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ABSTRACT Filtering of unwanted signals has a great impact on the performance of EEG signal processing
applied to neurological disorders diagnosis. It is so difficult to remove undesirable noises using static filtering
approaches as the performance of such techniques is strongly relying on specific EEG signal sub-bands,
whose locations differ from one subject to another. In this paper, we present a novel dynamic filtering
approach, which makes use of Finite and Infinite Impulse Response (FIR and IIR) filters along with a
Recurrent Neural Networks using a Gated-Recurrent Unit (RNN-GRU), to identify and preprocess the most
informative sub-bands pertaining to a particular neurological disorder. This combination of RNN with GRU
requires more hidden layers than for conventional NN structures, and therefore offers much higher capacity
to learn fitting and extract features from highly complex EEG data recording to afford better harmonization
of the diagnosis process. Followed by an Independent Component Analysis (ICA) algorithm, all extracted
features become independent to facilitate classification of clinical disorders using Convolutional Neural
Network (CNN). The proposed diagnosis system achieves an average of 100% classification accuracy for
epilepsy according to an offline diagnosis process using Bonn and MIT datasets, and when the same system
is applied to autism provides an average accuracy of 99.5% using KAU dataset. The presented dynamic
deep-learning approach applied to EEG classification pipeline, which includes artifact removal, feature
extraction and classification, leads to significant improvements in the accuracy of the diagnosis classification
regarding the targeted neurological pathologies.

INDEX TERMS Electroencephalography (EEG), deep learning, recurrent neural networks (RNN), convo-
lutional neural network (CNN), dynamic filtering.

I. INTRODUCTION
Brain-computer interface is a new technology that could
provide a wide variety of useful functions related to control,
communication, andmedical applications. Indeed, Electroen-
cephalography (EEG) signal can measure electrical activities
generated by large numbers of neurons, and is widely used
for the diagnosis of neural disorders such as epilepsy, autism
spectrum disorder (ASD), Alzheimer, and other complex dis-
orders. Epilepsy and autism affect, respectively, nearly 2% [1]
and 0.7% [2] percent of all people; both disorders share a
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common characteristic in that they can simply be diagnosed
using EEG signals. Even if these neurological pathologies
are quite different, it seems there are some particular links
between epilepsy and autism for twomain reasons: First, both
of them mostly affect the same rhythms; namely, alpha and
beta. Second, the epilepsy affects nearly 30 percent of all
peoplewith autism, according to theAmerican Epilepsy Soci-
ety. Note that the proposed diagnosis process developed for
autism and epilepsy can deal with other relevant brain activity
disorders like Alzheimer and sleep disorders based on the
capabilities of deep learning analysis. Currently, the diagnosis
of such disorders is mainly carried out manually by a limited
number of neurologists and medical experts.
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In some cases, the neurologists need several hours to con-
duct a complete diagnosis process and get a final decision
for a single patient especially when the medical data are
heterogeneous in certain cases. All these facts highlight the
need to build a smart and a reliable diagnosis system that
would provide important assistance in diagnosing and ana-
lyzing such disorders in order to reduce the risk of errors and
to improve medical data analysis. The diagnosis system has
a great potential in helping neurologists and medical experts
during the diagnosis process, notably in terms of time-saving
and increasing the diagnosis accuracy.

Despite its low spatial resolution, EEG imaging has several
advantages over other imaging techniques in that it is sim-
ple to implement, of high temporal resolution, and of wide
availability for use without the need for a great neurological
expertise. These advantages make EEG a powerful diagnostic
tool. However, the EEG recording is rather complex, nonlin-
ear, non-stationary, imbalanced and buried with artifacts and
interferences which bias results and related studies. Further-
more, some artifactsmight also imitate cognitive impairments
or other neurological pathologies and therefore biases the
visual interpretation conducted during clinical diagnosis as
in sleep or autism disorders [3], etc. So, this signal requires
sophisticated signal processing to clean it up from all possi-
ble unpredictable contaminations or interferences before any
further analysis.

The typical pipeline EEG-based diagnosis system includes
EEG signal pre-processing, features extraction, and decod-
ing. The preprocessing block is built to remove unwanted
EEG signals. The most significant features are extracted
from the filtered EEG signal, and passed to the decoding
or classification stage. Once the EEG signal is acquired,
the existing automated diagnosis approaches make use of
machine learning to implement a couple of signal process-
ing techniques, whose performance is highly application and
patient dependent.

Many automated diagnosis approaches, relying on stud-
ies pertaining to EEG abnormalities due to neurological
disorders, have been reported in literature in order to pro-
vide an efficient and early diagnosis of such disorders with
a better harmonization and less contradictory diagnosis.
Related approaches include techniques based on Shannon
entropy [4], spectral entropy [5], multi-scale entropy [6],
empirical mode decomposition (EMD) [7], and second-order
difference plot (SODP) modeling [8], [9]. Band power
(BP) [10], fast Fourier transform (FTT) [11], and discrete
wavelet transform (DWT) techniques [12], [13] as well as
common spatial patterns (CSP) have been all tried for EEG
features extraction [14].

Independent component analysis (ICA) has been also
widely used for brain disorder features extraction. Thus,
ICA allows to maximize the variance of the projected signal
from one class while minimizing it for the other one by
applying dedicated spatial filters. Therefore, the selection
of an appropriate preprocessing band-pass filter, which cap-
tures most of the power (variance) of changes resulting from

neurological disorders, is essential to achieve great improve-
ments in the performance of features extraction. However,
the selection of such a preprocessing band-pass filter is
not a trivial task, because the band of appropriate filter is
subject and channel specific, and hardly be identified by
visual inspection manner. In addition, a poor selection of
the filter band may result in a decrease in the accuracy of
brain disorders diagnosis. Although a filter with wide band
(i.e., 8-30 Hz) [15] is usually adopted for ICA in brain disor-
der diagnosis classification, an increasing number of studies
suggests that optimizing the filter band could significantly
improve the classification accuracy [16].

