%). Possible reasons include high speeds, large numbers
of vehicles and complex road conditions on highways, as well
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as lax transport management and poor road infrastructure on
rural roads, preventing timely rescue efforts [47].

Spills accounted for the largest proportion of final accident
forms (86%) andwere far less likely to be fatal than other final
accident forms (F: 7%VS 39%). An explanation of this result
can be found in the section on the Central China region.

Eighty-eight percent of accidents in this region occurred
on dry road surface conditions. Accidents on dry roads were
significantly less likely to be fatal than those on wet, water-
logged or icy roads (F: 8%VS 35%). The possible reasons for
this result are as follows: the Northwest has more plateau and
mountainous terrain with difficult terrain and poor road con-
ditions, reducing driver control and the opportunity to adjust
the vehicle when the road surface is wet or icy. Additionally,
lower levels of emergency response andmedical care increase
the probability of fatal accidents [45].

Twenty-two percent of accidents in the region occurred
when drivers were fatigued. Injuries and fatalities were more
likely to occur in fatigued conditions than in non-fatigued
conditions (I: 66% VS 47%; F: 17% VS 10%) for the same
reasons as before.

Fifty-two percent of all accidents in the region occurred
during the fall and winter months. Fatalities were more
likely to occur in autumn and winter than in spring and
summer (F: 15% VS 7%). This result is mainly because of
the rugged terrain and mountainous roads in the Northwest.
In addition, the harsh natural environment in autumn and
winter means that vehicles and equipment are more likely
to break down, thus increasing the likelihood of dangerous
accidents [45].

7) NORTHEAST CHINA
The following results can be observed from Figure 5 and
Table 3. In Northeast China, FAF, SEA, DAF, HM, and
MON are the key features, in order of importance, in dis-
tinguishing the severity of hazardous material road transport
accidents.

Accidents where the final accident form was a spill
accounted for 72% of the total number of accidents, and the
fatality rate was significantly lower than that of other final
accident forms (F: 8% VS 44%). The reasons for this result
are similar to those described above for Central China.

Accidents occurring during the winter months accounted
for 22% of the total number of accidents in the region. Con-
trary to previous perceptions, the probability of a fatal winter
accident was extremely low and almost nonexistent, whereas
the probability of a fatal accident in other seasons was 10%.
This is probably because drivers understand the harshness
of the winter environment in the Northeast, the difficulty of
rescue, and the severity of an accident, so they increase their
caution, thus reducing the chance of a serious accident.

Direct accident forms involving spills, fires, and two-
vehicle rear-end collisions were less likely to result in fatali-
ties than other direct accident forms (F: 3% VS 12%). Expla-
nations for this result can be found in the sections on the
North and Southwest regions of China. The direct form of

an accident involved spills, fires and two-vehicle rear-end
collisions in 49% of the accidents.

Among all hazardous material road transport accidents in
the Northeast, 62% involved Class III hazardous materials,
much higher than for other hazardous materials. This may
also be one of the reasons why the probability of fatal acci-
dents was higher for Class III hazardous materials than for
other types of hazardous materials (F: 13% VS 0%).

Eleven percent of road transport accidents involving haz-
ardous materials occurred in March. The fatal accident rate
was extremely high compared to that occurring in other
months (F: 29% VS 5%). This may be due to the fact that
the hazardous material industry in the Northeast begins oper-
ations in March, and drivers are not fully familiar with the
vehicles and routes to handle changes in the driving envi-
ronment [3]. In addition, the excitement of starting work
may cause drivers to forget the unique nature of hazardous
material road transport, let their guard down, and engage in
unsafe behaviors such as speeding.

D. PROPOSALS TO IMPROVE SAFETY IN THE TRANSPORT
OF HAZARDOUS MATERIALS BY ROAD
According to the results of the above analysis, corresponding
recommendations will be made for each of the seven regions
regarding how to improve the safety of hazardous material
road transport.

1) EAST CHINA
East China, with a relatively dense transportation network and
population, should first establish relevant laws and regula-
tions regarding safe distances for industries, while companies
should try to avoid densely populated areas such as residential
areas when choosing routes [9].

The safety of transporting Class III and VIII hazardous
chemicals is strictly controlled, specific transport plans and
workflows are formulated, safety education is carried out, and
safety supervision of transport enterprises is strengthened [3].

Gather information from various sources (weather, road
conditions) to adjust routes and transportation schedules in a
timely manner to avoid driving in rain or snow or on slippery
roads. Near curves, ramps, and other special road alignments,
the road designer should provide sufficient information by
installing road signs to alert drivers to upcoming road align-
ments and that they should reduce their speed and remain
alert [42].

Truck manufacturers are recommended to take sufficient
care in developing new safety equipment and detection instru-
ments. For example, by adding driver detection devices to
the in-vehicle system, the driver’s driving time, mental state
and operating behavior will be monitored in real time, and
any unsafe behavior will be promptly alerted to reduce the
occurrence of accidents or aggravation caused by fatigue [20].

Other options are additional mobile checkpoints for haz-
ardous materials at suitable locations on roads and mandatory
control of vehicle travel times.

Traffic control, such as drowsy driving checks, should be
strengthened from 15:00-16:00.
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2) NORTH CHINA
Recommendations on the treatment of the FA, RA, and HM
factors can be found in the section on the East China region.

Road authorities and transport companies should invest
more in real-time monitoring and early warning equipment
and establish monitoring and early warning systems. A coor-
dination mechanism should be developed among transport
enterprises, road authorities, fire departments, and environ-
mental protection and health authorities to make efficient
emergency rescues and plans [42].

