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ABSTRACT Many systems in the real-world are multi-state systems composed of multi-state components
(nodes and arcs) in which the reliability of the system can be calculated in terms of the lower bound points
of level d, called d-Minimal Paths (d-MPs). Such systems (oil/gas production, power transmission and
distribution networks, etc.) may be considered as network flows whose arcs have independent and discrete
random capacities. In this paper, we present a new algorithm to generate all d-MPs candidates for all d
levels. Our algorithm is based on the incremental enumeration of the different d-MPs. In the beginning,
we determine the list of all minimal paths (also called 1-MPs). The latter will then be used to generate the
2-MPs. Then from 1-MPS and 2-MPs we generate 3-MPs . . . and so on. The greatest contribution of our
method is the use of a technique which makes it possible to know, at each level i, which minimal paths can
lead to valid (i+1)-MPs without resorting to an additional validation process. This has reduced the execution
time compared to the existing algorithms to find all d-MPs for all possible d values.

INDEX TERMS Reliability, d-minimal paths, minimal paths, multi-state network, d-MPs.

I. INTRODUCTION
The problem which arises during the evaluation of network
reliability is, when the reliability of the elements that are
subject to random failure are known, it is usually not easy to
obtain and takes a lot of time when the network is large. This
computation time becomes quite important when the network
is non series-parallel and this is the case in most real systems.

Variousmethods that serve for the determination of the reli-
ability of a network have been proposed in the literature,and
as examples, we can cite [1]–[11]. Thesemethods can be clas-
sified into state enumeration methods [1]–[3] and cut/path
set enumeration methods [4]–[10]. Most of these methods
require advancedmathematics or can only be applied to either
oriented or non oriented graphs.

In many real-life situations, multi-state systems are more
reasonable and practical than binary-state systems. A limited-
flow network is a multi-state system whose arc capacities can
be regarded as independent and discrete random capacities.
The reliability evaluation of a multi-state network flow is
NP-hard but possible [12], [13]. Several authors have pro-
posed several approaches to evaluate the probability that the
system capacity level or its lower bound is d [2], [14]–[18].
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In a binary-state flow network, the capacity of each arc has
two levels 0 and a positive integer. Given the demand d, the
system reliability is the probability that the maximum flow of
the network is greater than d.

Lin [2] proposed a mathematical formulation with three
constraints to obtain the d-MP candidates using all the
minimal paths. After generating the d-MP candidates, a recur-
sive comparison is made to verify each d-MP candi-
date as a result all d-MPs are obtained for a particular
level d. Ramirez-Marquez et al. [19] used another technique
called the information sharing mechanism. It does not require
MPs as prior knowledge, and this new technique seems to be
able to reduce the search space.

Chen and Lin [16] has proposed an algorithm to search
for all d-minimal paths (d-MPs) in a multi-state networks
using the pre-calculated minimal paths, the algorithm is using
the integer programming problems in the literature [20]. The
presented algorithm is reducing a huge number of steps by
re-arranging the order of formulas in the algorithm.

Bai et al. [14] introduced a new method that says all d-MP
candidate can be generated by a combination of MPs, and
verifies each d-MP candidate with the maximum capacity for
each component (maximum state vector).

Yeh [21] presented an improvement for the Bai’s [14] algo-
rithm, by avoiding undesired d-MP candidates with infea-
sible states. The author also proposed a new method called
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logarithmic prime number transfer for removing all duplicate
d-MP candidates, which is faster than recursive comparison
used in Bai et al. [14].
In this paper, we present a new algorithm to generate all

d-MPs candidates for all d levels. Our algorithm is based on
the incremental enumeration of the different d-MPs. Unlike
Yeh’s [21], our method is not meant for improving Bai’s
[14], on the contrary it’s a new technique that generates
all d-MPS. At the beginning, we determine the list of all
minimal paths (also called 1-MPs). The latter will then be
used to generate the 2-MPs. Then from 1-MPS and 2-MPs
we generate 3-MPs . . . and so on. The greatest contribution of
our method is the use of a technique which makes it possible
to know, at each level i, which minimal paths can lead to
valid (i+1)-MPs without resorting to an additional validation
process. This has reduced the execution time compared to
the existing algorithms for finding all d-MPs for all possible
d values. This method generates many duplicates like Bai’s
[14], to eliminate those duplicates we used the same algo-
rithm in [21] that’s called logarithmic prime number transfer.