In this paper, the deep learning diagnosis process is applied
to both autism and epilepsy. In fact, according to the Amer-
ican epilepsy Society, epilepsy affects nearly 30 percent of
all people with autism spectrum disorder. However, there is
no certainty on the existence of similarity between subjects
with autism and those with epilepsy. In this context, we have
addressed these two different neurological disorders diag-
nosis problems to measure the capability of our proposed
deep learning approach to self-adapt to different neurologi-
cal pathologies while keeping a high classification accuracy.
Three alternatives have been explored to fix the appropriate
filter band selection accordingly The first approach optimizes
the filter band concurrently while the features extraction
stage is being executed using; e.g., the ICA, CSP, or BP
techniques. The second approach is based on the concept
of extracting features from multiple frequency bands, while
the third approach considers the implementation of adaptive
or dynamic filtering techniques, thus making it possible to
choose the appropriate filter band for each user and/or each
channel [17]. This, however, requires the use of filter design
techniques to customize the filter type and order during the
training phase.

On the other hand, multi-neurological disorders are based
on different biomedical EEG data usually imbalanced and
nonstationary integrating certain atypical diseases, which
requires high complexity characterization. In this context,
the deep learning model represents a tremendous opportunity
to support medical authorities to exploit and significantly
improve medical data analysis and to reduce the risk of
medical errors. The proposed model integrates a significant
number of hidden layers, which is trained using large sets of
labelled EEG data to allow learning features directly without
the need for manual extraction. Furthermore, applied deep
learning approach provides a better harmonization of the
diagnosis and prognosis protocols [18], [19]. In this con-
text, the recurrent neural networks (RNN) play an important
role. These networks can be realized using long short-term
memory (LSTM) cells. However, these cells suffer from
the vanishing gradient problem. Note that this problem can
be prevented using the recently developed gated recurrent
units (GRU) with easier and time-saving implementation;
thanks to the less complex GRU structure compared with the
LSTM approach [20], which has encouraged us to harness its
tools to create an enhanced signal processing chain.
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A significant contribution of the present work is in the
preprocessing step, where basic FIR/IIR and state-of-the-art
techniques are attempted to present a comprehensive filter
design. A set of six filters are customized and applied at the
epoch level of the EEG data belonging to each channel to gen-
erate the filtered signal, which is used to train an RNN with
GRUs. Once trained, our proposed intelligent network (RNN)
is able to apply the appropriate filter with a dedicated order
leading to a minimization of its MSE at the epoch level.
Thus, GRU-RNN combined with FIR and IIR filter design
represent our dynamic filtering approach to help maximizing
the classification accuracy. Furthermore, we have combined
this filtering approach with the ICA and convolutional neural
network (CNN) to maximize the accuracy of the decoding
operation.

This paper is organized as follows. Section 2 provides a
brief description for the work related to our research topic.
Section 3 introduces the EEG datasets used in this study,
and details the computerized diagnosis for both epilepsy and
autism. Section 4 presents and discusses the findings of the
proposed algorithm.

II. RELATED WORK
Feature extraction and classification techniques for EEG
signal analysis are well established and provide very good
results, while the preprocessing techniques still remain an
open issue requiring more attention because the final accu-
racy of any classification analysis depends deeply on the
applied filtering techniques. Many signal processing tech-
niques have been widely used for pre-processing purposes
based on different approaches, as described below:
• Applying regression methods which represent tradi-
tional techniques for removing physiological artifacts,
like ocular and muscle artifacts. These approaches
are based on subtracting estimated artifacts from the
acquired signal. In fact, the average artifacts subtraction
based techniques require high sampling frequencies and
are just capable of eliminating only repetitive artifact
patterns. Such subtraction can be made in both time or
frequency domain [3].

• Using time and frequency analysis methods. Usually,
the FFT is applicable to the frequency analysis of
stationary signals where wavelets like DWT provide a
flexible time-frequency grid to analyze signals whose
spectral contents changes over time [21]. Indeed,
the FFT is the fast way to compute the magnitude and
phase decomposition applied to each channel of EEG
recording. Thus, for neurological disorder diagnosis,
the frequency components belonging to alpha and beta
rhythms are located during the pre-processing phase,
and relevant components are then reconstructed using
the inverse FFT [22]. Unlike the Fourier transform com-
ponents which are exclusively localized in frequency,
wavelet transforms provide a trade-off in time-frequency
localization due to the better tunable time-frequency
features especially for non-stationary EEG signals.

• Applying static filtering where the same filter belonging
to FIR or IIR family is applied for all subjects. Different
EEG signal preprocessing techniques using FIR filters
such as Equiripple and Kaiser-window can be applied to
find an optimal fit between the desired and the available
frequency responses. On the other hand, elliptic, Butter-
worth, and Chebyshev filters constitute the well known
classical IIR filters, each of which can be optimal for a
particular use [17].

• Using unsupervised learning techniques where no prior
information about EEG recording and extra reference
channels are required. For example, the ICA represents
a typical processing algorithm applied to multichannel
EEG signal to decompose the original recording into
multiple independent source components. As explained
in [23], this technique extracts information from elec-
trodes with respect to eyes by estimating the interference
of the Electrooculography (EoG) using the recursive
least squares (RLS) algorithm. Unfortunately, some sig-
nificant non-ocular frequencies can also be removed and
the global classification accuracy is strongly affected.
Similar adaptive filtering techniques have been used
in [24], where the best sub-band is fixed via an appro-
priate objective function belonging to CSP technique.
Some other works reported in [25], [26] usedmulti-scale
entropy function or multi scale ranked organizing maps
to eliminate noise from each feature vector, but this
approach can be optimal for some users but not for the
remaining ones.

