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ABSTRACT Fuzzy logic has created a high impact on research and development in almost all engineering
applications. Recently, there has been an increasing interest in various offshoots of fuzzy logic approach
and hierarchical fuzzy logic is one such area of research development and applications. With the increase
in volume of data, hierarchical fuzzy logic has emerged as a highly suitable candidate for research. The
objective of this paper is to develop methodology for multi-input multi-output hierarchical fuzzy systems.
In particular, a system to be designed is broken into a number of sub-subsystems, where each subsystem is
designed separately and then connected in hierarchical structure. The strategy used in this paper is to avoid the
repetition of common terms across different subsystems of multi-input multi-output systems. This strategy
has not been presented hitherto by any other author. This paper first discusses in detail the implementation
of a multi-input single-output hierarchical system. It then extends the approach to multi-input multi-output
hierarchical systems.

INDEX TERMS Fuzzy hierarchical system, fuzzy logic, fuzzy systems, hierarchical fuzzy systems,
hierarchical systems, intelligent system, hierarchical MIMO systems.

I. INTRODUCTION
In the year 1965, Lotfi Zadeh first introduced the term ‘‘Fuzzy
Logic’’ in his research paper on fuzzy sets [1]. Fuzzy logic is
an effective means to resolve conflicts and provide realistic
assessments because of its ability to deal with information
that is uncertain, imprecise, or vague etc. Fuzzy logic involves
use of linguistic variables, which serve to construct better
mathematical and realistic models. Since the advent of classic
papers by Lotfi Zadeh [1], fuzzy logic has been used for
a large number of applications in different disciplines and
used in real life applications [6]. A brief review has been
given in this paper with a view to familiarize the concepts
and terminology of fuzzy methodology, so that the reader
acquires a foundation of fuzzy logic and hierarchical fuzzy
systems.

Fuzzy logic originated from the generalization of classical
logic [1] that incorporates the smooth transition between true
and false. It is the structure and formation of multiple-values
logic in which there are more than one truth values in range
i.e., instead of representing output as 0 or 1, true or false
etc.; it results as a degree of truth including both 0 and 1.
Fuzzy logic accompanied the concept of partial truth, where
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values fluctuate between complete true or false. The fuzzy
logic [1] comprises fuzzy set theory where set A in universe X
is characterized by membership functions that represent real
numbers for every element in X.

There is a huge limitation of standard logic that only
allows results in the form of either 0 or 1; however, one
may find varied conclusions when asking questions such as
skin color etc. In such cases, degree of truth appears as the
outcome of logical reasoning. At first instance, both prob-
abilistic approach and degree of truth might be seen similar
but on the contrary, degree of truth uses amathematical model
of uncertainty and probabilistic approach uses mathematical
model of ignorance.

Let us take a real-life example of height i.e., assume height
is classified into two categories: short and tall, where short
height is defined in range [50, 70] inches; and tall height is
defined in range [65, 85] inches. A normal person could be
included in both categories, as fuzzy logic allows the crisp
values to be a subset of two logical sets, which gives fuzzy
logic an edge to be more intuitive and closer to the way
people think. Linguistically, a person is not always short or
tall exclusively. It can be represented as ‘‘partially tall’’ or
‘‘little short’’ etc.

In the modern era with complex systems and environment,
fuzzy logic has been successfully used by many researchers
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such as engineering, technology, scientists, mathematicians,
analysts etc., and used in countless applications [2], [3] in
areas not limited to automobiles, defense, security, medicine,
biomedical, internet, power industry, consumer electronics,
weather forecasting, law, business etc. A few examples of
real-life applications are defined below.

One of the applications of fuzzy logic has been manifested
in Japan by Sendai Subway Control System. Using fuzzy
logic, Hitachi developed Nanboku line to control the train
transportation system that results in one of the smoothest
running systems in the world with enhanced efficiency and
improved performance.

In commercial appliances, fuzzy logic has already
appeared for applications such as ventilation, air condition-
ing, HVAC systems etc. to control the thermostats for heat-
ing, cooling, energy efficient systems. The outcome of fuzzy
logic maintains steady temperature, compared to traditional
thermostats in the market.

In the field of 3D animation, fuzzy logic application
includes artificial intelligence-based animation for generat-
ing crowds. This application has been extensively used while
making world’s best movies such as The Lord of Rings, The
Lion, Avatar, The Wardrobe Films etc.

Other applications [6] include analysis of power systems
and identify any harmonic disturbances, where a fuzzy logic
system analyzes the fundamental parameters such as voltage
and current, as well as temperature to determine root cause of
any failure.

A brief review of fuzzy and neuro-fuzzy systems is given
below first for completeness.