This paper is organized as follows: The next section
presents the mathematical preliminaries for the method.
In sections 3, we describe the proposed algorithm for
finding all d-minimal paths for all d levels in a multi-
state two-terminal networks. Section 4 contains an illus-
trative example. Finally, Section 5 compares the efficiency
of the proposed algorithm to the fastest algorithm in the
literature.

II. PRELIMINARIES
A. NOTIONS AND ASSUMPTIONS
1) NOTATION
n: the number of components in the network system.

m: the number of binary MP in the network system.
Pi: the vector form of ith P, i = 1,2,..,m.
ai: the ith component in the network system, i = 1,2,..,n.
X : System-state vector X i = {x1, x2, x3, . . . , xn} where xi

denotes the state of component ai.
XMax : Maximum capacity XMax = (M1, . . . ,Mn) of each

arc ai.
Cv: the vth cycle in the network, Cv = (xi, xj, . . . , xK ), v =

1,2,. . . ,c.
N : The number of d-MPs candidates founded in the

moment of checking.
Pr : The probability that the maximum flow is not less

than d.
Rd : The system reliability such as the probability that the

maximum flow is not less than d.
V (X ): The sum of the flows of all the minimal paths in the

network under a capacity vector X = (xi, xj, . . . , xk )

2) DEFINITION
G(A,N,M): stochastic-flow network where A = (a1, . . . , an)
represents the set of all arcs, N = (n1, . . . , nl) represents the
set of all nodes and XMax = (M1, . . . ,Mn).

Path: is a set of components, which connect the source
node s and sink node t.

Minimal paths: is a sequence of components from source
node s to sink node t, which contains no cycle.

Paths matrix (Pm): Let G(A,N) be a network, Pm is a
matrix where the columns are the arcs ai and the rows are
all the MPs of the network. If an arc ai is presented in the MP
then the value is 1, otherwise 0.

Reduced matrix (Pr ): it is the matrix obtained after the
removal of some rows from the Paths matrix.

3) FUNCTIONS
check_cycle(X, Cv): Accepts as an argument a state capacity
vector and all cycles in the graph, and returns TRUE if there
exists at least one component for X that has capacity equal
to 0 for each cycle c ∈ Cv:

min(c) = min(xi, xj, . . . , xk ) = 0.

4) ASSUMPTIONS
The network is assumed to satisfy the following assumptions:
• The nodes are perfectly reliable.
• The states in arcs are statistically independent from each
other.

• Flow in the network represented by G(A,N,M) satisfies
the flow-conservation law [22].

• The capacity of each component ai is an integer-valued
random variable which takes values 0<1<2. . .<Mn

according to a given distribution.
• The network is oriented. For a non oriented network,
an approach reported in [23] can be used to transform
it into a directed network.

B. STOCHASTIC-FLOW NETWORK MODEL
1) NETWORK RELIABILITY EVALUATION
As it is already presented in the introduction, in a binary-
state flow network, the capacity of each arc has two levels
0 and a positive integer. Given the demand d, the system
reliability is the probability that the maximum flow of the
network is greater than d , i.e., Rd = Pr{X |V (X ) ≥ d}.
However, in a multi-state network, as it is introduced in [2],
the enumeration of all possible cases such that the maximum
flow of the network is greater than or equal to d is not
wise. To overcome this difficulty, the author in [2] shows
that the reliability of a network can be evaluated according
to the lower boundary points for d which can be defined
as a any minimal vector Y in the set {X |V (X ) ≥ d} such
that for any capacity vector Z < Y , V (Z ) < d . In the
case of a multi-state network, since the capacity of each link
varies between 0 andMmax , the condition ‘‘ for any capacity
vector Z < Y , V (Z ) < d ’’ is always checked for cases
where {X |V (X ) = d}.