The design of efficient EEG-based filtering technique still
remains an open issue. Many other filtering techniques have
been recently published. For example in [27], the EEG fil-
tering is applied with feature extraction by combining a
discriminative feature extractor with new strategy to filter
out unwanted features from EEG signals. This approach
is based on filtering out signals related to one property
of the EEG signal while retaining the remaining features.
Another filtering alternative, as presented in [28], is devel-
oped at the classification level, where a combination of a
discriminative feature extractor with new strategy to filter out
unwanted features from EEG signals have been proposed.
Thus, a channel selection algorithms is applied that provides
a possibility to work with fewer channels to increase the
system performance by removing the noisy channels. This
selection is done at the classification level which is called
embedded technique. Other heuristic techniques based on
genetic algorithms can also be applied for selecting rele-
vant channels and eliminate the other ones and their per-
formances depend on the applied classification techniques.
In [29], authors proposed the wavelet decomposition to
get sub-bands (SBs) of EEG signals. Subsequently, fuzzy
entropy, logarithmic of the squared norm, and fractal dimen-
sion are computed for each SB for the purpose of classifi-
cation. Since the validation is done using a single-channel
EEG dataset, the accuracy is relatively limited which is a
round of 79%.
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TABLE 1. EEG-based diagnosis architectures for Epilepsy (ANN: Artificial Neural Network, PNN: Probabilistic neural network, KNN: k-nearest neighbors
algorithm, MLPNN: Multilayer perceptron neural network).

TABLE 2. EEG-based diagnosis architectures for autism (FD: Fractal Dimension, mMSE: modified Multi-Scale Entropy, VG: Visibility graph).

Note that even if the aforementioned techniques are suit-
able for particular subjects and for specific datasets, they may
not provide the same performance when applied to subjects
belonging to other datasets. To address this issue, an explo-
ration of filter design is proposed to find the appropriate filter
candidate based on the Signal-to-noise ratio (SNR) minima
between the original and the filtered EEG signal for neuro-
logical diagnosis applications. We have considered dynamic
filtering, capable of adjusting their parameters in order to
minimize the mean squared error (MSE) of the filtered EEG
epochs and their rawEEG signals, along the line of a recurrent
neural network to auto-customize the filtering technique for
each epoch of data and for the purpose of improving the
classification accuracy.

After applying the training of the RNN to select the suit-
able filter with the optimized order for the current epoch,
we evaluate the effectiveness of our proposed dynamic fil-
tering approach on two neurological disorders, epilepsy
and autism. The automated EEG signal processing allow-
ing to detect epileptic form discharges would be of great
value in epilepsy diagnosis. The system should be accu-
rate for a wide range of epileptic patients having different
types of seizures (focal, generalized, etc.) or having dif-
ferent seizure severity levels (mild, moderate, and high).
Although several promising EEG-based automatic epilepsy
diagnosis methods have been reported in literature; see
Table 1, further research efforts are still needed so that

automated diagnosis methods become well-suited for clinical
use.

For the autism diagnosis, different EEG-based processing
techniques have been investigated and evaluated using dif-
ferent specific datasets. Figure 1 presents a typical autistic
EEG recording with patterns quite similar to a healthy sub-
ject, which requires more sophisticated pre-processing tech-
niques to achieve high classification rate.

FIGURE 1. EEG recording samples for normal and autistic subject.

Studies relevant to autism diagnosis are presented
in Table 2. Authors in [40] investigated wavelets com-
bined with fractal dimension (FD) to estimate the complex-
ity and any dynamical changes in autism recording. This
approach is evaluated using KAU dataset of two groups of
patients: 9 ASD and 8 non-ASD children acquired within
eyes-closed condition. A classification accuracy of 90% is
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obtained using a radial basis neural network (RBNN) classi-
fier. An optimized version of ASD diagnosis has been pre-
sented using visibility graph (VG) and fuzzy synchronization
likelihood (Fuzzy SL) method [44]. Both of the aforemen-
tioned techniques provided a classification accuracy close
to 95.5%.

The implementation of MSE as a basic feature followed
by different classifiers such as KNN, SVM and Naive
Bayesian (NB) to discriminate between a normal and a high
risk autistic signal has been presented in [41]. This signal
processing combination intends to optimize the classification
accuracy based on specific dataset extracted by Net Sta-
tion, and reached 80% of accuracy conducted on a group
of patients at the age of 9 months. Similar works presented
in [12] used a local dataset recorded by 16 channels, where
the most significant artifacts are identified and removed by a
simple visual inspection. Time and frequency feature extrac-
tion analysis have been proposed (raw data and FFT) before
feeding these feature vectors to the Fisher linear discriminant
analysis (FLDA) for discrimination purpose between normal
and autistic states. Thus, the evaluation of the autism diag-
nosis measurement provided an accuracy rate of 90%. How-
ever, another application of these same techniques, reported
in [45], provided lower performances although they used
the same dataset. This performance degradation could be
attributed to bad artifacts removal during the preprocess-
ing phase. Recent deep learning diagnosis techniques using
DWT-entropy-ANN based method provided much higher
accuracy around 99% [13].

According to Lotte et al. [23], deep learning networks are
less effective for EEG signals classification in BCI, given
the limited training data available. However, shallow convo-
lutional neural networks are more promising, which present
our case. Moreover, current works have lack of designing
a dynamic multitask algorithm that is adaptable to multiple
diseases (ASD/ Epilepsy) [46].