Introduce standards for the hours of exclusion of vehicles
transporting hazardous materials on urban roads, and strictly
enforce them [48]. Speed limits should be strengthened on
expressways and national, provincial roads and rural roads,
and more road infrastructure should be installed for rural
roads.

Reduce the design of longer, straighter roads, or add bulges
in an orderly manner on longer, straighter roads to constantly
remind drivers to stay alert [49].

The frequency of safety inspections of transport vehi-
cles and equipment should be increased during the autumn
and winter seasons. Additionally, traffic control should be
strengthened. Recommendations on the transport of Class III
hazardous chemicals can be found in the section on the East
China region.

3) CENTRAL CHINA
Recommendations for dealing with the DAF, FA, and RA
factors can be found in the sections on the East China and
North China regions.

Suggestions for handling the final form of an accident:
Advanced technologies such as global positioning systems
(GPS), geographic information systems (GIS), electronic
billing and mobile networks can be used to set up monitoring
systems to understand the development of accidents and pro-
vide basic information for the timely formulation of rescue
plans [50].

Developing effective training programs for road transport
accidents involving hazardous chemicals, raising staff risk
awareness and knowledge of the characteristics of hazardous
materials, and improving the response capacity are also nec-
essary [10]. In addition, it is necessary to establish a linkage
among transport enterprises, road management departments
and emergency rescue organizations [50].

4) SOUTH CHINA
For suggestions on the handling of the FAF, FA, RT, and
SEA factors, please refer to the sections on East China, North
China, and Central China.

The vehicle type should be regulated more heavily in
terms of the overloading of tankers, and overweight vehicles
have larger inertia and reduced operability. A load detection
device can be installed at a load detection site for hazardous
material transport vehicles, and the data can be uploaded in
real time [51]. When a load is heavy, the relevant supervisors
will be notified to avoid overloading in the transportation

process, which can cause hazardous material transportation
accidents.

The region will have to increase the costs of illegal modi-
fication and illegal transportation and improve the frequency
and supervision of inspections on rural roads.

5) SOUTHWEST CHINA
Recommendations for dealing with DAF and FA can be
referenced in the section on the East China region.

In summer transportation, enterprises should comprehen-
sively collect information from various parties, set up routes
and schedules, avoid traveling on rainy days and steep terrain,
and strengthen training for drivers to improve their safety
awareness and ability to deal with emergencies.

Companies should tighten their load management of Class
IV hazardous chemicals to avoid exposure to wet conditions
during transport [52].

Recommendations for wet road surface conditions can be
taken from the suggestions for summer transport manage-
ment.

6) NORTHWEST CHINA
Recommendations on the treatment of RT, FAF, FA, and DAF
can be obtained from the sections on the relevant regions
above.

Route planning should be undertaken cautiously to min-
imize driving on wet, waterlogged, icy and snowy roads.
If necessary, additional vehicle anti-skid equipment can be
installed.

In the autumn and winter seasons, transport enterprises
need to perform proper vehicle maintenance to deal with
the harsh natural environment and rugged terrain of the
Northwest Territories. Additionally, the frequency of vehicle
inspections should be increased to ensure that vehicles and
equipment run well. Increasing the stockpile of emergency
supplies and equipment is also necessary [15].

7) NORTHEAST CHINA
Proposals for the DAF, FAF, and HM factors can be obtained
from the sections on the abovementioned regions.

The Northeast region should strengthen the supervision of
road transport of hazardous materials in spring, summer and
autumn.

Transport companies should intensify training on driving
skills, emergency operations and safety awareness before
the resumption of work in March. Traffic authorities should
increase the frequency of traffic control and inspections,
such as by addressing speed limits, fatigue and illegal
transport [12].

V. CONCLUSION
This paper proposed the use of XGBoost to develop a ternary
classificationmodel of property damage only, injury, and fatal
accidents. On the basis of this model, we explored the factors
influencing the severity of hazardous material road transport
accidents in seven regions of China. In addition, four popular
models, LR, MLP, RPLM and SVM, were applied to model
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the same data to validate the proposed model. XGBoost
was found to have better prediction accuracy than the other
models. It was then applied to explore the importance of
factors influencing the severity of hazardous material road
transport accidents in different areas, as well as to analyze
the reasons why these important factors influence the severity
of accidents in different regions. In the data, the distribution
of hazardous material road transport accidents varied from
region to region, and XGBoost performed well for those
regions with a large amount of data (East China). There-
fore, it is certain that more information is needed to obtain
productive results.

The accident analysis results showed that there were some
differences in the factors that determine the severity of haz-
ardous material road transport accidents in different regions.
The importance of the same factors in influencing the severity
of accidents varied somewhat by region. There were also
some regional differences in the causes of the impact of the
same factor on the severity of accidents. Depending on the
results of the analysis of the main influencing factors and
causes identified in this study, targeted recommendations and
countermeasures were provided for each region to improve
the problems in the road transport of dangerous goods.

Nevertheless, this study is subject to several limitations.
First, although this study collected data for 1411 hazardous
material road transport accidents, the sample collected is
relatively small compared to the research data of other traffic
accidents. Second, due to the special nature of road transport
accidents involving hazardous materials, the accident inves-
tigation cycle is relatively long. Some accidents were still
under investigation at the time of accident data collection, and
more comprehensive information was not available. Finally,
the quality of the data is also limited by the professionalism
of the collectors due to the lack of professionals in the study
of hazardous material road transport in China. The sample
size and dimension of the sample will be further expanded in
future studies, and a more rational preprocessing approach to
the data will be adopted to improve the quality of the data and
perform a more comprehensive and prudent study.
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