2) STOCHASTIC-FLOW NETWORK MODEL
Let p1, p2, . . . , pm be the minimal paths from the source
node s to the sink node t. The stochastic-flow network can
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be described in terms of two vectors: the flow vector F =
(f1, f2, . . . fm) and the capacity vector X = (x1, x2, . . . , xn),
where fi denotes the current flow of a minimal path pi and
xi denotes the current capacity of an arc ai. The vector F is
feasible if and only if:

m∑
j=1

{fj|ai ∈ pj} ≤ Mi, i = 1, 2, . . . n (1)

m∑
j=1

fj = d (2)

fj ≤ min{M i
|ai ∈ pj}, j = 1, 2, . . .m (3)

The constraint (1) describes that the total flow through ai
under F cannot exceed the maximal capacity of ai.
The constraint (2) says that the total flow is equal to the

demand given d.
Constraint (3) says that the flow on each pj cannot exceed

the maximum capacity of pj
Let F = {F | satisfies the constrains (1) and (2)}
If X = (x1, x2, . . . , xn) is a d-MPs for d, then there is a

F ∈ F , such that:

xi =
m∑
j=1

{fj|ai ∈ pj}, i = 1, 2, . . . n (4)

III. ALGORITHM
A. BASIC IDEA
All d-MPs for multistate networks can be found using the
pre-calculated minimal paths, according to Lin [24] there are
three constraints to obtain all d-MPs candidates:
• the summation of the flow on all the MPs equal to d as
constraint (2) says.

• the total flow on each MP is smaller than or equal to the
maximum capacity on that MP as constraint (1) says.

• the total flow going through each component is less than
or equal to its maximum capacity as constraint (3) says.

After all the d-MP candidates are generated, each d-MP can-
didate is verified and all d-MPs are obtained for a particular
level d.

Bai et al. [14] uses the constrain in [24] that says: The
capacity of each component in X i is smaller than or equal to
themaximum capacity of its corresponding componentXMax ,
that is:
Let X i = {x1, x2, x3, . . . , xn},

X i ≤ XMax (5)

where xi ≤ M i for i = 1,2,. . . ,n.
Bai et al. [14] generates all the d-MPs for level d by

combining all pre-calculated MPs. For finding d-MPs for
a level d, he adds (d-1)-MPs for level d-1 with 1-MPs for
level 1, and all the new d-MPs are verified using the previous
constraint (5). For acyclic networks all the d-MPs candidates
found are real d-MPs, but for a cyclic network, Xi contains
no cycle [17], [24], there exists a least one component for Xi

that has a capacity equal to zero for each cycle. For example
for finding the d-MPS for level 5, he has to find the d-MPs
for level 4 (4-MPs) and add them with the d-MPs for level 1
(1-MPs), and so on. and in each generated d-MPS he removes
redundant d-MPs, and compares them with the maximum
capacity of its corresponding component. The problem here
is the comparison between the d-MPs candidates and the
maximum capacity Xmax , if we have n component an and m
generated d-MPs, only the complexity of the comparison is
O{n*m}, which take a lot of time.
As it can be observed that each d-MP candidate can-

not exceed the maximum capacity of its corresponding
component Xmax . The proposed method takes advantage of
this constraint and generating all the d-MPs for all d levels
for a multi-state network, without comparing the d-MPS
candidates with the maximum capacity Xmax .

Let X i be a 1-MP ( all the MPs are d-MPs for a level 1),
according to the constraint (5), X i ≤ XMax , that means:
XMax − X i = {r1, r2, . . . , rn}, where ri ≥ 0, for i =

1,2,. . . ,n.
Let X j be a 1-MP, XMax − X i − X j = {r1, r2, . . . , rn},

if ri ≥ 0, for i = 1,2,. . . ,n. Then the combination of X i and
X j are a d-MPs for level 2.