As for the preprocessing and feature extraction tools,
the recent findings in BCI technologies have developed
massive amounts of brain data featuring high dimension-
ality, multiple modalities (e.g. physical modes such as
frequency or time, multiple brain imaging techniques or
conditions), and multiple couplings as functional connec-
tivity data. On the other hand, tensors offer promising
BCI tools such as for the analysis tasks and for the fusion
of massive data using a mathematical back-end for hid-
den complex pattern recognition, thanks to its multi-way
nature [46].

However, these methods present a complexity to vector
machine learning and standard matrix methods [46]. More-
over, since band power and time point features methods are
the most commonly used tools for feature extraction [47],
they can be effective for a signal with a higher signal-to-
noise ratio. Nonetheless, they do not require measuring the
correlation or synchronization between signals from different
sensors and/or frequency bands which can result in higher
classification accuracies.

III. METHODS
As mentioned above, our diagnosis system deals with
epilepsy and autism disorders. For epilepsy disorder, we have
used the two available datasets, Bonn andMIT, to evaluate the
effectiveness of our proposed system. On the other hand, for
autism, we have evaluated our signal processing chain using
the dataset provided byKingAbdulaziz University (KAU) lab
belonging to King Abdulaziz Hospital in Jeddah, Kingdom of
Saudi Arabia (KSA) the dataset is publicly available and can
be found in [48].

A. DATA DESCRIPTION
The autism dataset used in ourworkwas recorded by theKAU
lab with the assistance of King Abdulaziz Hospital neurolog-
ical service. To preserve the patient’s medical confidentiality,
all personnel information are omitted from the EEG record-
ing which is conducted during relaxing state. There are two
groups of subjects which consist of ten healthy volunteers and
nine autistic subjects (six males and three females) who are
aged from 6 to 16 years. The g.tec EEG cap integrating high
resolution Ag/AgCl electrodes and USB amplifiers operating
using BCI2000 software is used to record EEG signals by
means of all 16 available channels. According to dataset
description presented in [12], the relaxing state corresponds
to a weak state and all channels are referenced according to
the 10-20 international acquisition system.

The dataset is cleaned by the acquisition system using band
pass filter with a range of frequencies from 0.1 to 60Hz. Fur-
thermore, a dedicated notch filter with stop band frequency
of 60Hz is integrated in the acquisition system where all EEG
signals were digitized with a sampling frequency of 256Hz.
The registration time for normal subjects is between 12 and
30 minutes with a total duration of about 173 minutes, while
for autistic subjects, the acquisition time is between 5 and
27 minutes with a total duration of 148 minutes. During the
acquisition process, it is of an utmost importance that the
patient be relaxed, therefore, volunteers were asked to sit
comfortably, to stop talking and to refrain from any muscular
activities.

As of the epilepsy, we have considered Bonn and
MIT datasets, as described below:
• CHB-MIT EEG database: This EEG recording includes
906 hours of EEG data for 23 epileptic subjects having
a total of 163 seizure events [49]. All patients are aged
under 18 years and undergoing medication withdrawal
for epilepsy evaluation. As in the autism case, the EEG
recording was sampled at 256Hz in the Boston Hospital
using 18-channel according to 10-20 standard bipolar
montage.

• University of Bonn EEG dataset: This dataset con-
tains EEG for normal and epileptic subjects with a
sampling rate of 173.61Hz. These signals are obtained
at the Epilepsy Center at the University of Bonn,
Germany [50]. Five subsets of EEG signals (A, B, C, D
and E), which include healthy and epileptic EEG records
have been included in this dataset. Subsets A and B of
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FIGURE 2. Proposed framework for EEG deep learning analysis.

EEG data have been acquired from five healthy volun-
teers, with open and closed eyes, respectively.

B. DIAGNOSIS SYSTEM FRAMEWORK
The proposed diagnosis system techniques stand on twomain
complementary steps, as described below:
• The first step consists of segmenting the EEG data for
each channel belonging to each subject, with a set of
epochs each of which is of 50 samples duration, where
the choice of this size will be discussed in Section 4.
Then, we apply to each epoch six types of predefined
FIR and IIR filters to select the best filter with the
appropriate order. The best filter is the one which pro-
vides the minimum MSE computed between the origi-
nal epoch and filtered signal. Next, we design different
filters; 6 types (Equiripple and Kaiser window FIR fil-
ters and Butterworth, Chebyshev 1 and 2 and Elliptic
IIR filters), where the order of each can be tailored
with different number of ripples and cut-off frequency
bands according to minimisation of the MSE for each
epoch. Once we complete the filtering process for all
channels and for all subjects, we use these results to
build a new dataset consisting of pairs of the original
and best filtered epochs. These data are then fed to an
RNN for training purposes, where the networks inputs
are the raw epochs and the networks targets are the best
filtered epochs. The trained RNN includes 3 hidden lay-
ers, which is capable to provide efficient EEG filtering
without any prior information about the signal itself.
Figure 2.a depicts the schematic diagram of the training
step, where Si (i=1,2,.., n) denotes the ith subject, and
Ci (i=1,2, . . . , m) denotes the ith channel.

• The second step is dedicated for the training of the
CNN classifier. Specifically, the outputs of trained RNN

are fed to the ICA to get independent features. The
CNN is trained to classify a given epoch whether it
belongs to a normal state or a seizure state in MIT
dataset, and whether it belongs to a healthy subject or
a non-healthy subject in Bonn and KAU datasets. The
inputs to the CNN are the ICA extracted features and
its targets are the labels, 0s for normal states (healthy
subjects) and 1s for seizure states (non-healthy subjects).
Figure 2.b depicts the flow for obtaining a complete
trained EEG-based diagnosis system.