This technique is useful to find all the d-MPs for all the
d levels, but we can’t choose any candidates Xi or Xj, for
example:

Let XMax = {3,1,2}, X1
= {1,1,0}, X2

= {0,1,1} and
X3
= {1,0,1}, below is the corresponding paths matrix:

Pm =


a1 a2 a3

P1 1 1 0
P2 0 1 1
P3 1 0 1


XMax − X1

= {2, 0, 2}, we have all ri ≥ 0, for i = 1,2,3.
But in XMax−X1

−X2
= {2,−1, 1}, we have r2 ≤ 0, then

the combination of X1 and X2 are not a 2-MPs.
The problem here is to choose the right MP, that can lead

to a result, so the proposed method can have a big advantage
over Bai’s [14]. From the previous example XMax − X1, has
some components ai that’s equal to 0 (a2 = 0). Therefore, the
next MPs that will be used in the algorithm must have in his
representation the corresponding ai = 0. To find such MPs,
we use a new matrix called the paths matrix Pm.

To find all the minimal paths that have ai = 0 in their
representation, we remove all rows from the paths matrix Pm
that have ai = 1 to obtain the reduced matrix Pr . The new
matrix Pr contains all the MPs that can be used to generate
all the next d-MPs for a level d without comparing them with
the maximum capacity Xmax .

Given the previous example, the reduced matrix for all
paths that have a2 = 0 is:

Pr =
[

a1 a2 a3
P3 1 0 1

]
Then XMax−X1

−X3
= {1, 0, 1}, as a result the combination

of X1 and X3 are 2-MPs.
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The new XMax = {1,0,1}, have a2 = 0. For finding the d-
MPs for level 3, we use the same reduced matrix Pr that we
have already found and we remove all rows that have a2 = 1
to obtain the new reduced matrix Pr ( The matrix stays the
same because P3 have a2 = 0).

Pr =
[

a1 a2 a3
P3 1 0 1

]
Then XMax − X1

− X3
− X3

= {0, 0, 0}, as a result the
combination of X1, X3 and X3 are 3-MPs.

As it can be noticed from this example, all the d-MPs
candidates are generated without comparing them with the
maximum capacity of its corresponding component XMax ,
which can reduce a lot of time compared to Bai’s [14].

The second advantage of the proposed algorithm, is that we
don’t have to add all the 1-MPs with (d-1)-MPs to generate
d-MPs candidates. For example, in Bai’s [14], to generate the
2-MPs candidates for level 2, if we take X1 as the first MP,
we addX1

+X1,X1
+X2,X1

+X3 and then compare the result
of those 2-MPs candidates with the maximum capacity XMax ,
but as we have already seen in our method, when we used the
pathmatrixPm we only use the combinationX1

+X3 (because
X3 has a2 = 0). With this method we are not only saving
time for the comparison between the d-MPs candidates and
the maximum capacity XMax , but also the time for adding the
rest of the (d-1)-MPs with 1-MPs that cannot lead to a result.

B. ELIMINATING DUPLICATES
The proposed algorithm generates many duplicates like Bai’s
[14], especially when the network is large. This requires
additional time and memory to remove duplicates. The com-
plexity of checking if a d-MP candidate is a redundant using
recursive comparison is O(N*m). As we can see when the
number of d-MPs candidates and the number of arcs grows
the complexity of checking one d-MP grows as well.

Yeh’s [21] presented an improvement for the Bai’s [14]
algorithm by avoiding undesired d-MP candidates with infea-
sible states. For this, the author proposed a newmethod called
logarithmic prime number transfer. The main idea of this
method is to transfer each vector X to a value L(X ) equal
to the multiplication of the logarithm of distinctive prime
numbers and then sort these values to find duplicates.

Calculation methods and lemmas presented as follows:
1) Let X = {x1, x2, x3, . . . , xn} is a state system vector,

then X (ei) = xi and L(X ) =
∑m

i=1 xilog(λi). For
example: X = {2, 1, 0, 3}, L(X ) = 2 ∗ log(2) + 1 ∗
log(3)+ 0 ∗ log(5)+ 3 ∗ log(7) = 3.614475366.

2) L(X ) 6= L(Y ), if and only if X 6= Y for all vectors X
and Y.

3) L(X + Y ) = L(X )+ L(Y )
4) If L(X ) < L(Y ), then L(X + Pi) < L(Y + Pi).

C. PROPOSED ALGORITHM
Below is the proposed algorithm to generate all the d-MPs
for all d levels. The algorithm accepts as a first call the
path matrix Pm, the maximum state vector XMax , the current

demand d, all the cyclesCv (v= 1,12. . . c) and the vector Prev
contains the sum of the previous vectors.

Algorithm 1 DMPS (Pm, XMax ,d,Cv,Prev,Num)

1: for all ai = 0 in XMax do
2: Delete all the corresponding rows that have ai equal

to 1 in Pm to obtain Pr , beginning from path number
Num.

3: end for
4: for X i in Pr do
5: X r = XMax − X i.
6: D_MP = Prev + X i

7: ifD_MP is not a redundantAND check_cycle(D_MP,
Cv) then

8: Output: a new d-MPs candidate of level d is gener-
ated D_MP.

9: DMPS(Pr , X r ,d+1,Cv,D_MP,i)
10: end if
11: end for

The reason for using the variable Num is to reduce the
number of redundant d-MPs candidates generated by the
algorithm. Taken the previous example:

Pm =


a1 a2 a3

P1 1 1 0
P2 0 1 1
P3 1 0 1


The algorithm in some point will arrive to: XMax − X1

− X2

and also to XMax−X2
−X1, the two equations have the same

result. Therefore, to reduce the path matrix Pm, we start from
the path PNum and remove all the rows from the paths matrix
Pm that have ai = 0 in XMax . to obtain the reduced matrix
Pr . If we take the previous path matrix Pm and Num = 2, the
algorithm will start from the path P2 and will ignore the path
P1.

IV. ILLUSTRATIVE EXAMPLE
Considering the graph in the Fig.1 taking from [14].The
algorithm at the first call will take the maximum state vector
XMax = (3, 2, 1, 1, 1, 2), cycle C = (x3, x4), the Prev =
0,0,0,0,0,0, d = 0 and the paths matrix Pm is:

Pm =


a1 a2 a3 a4 a5 a6

P1 1 1 0 0 0 0
P2 0 0 0 0 1 1
P3 1 0 1 0 0 1
P4 0 1 0 1 1 0


Call 1: first call of the algorithm:
XMax has no component ai = 0. Therefore Pr = Pm.
for X1

= {1, 1, 0, 0, 0, 0}
X r = XMax − X1

= {2, 1, 1, 1, 1, 2},
D_MP = {1, 1, 0, 0, 0, 0}.
D_MP is not a redundant and check_cycle(D_MP,C)

return True ( min(x3, x4) = min(0,0) = 0 ).
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FIGURE 1. A network example.

A new 1-MPs candidate of level 1 is generated {1, 1, 0, 0,
0, 0}.

Then we call the algorithm with the new arguments.
Recursive call 1.1:
XMax = {2, 1, 1, 1, 1, 2}, cycle C = (x3, x4), the Prev =

{1, 1, 0, 0, 0, 0}, d = 2.
XMax has no component ai = 0. Therefore Pr = Pm.
for X1

= {1, 1, 0, 0, 0, 0}
X r = XMax − X1

= {1, 0, 1, 1, 1, 2}, D_MP = {2, 2, 0, 0,
0, 0}.
D_MP is not a redundant and check_cycle(D_MP,C)

return True ( min(x3, x4)= min(0,0) = 0 ).
A new 2-MPs candidate of level 2 is generated {2, 2, 0, 0,