C. FILTER DESIGN
In this study, we have considered two sets of FIR and IIR
filters represented by: Equiripple, Kaiser-window for FIR
category and Butterworth, Chebyshev I and II, and Elliptic
belonging to IIR filters. Although all these techniques serve
the same purpose, there are many differences in function-
alities and performances. Indeed, the IIR filters are quite
efficient since they can provide similar amplitude responses
with fewer coefficients, or lower side lobes for the same
number of coefficients, while providing a lower delay than
that obtained by the FIR filters. Butterworth, Chebyshev
type I, type II, and elliptic filters are optimal for use in a spe-
cific application context. For example, Butterworth provides
the best representation of an ideal band-pass filter response,
while elliptic filters allow to get equal ripples in both the
pass-band and stop-band filter regions. For Chebyshev filters,
the frequency response has pass-band ripples in type I and
stop-band ripples in type I.
On the other hand, FIR filters are the immediate choice

when linear phase is a requirement, and they are inher-
ently stable. FIR filters, like the Equiripple (FFe) and
Kaiserwindow (FFk) filters, are also helpful to achieve
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FIGURE 3. Raw & filtered EEG using our proposed approach.

fractional constant delays. Designing of such filters can be
accomplished, as described below:
• Equiripple Filter: The design is based on Parks-
McClellan algorithm, which utilizes the Remez
exchange algorithm. This technique minimizes the max-
imum weighted error between the desired response and
the actual filter response for a given order. Because the
resulting filter will exhibit an equiripple behavior in
its pass-band and stop-band frequency responses, it is
sometimes called equiripple filter. The ripple is con-
trolled in the design process by the weighting function
and the filter order.

• Kaiserwindow Filter: In this filter, the window length
mainly affects the transition band, while the coefficients
roll off (the shape factor)controls the pass-band and
stop-band ripple sizes. Therefore, by keeping the win-
dow length constant, we can adjust the shape factor to

have the appropriate level of pass-band and stop-band
ripples.

The aforementioned filters have been designed so that
the pass band region lies between (8.0-30.0 Hz) to cover
exclusively α-band and β-band of the EEG frequency spec-
trum, which has proven to contain ASD patterns [13], [45].
The filter order is ranging from 3 to 33, a varying num-
ber of ripples and several cut-off frequencies giving, hun-
dreds of proposed filtering approaches for each 50 samples
EEG epoch. Note that these filters will only be used
during the training phase. During the dynamic filtering,
we preserve the most significant sub-bands, alpha and
beta by specifying the pass-band frequencies accordingly.
Figure 3 shows that the filtered signal is almost close to
the non filtered one where the MSE is about 1.13µV 2.
Moreover, the visual inspection of the frequency spectrum
of both raw and filtered signals using our RNN filtering
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technique proves that it preserves alpha and beta bands
frequencies.

D. RECURRENT NEURAL NETWORK DESIGN
It is the intention here to design a robust (machine-learning)
network that performs filtering, which focuses exclusively
on the informative frequencies of EEG signals. Indeed, this
can be achieved by utilizing an RNN. Once perfectly trained,
this RNN will be capable of filtering any EEG signal with-
out prior knowledge of its artifacts. The training process is
accomplished by considering the raw epochs as the network’s
inputs and the best filtered signals of FIR and IIR filters as the
network’s targets.

RNNs exhibit a highly non-linear dynamic mapping,
which can be promoted in a number of interesting applica-
tions, including spatiotemporal pattern classification, control,
optimization, forecasting. The RNNs architectures integrate
learning algorithms that can deal with time-varying input
and/or output in non-trivial ways. Initially, all weight values
are chosen randomly and are optimized during the stage of
training.

To build the RNN, a training database has been created that
includes raw and best filtered EEG signal epochs, each is with
a duration of 50 samples. All these original and best filtered
epochs are fed to the RNN for training purposes.

RNNs have an internal state (memory), which allows to
exhibit dynamic temporal behavior for time sequence series.
Considering an input xt , an output yt and a hidden state ht ,
RNN’s basic system is defined by:

ht = F(ht−1, xt )

yt = G(ht ) (1)

where F represents the state transition function, and G is
the output function. RNN offers different variants, such as
the Gated-Recurrent Unit (GRU) that solves the ‘‘vanish-
ing’’ or ‘‘exploding’’ gradient problems, which commonly
occur during the training of RNNs. Note that RNN-GRU has
been successfully applied to EEG-based seizure detection,
Talathi [51]; therefore, we have used it here to design a robust
(machine-learning) filter. The discrete dynamical equations
governing the operation of RNN-GRU:

c̃t = tanh(W T (rt � ct−1)+ UT xt )

zt = σ (W T
z ct−1 + U

T
z xt )

ct = (1− it )� ct−1 + it � c̃t (2)

With W, U and V are the transition, input and output
matrices respectively. z = {i, f , r} is representing the gating
functions: input gate, the forget gate and the internal gate,
� is the Hadamard product and σ is the Sigmoid function.
The trainable model parameters are {W ,Wz,U ,Uz}.
From the above mentioned training database, we have

created the RNN-GRU, which will be fed by a set of inputs
(raw EEG slice) and targets (Best filtered sample). This
block will reconstruct an optimally filtered EEG that will be
post-processed to extract features.

The RNN architecture stands as shown in Table 3, where
the hyperparameters were set as follows: a fixed learning rate
of 10−3, MSE as the loss function and, a considerably low
batch size of 10. As for the optimizer, ‘‘Adam Optimizer’’
has been chosen as being one of the best used optimizers in
the machine learning field [52].

TABLE 3. Recurrent Neural Network Model Architecture (GRU: Gated
Recurrent Unit hidden layer; FC: Fully Connected hidden layer).