0, 0}.
Then we call the algorithm with the new arguments.
Recursive call 1.1.1: XMax = {1, 0, 1, 1, 1, 2}, cycle C =

(x3, x4), the Prev = {2, 2, 0, 0, 0, 0}, d = 3.
XMax have a2 = 0. Therefore we remove the rows that have

the value 1 from Pm to obtain Pr :

Pm =

 a1 a2 a3 a4 a5 a6
P2 0 0 0 0 1 1
P3 1 0 1 0 0 1


for X2

= {0, 0, 0, 0, 1, 1}
X r = XMax −X2

= {1, 0, 1, 1, 0, 1}, D_MP = {2, 2, 0, 0,
1, 1}.
D_MP is not a redundant and check_cycle(D_MP,C)

return True ( min(x3, x4) = min(0,0) = 0 ).
A new 3-MPs candidate of level 3 is generated {2, 2, 0, 0,

1, 1}.
Then we call the algorithm with the new arguments.
Recursive call 1.1.1.1:
XMax = {1, 0, 1, 1, 0, 1}, cycle C = (x3, x4), the Prev =

{2, 2, 0, 0, 1, 1}, d = 4.
XMax has a2 = 0 and a5 = 0. Therefore we remove the

rows that have the value 1 from Pm to obtain Pr :

Pm =
[

a1 a2 a3 a4 a5 a6
P3 1 0 1 0 0 1

]
for X3

= {1, 0, 1, 0, 0, 1}
X r = XMax − X3

= {0, 0, 0, 1, 0, 0}, D_MP = {3, 2, 1, 0,
1, 2}.
D_MP is not a redundant and check_cycle(D_MP,C)

return True ( min(x3, x4)=min(0,1)=0 ).
A new 4-MPs candidate of level 4 is generated {3, 2, 1, 0,

1, 2}.

Then we call the algorithm with the new arguments.
Recursive call 1.1.1.1.1:
XMax = {0, 0, 0, 1, 0, 0}, cycle C = (x3, x4), the Prev =

{3, 2, 1, 0, 1, 2}, d = 5.
XMax has all ai = 0 except a4. Therefore we remove the

rows that have the value 1 from Pm to obtain Pr , Pr = {∅},
exit the branch.

Recursive call 1.1.2:
for X3

= {1,0, 1, 0, 0, 1}
X r = XMax − X3

= {0, 0, 0, 1, 1, 1}, D_MP = {3, 2, 1, 0,
0, 1}.
D_MP is not a redundant and check_cycle(D_MP,C)

return True ( min(x3, x4) = min(1,0) = 0 ).
A new 3-MPs candidate of level 3 is generated {3, 2, 1, 0,

0, 1}.
Then we call the algorithm with the new arguments.
Recursive call 1.1.2.1:
XMax = {0, 0, 0, 1, 1, 1}, cycle C = (x3, x4), the Prev =

{3, 2, 1, 0, 0, 1}, d = 4.
XMax has a1 = 0, a2 = 0 and a5 = 0. Therefore we remove

the rows that have the value 1 from Pm to obtain Pr :

Pm =
[

a1 a2 a3 a4 a5 a6
P2 0 0 0 0 1 1

]
for X2

= {0, 0, 0, 0, 1, 1}
X r = XMax − X3

= {0, 0, 0, 1, 0, 0}, D_MP = {3, 2, 1, 0,
1, 2}.
D_MP is a redundant then exit the branch.
In the end, we obtain all the d-MPs for all d levels, as the

result shows:

1-MPs :{1, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 1}, {1, 0, 1, 0, 0,
1},{0, 1, 0, 1, 1,0};

2-MPs :{2, 2, 0, 0, 0, 0}, {1, 1, 0, 0, 1, 1}, {2, 1, 1, 0, 0, 1},
{1, 2, 0, 1, 1, 0}, {1, 0, 1, 0, 1, 2};

3-MPs :{2, 2, 0, 0, 1, 1}, {3, 2, 1, 0, 0, 1}, {2, 1, 1, 0, 1, 2};

4-MPs :{3, 2, 1, 0, 1, 2}.