Figure 3 shows the raw EEG signal of F4 channel and
its corresponding filtered signal at the output of the trained
RNN. The results are obtained by using the KAU dataset.
Among the 19 subjects in this dataset, we have generated a
new dataset which consists of 269,500 pairs of signals of raw
epochs and their corresponding optimum filtered versions
obtained at the outputs of FIR and IIR filters. The 10-fold
cross-validation strategy has been used, where the dataset is
randomly divided into 10 equal parts (10 subsets), nine of
them were used for training and one for testing. Specifically,
we have extracted 111 100 of 50-sample segments from MIT
dataset, 53 900 of 50-sample segments from Bonn dataset,
and 104 500 of 50-sample segments from KAU dataset.

E. FEATURE EXTRACTION
This is the second step in our proposed signal processing
chain, which implements ICA for features extraction. ICA is
presented as an extension of the principal component anal-
ysis (PCA) technique [53]. Yet, PCA enhances the covari-
ance matrix of the data which portray second-order statis-
tics, whilst ICA optimizes higher-order statistics such as
kurtosis. Thus, PCA finds uncorrelated components while
ICA finds independent components [53], [54]. Therefore,
PCA can obtain independent sources when the higher-order
correlations of mixture data are small or insignificant [54].
ICA has multiple algorithms such as FastICA [55], projection
pursuit [54], and Infomax [54]. The main purpose of these
methods is to extract independent components using
1) the maximization of the non-Gaussianity.
2) the minimization of the mutual information.
3) the implementation of the maximum likelihood (ML)

estimation method [56].
For our case, we have considered FastICA as the algo-

rithm to extract the independent components. FastICA algo-
rithm extracts independent components by maximizing the
non-Gaussianity by maximizing the negentropy for the
obtained signals using a fixed-point iteration algorithm [55].
FastICA has a cubic or at least quadratic convergence speed,
thus, it is much faster than gradient-based algorithms that
have linear convergence. Moreover, FastICA has no learning
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FIGURE 4. The proposed CNN architecture.

rate or other flexible parameters which makes it simple to
use [57].

The ICA accepts at its inputs the already filtered signals of
RNN. Specifically, it processes 16 filtered channels to gener-
ate 16 features sequences. The signal of each input channel is
of 50 samples duration and the corresponding output of ICA
is also of 50 samples duration. The ICA will not only help
to extract features but also will force this set of features to
be totally independent, giving more information to the clas-
sifier. Table 4 compares the performance of our RNN-GRU
to other similar neural networks such as simple RNN, and
LSTMmodels. We have conducted the following experiment
through which we have tested other recurrent neurons in
the RNN architecture along with different CNN models by
modifying the number of layers in the CNN architecture.
The table below shows that only LSTM and GRU cells can
achieve accuracies higher than 90%, which eliminates the
consideration of simple RNN for the problem at hand. This
can be explained since GRU and LSTM use different ways
of gating information to prevent vanishing gradient problem.
As for the classification models, on the other hand, the CNN
showed decaying performance by increasing the number of
layers except for the case of simple RNNs.

TABLE 4. Performance evaluation of different RNN and CNN models.

F. CLASSIFICATION TECHNIQUE
This final step in our proposed tool-chain system is imple-
mented using the CNN. This network has been widely used in
many fields, including image and video processing, biomed-
ical engineering, wireless and optical communication sys-
tems. Motivated by the work of Schirrmeister et al. [58],
where CNN was used to decode and visualize EEG patterns,
this network is also used here for classification. The classi-
fication is of two classes. For autism, the CNN output layer

is of 2 classes: Autistic and Healthy. For epilepsy, the CNN
output layer is also of 2 classes: seizure and normal.

Figure 4 shows the main architecture of the CNN block.
The input takes the form of a matrix of size 16× 400, where
16 represents the number of independent signals created by
the ICA, and 400 defines the number of samples of each
signal.

The CNN contains 5 layers, the first one is the input layer
that feeds the features matrix followed by a convolutional
layer and a max-pooling. The remaining are 2 fully connected
layers, where the first has a dropout of 0.8. The CNN architec-
ture is detailed in Table 5. Hyperparameters were set as fol-
lows: a fixed learning rate of 10−3, a batch size of 50, a stride
of 1 for the convolutional and the max pooling layers, MSE
as the loss function, and ’’Adam optimizer’’ as the optimizer
component. Finally, from the 19 subjects, we have extracted
12,000 labeled matrices to train the CNN, and applied the
10-fold cross-validation technique as previously discussed.

TABLE 5. CNN Model Architecture (Conv2d: 2d convolutional layer; Fc:
Fully Connected hidden layer).

IV. RESULTS AND DISCUSSION
In this section, we will discuss several findings based on the
obtained results after the implementation of the deep learning
EEG signal diagnosis. The proposed EEGfilter design (RNN-
GRU) and the classifier (CNN)were created using Keras built
on top of Tensorflow installed on python 3.6 running on a
GPU Nvidia Geforce GTX 950M.

A. FILTER DESIGN EXPLORATION
To evaluate the performance of our proposed RNN-GRU
dynamic filtering approach, we have built a first draft of
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RNN classification architecture according to the scheme
presented in Table 6 with four layer different activation
functions. Then, we applied different well known prepro-
cessing techniques providing adapative EEG filetring. The
following five filtering techniques have been tested using
the three available datasets dedicated for epilepsy and autism
diagnosis.

TABLE 6. Recurrent Neural Network Model Architecture for the
Comparison Task.

(a) A classification using a static filter: a 4th order bandpass
Butterworth filter.

(b) An LDA-Mahalanobis distance classification based
on adaptive filtering techniques reported by Belwafi
et al [16] (2014).

(c) A classification based on adaptive filtering technique of
Correa et al [59] (2019).

(d) A classification filtered with the cascaded filter based on
OWA operator (COWA) of Pander.T [60] (2019).

(e) A classification based on our proposed RNN filtering.
For the CHB-MIT dataset, we created 2 labeled groups

of EEG signals (Normal/Seizure) states, and for the Bonn
and KAU datasets, the labels were (Normal/Epileptic)and
(Normal/Autistic) subjects, respectively. Using theRNN-based
classifier detailed in Table 6, the CAD network is trained to
build a model for each dataset independently. Table 7 shows
a significant improvement in classification accuracy of pro-
posed diagnosis system architecture across all three datasets
compared with all other implemented classification tech-
niques. Since the neurological classification differs for each
case, we have to validate the performance of our proposed
filtering technique on different neurological disorders with-
out using the ICA algorithm. Thus this proposed platform
represents a first evaluation of the contribution of the pro-
posed dynamic filtering techniques on the average accuracy
improvement. We tracked every filter used in our work
to show how it contributes to the overall dataset filtering.
We concluded that our proposed method outperforms all the
presented competing techniques in terms of accuracy for all
available datasets and for both epilepsy and autism where the
improvement rate is more significant autism. Also, we mea-
sured the percentage of the selection of each of six FIR and
IIR filters. The contribution rate is the number of times a par-
ticular filter is selected for the preprocessing stage, during the
training phase, divided by the total number of utilized epochs.
As depicted in Table 8, no single filter type can present an
optimal filtering for all data cases. Kaiser window filter,

which has shown outstanding results in Belawfi’s work [16],
has also shown here great contribution to the filtering process
but did not manage to present optimality in all filtering cases.
Therefore, it is important that all filters are implemented
particularly for large scale databases. Table 8 also shows
specifications of employed filters.

In all experiments, we have segmented the data of each
channel to epochs, each of which has a length of 50 sam-
ples (corresponding to 0.2 seconds in KAU and MIT
datasets). The choice of this fixed length was a critical task,
since it greatly affects the convergence of the RNN filter.
Figure 5 shows the performance of both the RNN-filter
loss and the CNN classifier accuracy with regard to the
pre-selected epoch length. In order to evaluate the perfor-
mance of the diagnosis process, some statistical parameters
were calculated: true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN). In addition,
the metrics of sensitivity, specificity, and accuracy were also
calculated according to the following equations:

Sensitivity =
TN

FP+ TN
100

Specificity =
TP

TP+ FN
100

Accuracy =
TP+ TN

TP+ FP+ TN + FN
100 (3)

FIGURE 5. RNN Loss/CNN Accuracy performance along with the variation
of the filtering window size.

These values were computed for all subjects belonging to
the same dataset and for all our three used datasets which
are listed in Table 9. According to this table, the results
obtained show that the metrics values are quite similar for all
data sets during the validation process of our diagnosis tool.
Furthermore, the values of sensitivity and specificity are quite
close. It is obvious from Figure 5 that as the epoch length
increases, the classification accuracy increases but upto a
certain limit, and then starts to decrease. The RNN-filter
loss, on the other hand, maintains low value as long as the
epoch length is less than 0.3 second, and then increases
dramatically to a high value where it becomes constant. This
is intuitively not surprising due to the (low/non)-convergence
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TABLE 7. Filtering techniques and classification performances.

TABLE 8. Filters contribution in EEG pre-processing and their specifications.

TABLE 9. Performance evaluation of the proposed design.

of the RNN internal weights as, in this case, the RNN is
calling for more layers to go deeper. Fortunately, there is a
region for the epoch length, where the classification accuracy
is the maximum and the RNN-filter loss is the minimum. The
choice of this fixed length was a critical task since it greatly
affects the convergence of the RNN filter; therefore, an opti-
mization is required to determine its value. The proposed size
of 50 samples ( 0.2 seconds for KAU and MIT datasets) is
the result of trade-off optimization between the filter design
(which is kept of order less than 34) applied before the
construction of our GRU-RNN and the convergence of RNN
filter, which requires large number of data segments for train-
ing and testing. This optimization process is demonstrated
in Figure 5.

Based on Figure 5, we notice that the optimal size of
an epoch varies between 0.16 and 0.25. Therefore, we use
50 samples corresponding to 0.1953125 seconds for 256 Hz
sampling rate, and is approximated by its rounded value
of 0.2 seconds whenever needed for ease of presentation.

In this study, the RNN-GRU network is trained using a
huge number of iterations(2200K). Figure 6 shows the con-
vergence of the loss function toward the optimal weights with
a final loss of 1.13 for the function categorical cross-entropy

FIGURE 6. RNN-GRU loss/iteration performance.

which confirms the efficiency of our proposedmachine learn-
ing filter.

B. DESIGN OPTIMIZATION
After conducting the dynamic filter design in the previ-
ous section, we turn to optimize the overall diagnosis sys-
tem architecture. Our proposed filter has shown remarkable
results with competing filtering techniques in the previous
subsection. Therefore, the remaining task is to set our filter
in the diagnosing architecture and analyze its performance
in order to achieve high classification accuracy. Therefore,
in this subsection, we fix our filtering technique based on
RNU-GRU filter and study and the CNN network, pre-
ceded by the ICA module. Despite the fact that the size
of the features has not been reduced, the application of the

207002 VOLUME 8, 2020



G. Bouallegue et al.: Dynamic Filtering DF-RNN Deep-Learning-Based Approach for EEG-Based Neurological Disorders Diagnosis

TABLE 10. k-fold cross validation evaluation.

ICA has made it possible to achieve better classification
using our designed CNN. Figure 7 shows the variation of
accuracy against the number of epochs during the training and
the validation phases when the proposed system architecture
employed the KAU dataset. As noticed, the accuracy of both
phases maintains the same behavior, and reaches to a high
steady-state value in very small number of epochs. Thanks
to the ICA, we reached 99.5% of accuracy in only 10 epochs
because independence of features ensures our CNN not to fall
in the ’’Overfitting’’ problem.