V. BENCHMARKS AND TEST
A. FIRST TEST
To evaluate the efficiency of the proposed algorithm, we have
compared it with the Bai’s algorithm [14] using the graph in
the Fig.1, each time we increase the maximum capacity of
the component. In this test we have used the same recursive
comparison in Bai’s [14] for deleting redundant d-MPS can-
didates.

The benchmarks used to evaluate the efficiency of our
algorithm is the same as that used by Bai et al. [14] and
Yeh [21].

In this test, we used HP core i7 second generation 8 GB
Ram. As for the implementation language, we used C++.
As a result of the test (see Figure 2 and table 1), the

proposed algorithm is more efficient than Guanghan Bai’s
algorithm [14] in terms of the execution time. The ratio,
which is defined as the ratio of the CPU time of the Bai’s algo-
rithm to the proposed algorithm, is about 1.5 (see figure 3),
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FIGURE 2. Execution time of Bai’s [14] vs Execution time of the proposed
algorithm.

FIGURE 3. Ratio of the CPU time of the Bai’s algorithm to the proposed
algorithm.

indicating that the proposed algorithm is 1.5 times faster than
Bai’s algorithm in finding all the d-MPs of the benchmark
network.

B. SECOND TEST
In the first test, to eliminate all the redundant d-MPs candi-
dates, we used the same recursive comparison as was used
by Bai et al. [14]. The reason for that is to prove that the
basic idea of our algorithm is more efficient and faster than
Bai’s [14].

To improve our algorithm, we propose the same method
‘‘logarithmic prime number transfer’’ used in Yeh’s [21] to
remove all the redundant d-MPs candidates, instead of the
recursive comparison. To test this improvement we have
compared the proposed algorithm with the Yeh’s algorithm
[21]. To carry out this test we used the graph in the Fig.1,
and at each time, we increase the maximum capacity of
the component. The implementation is done in C++ and

TABLE 1. Comparison result between the 2 algorithms in terms of
execution time in milliseconds.

TABLE 2. Comparison result between the 2 algorithms in terms of
execution time in milliseconds.

FIGURE 4. Execution time of Yeh’s [21] and Bai’s [14] vs Execution time of
the proposed algorithm.

the experimental computer configuration is intel i7 second
generation 8 GB Ram.

The experimental results are listed in Table 2, including the
CPU run times in milliseconds consumed by our algorithm
and Yeh’s algorithm [21]. The result of the test shows that
the proposed algorithm with the new improvement is more
efficient than Yeh’s [21] as the maximum state increases.

In Figure 4, we compare the efficiency of our improved
algorithm with Yeh’s [21] and Bai’s [14] in terms of the
execution time. As the result shows, the more we increase
themaximum state the difference between the three algorithm
increases.

The ratio, which is defined as the ratio of the CPU time of
the Yeh’s algorithm [21] to the proposed algorithm, is about
1.5 as in the first test (see figure 5), indicating that the
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FIGURE 5. Ratio of the CPU time of the Yes’s algorithm to the proposed
algorithm.

proposed algorithm is 1.5 times faster than Yeh’s algorithm
[21] in finding all the d-MPs of the benchmark network.

VI. CONCLUSION
In this study, we develop a recursive algorithm based on deep-
first search to find all the d-MPs in a multi-state network.
The proposed method consists of taking advantage of the
constraint that each d-MP candidate cannot exceed the max-
imum capacity of its corresponding component Xmax . This
constraint allows us to generate all the d-MPs for all d levels
for a multi-state network, and as the tests show, the proposed
algorithm is more efficient than Guanghan Bai’s algorithm
[14] and Yeh’s [21] as we added more nodes to the graph.
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