FIGURE 7. Training and validation accuracy behavior.

To investigate more the performance of our feature extrac-
tion technique, we have considered a comparison with dif-
ferent feature extraction tools such as Principal Component
Analysis (PCA) and Common spatial pattern (CSP) along
with the ICA using 10 subjects from the KAU dataset.
Figure 8 presents the variation of accuracy for the mentioned
selected feature extraction techniques. Thanks to its indepen-
dent components, the ICA generally offers the highest accu-
racies among the other features extraction methods, which
justifies its choice in the feature extraction block.

For further evaluation of robustness of our classifier, the
k-fold cross validation is applied where k is varying from five
to ten. Thus, we have used the KAU dataset and we fixed
the number of epochs to 10. Table 10 shows the obtained
results, where more than 99% accuracy has been achieved for
both the training and validation sets. The loss is also barely
reached 0.06 for the training sets and 0.04 for the validation

FIGURE 8. Performance of different feature extraction techniques.

sets. These results confirm the high efficiency and ensure the
robustness of our classifier.

To prove the necessity of using such complex deep neu-
ral network classifier, we have considered simpler super-
vised and unsupervised classification algorithms such as Sup-
port Vector Machine(SVM), k-nearest neighbors algorithm
(KNN), k-means clustering and CNN along with different
feature extraction techniques. Table 11 shows the perfor-
mance of these classifiers trained using the fixed dataset.
By referring to Table 11, we observe that KNN can give
competing results when CSP features are used. However,
CNN provides better classification with ICA, which makes
CNN/ICA the most adequate tool for our design.

TABLE 11. Classification performances of several classifiers using
different feature extraction techniques.

To show the efficiency of applying our dynamic filtering to
the EEG recording for both epilepsy and autism, we propose
to use the topographic maps representation of the power
spectral density with their related electrodes. Furthermore,
the electrode map is shown for the all different frequencies:
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TABLE 12. Computational results of the proposed algorithm.

FIGURE 9. Power spectral density distribution on electrode map for normal and epileptic seizure states.

FIGURE 10. Power spectral density distribution on electrode map for normal and autistic states.

from delta to beta. Only the three main frequencies:
theta (6Hz), alpha (10 Hz) and beta (22 Hz) are considered
for this deep analysis.

For the epilepsy diagnosis process, we have applied the
same power spectral density measurements related to the
abovementioned rhythms. This topographic representation
shows the distribution of each of the three sub bands along
the electrode locations. As a first analysis of Figure 9,
the maps of filtered EEG signals to the epileptic subject
shows that the power spectral density is not localized in
a specific location in the scalp but it is distributed in all
regions.

It is relevant here to consider the complexity of our filters
design combined with RNN-GRU, where we evaluate the
computational cost for each phase through the diagnosis pro-
cess. According to the obtained results presented in Table 12,
the proposed dynamic filtering combinedwith the RNN-GRU
handled an important number of network parameters during
the training phase close to 96 550 and required a total compu-
tation cost of almost 1.5 mega flops per second (MFLOPS).
The classification needs less parameters and also less com-
putation amount with only 0.8 MFLOPS. According to these
reasonable computational complexities, real time diagnosis
process of the proposed algorithm could be implemented in
advanced electronic systems.

As depicted in Figure 10, the log power spectral density
shows a clear spike for normal subject around the alpha
rhythm. However, this spike is passing away for autistic

subjects. On the other hand, and according to the same
figure, the power spectral density with respect to alpha
and beta rhythms for normal subjects are quite similar and
are localized in frontal and parietal regions of the head.
However, for autistic subject this similarity is lost and the
power spectral density for the same rhythms are localized in
the occipital region. This assumption is also neatly verified
for normal and autistic registration after applying dynamic
filtering.

Table 13 presents a comparison of our proposed autism
CAD system with other existing methods, whose details have
been discussed in Section 2. It should be noted that most
of proposed methods were validated by different datasets,
which makes fair comparison for all methods slightly dif-
ficult. By virtue of Table 11, we observe that our method
achieves an average training accuracy of 99.6 and an aver-
age classification accuracy of 99.5, which is greater than
any other existing method that has used the same database.
Also, our method stands competitive to other methods which
were tested using different datasets. Moreover, the RNN-
GRU dynamic filtering approach proposed in this paper is
more universal than the filtering approaches proposed in
other works in the sense that its design has been based
on the utilization of combined data from the three datasets
(MIT, Bonn, KAU). Therefore, our proposed filtering
approach can preprocess the most informative sub-bands
of EEG signals whether they belong to healthy, epileptic,
or autism subjects.
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TABLE 13. Several EEG-based CAD of autism spectrum disorder.

V. CONCLUSION
In this paper, we have proposed an EEG-based diagnosis
system well suited for two neurological disorders, epilepsy
and autism. The design of such a system requires a prepro-
cessing stage, which is very critical for achieving reliable
performance. It is a common practice in similar system design
to use static (predefined) filters to remove artifacts and reduce
the effect of noise. Unfortunately, these types of static filters
may not perform well in all cases due to the intrinsic fea-
tures of the EEG recording and its associated neurological
disorder. In this paper, we have proposed a machine learning
filter based on the RNN-GRU to be implemented in the
preprocessing stage. It has been demonstrated in this work
that this type of machine learning networks is so effective
in filtering EEG signals, with a loss rate (MSE) as low as
1.13. In particular, when this filtering approach is combined
with ICA for features extraction and CNN for classification,
a high average accuracy rate can be achieved, which makes
our proposed architecture competitive with other existing
approaches. Thus, the proposed diagnosis system achieves
an average of 100 % for epilepsy according to an offline
diagnosis using Bonn and MIT datasets, where the same sys-
tem applied to autism provides an average accuracy of 99.5%
using KAU dataset.
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