A. FUZZY SYSTEMS
Fuzzy systems mainly work on the interpretability [1], [10]
that is abstract from linguistic approach and understandable
to humans. However, fuzzy systems extracted from exper-
imental data may not necessarily comprehend human lan-
guage and to increase the performance, different learning
methods in fuzzy logic lead to loss of human interpretation.
One of the major motivations to implement a fuzzy model is
its transparency to understand human interpretation.

The fuzzy system represents a nonlinear system which
comprises three steps: Fuzzification, Inference systems and
Defuzzification.

Fuzzification converts inputs into suitable linguistic values
that can be viewed as labels for fuzzy sets. Similarly, infer-
ence systems have three parts: Rule base contains selection of
input-output relations; Data set comprises membership func-
tions for rules; Normalization of input and output combina-
tion that reduces the redundancy of rules. The defuzzification
combines the output from the inference system and converts
it into desired forms.

B. NEURO FUZZY SYSTEMS
Neuro-fuzzy [5], [10] is a blend of neural network and
fuzzy logic. The hybridization of these two technologies i.e.,
by adding linguistic reasoning style with fuzzy systems and

cognitive science connection with neural networks, result in
an intelligent system. In literature, this hybridization of fuzzy
and neural networks commonly referred to as FNN (fuzzy
neural network) or NFS (neural-fuzzy system).

A neuro-fuzzy system embraces a model in sets with fuzzy
systems, where a model consists of a linguistic set with rules
defined with IF-THEN statements. The main advantage of
neuro-fuzzy systems is its ability to act as a feed-forward
network, commonly known as universal approximation and
interpret IF-THEN rules.

BothMamdani and Sugeno models [10] have given a boost
to the work suggested by Lotfi Zadeh [1]. The modeling
of neuro-fuzzy systems is mainly focused on interpretability
and accuracy. The Mamdani model has been used to define
linguistic fuzzy modeling for interpretability and the Takagi-
Sugeno-Kang model [10] has been used for precision mod-
eling for accuracy. The steps for realization of neuro-fuzzy
models are given as:

1. Derive rules for training network
2. Tune neural network parameters using fuzzy logic and add

fuzzy logic criteria to define network
3. Realize a fuzzy sub-category. Identify membership func-

tions through various algorithms such as
a. Grid partitioning
b. Back propagation
c. Subtractive clustering
d. Fuzzy C- means clustering

4. Represent fuzzy blocks for multi-layer networks:
a. Fuzzification
b. Fuzzy inference with rules or connections
c. Defuzzification

Because of the limitation of precision, the neuro-fuzzy
method has been more successful than fuzzy logic, as it
incorporates interpretability from fuzzy logic and accuracy
or precision from neural networks. Another difference is
in handling of the rule base, where fuzzy logic limits the
number of total rules, whereas, neuro-fuzzy has the ability to
handle larger set of rules compared to conventional fuzzy but
neuro-fuzzy has limitations to a number of input parameters.

C. PROBLEM STATEMENT
Despite several improvements discussed in literature, still
there are various open points and limitations to conventional
fuzzy and neuro-fuzzy design. It is a well-accepted fact that
the conventional fuzzy and neuro-fuzzy systems both have
limitations to dimension i.e., limitations to the large number
of input variables and rules. The complexity of hierarchi-
cal systems has been best represented by a total number of
rules [5]. Increase in input variables lead to increase in rules,
thus increasing the overall complexity of the system. This
limitation restricts the usage of fuzzy systems to solve com-
plex problems and real-life applications with large dimen-
sions. It thus increases the number of rules because these
are directly proportional to the increase in number of input
parameters and complexity of the system. In the last few
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decades, the hierarchical fuzzy system has appeared to be
a viable solution to overcome the limitation of conventional
fuzzy and neuro-fuzzy systems.

The aim of this paper is to address the problems and limita-
tions possessed due to the conventional system by designing
the fuzzy system in a form of hierarchy. This paper presents
an approach to develop the hierarchical fuzzy based model
with the focus to deal with large rule dimensions and espe-
cially in multi-output environments, without compromising
the performance and effectiveness of the overall system. This
paper presents an approach for rules reduction by eliminating
common terms so as to reduce the complexity of the system.
With ability to maintain composition both at functional level
and linguistic level, hierarchical fuzzy based model is well
suited and has the potential to handle data efficiently and
provides a high transparency due to its rule base. The recent
development has been around hierarchical fuzzy systems.

To the best of the authors’ knowledge, nobody has
exploited hierarchical fuzzy logic for multi-input multi-
output systems. In this development, the authors for the first
time have tried to avoid and remove duplication of common
terms across various sub-systems.

There is no such algorithm available in literature to sup-
port the design of both type-1 and type-2 fuzzy inference
systems [11] using hierarchical structure. In this paper, the
algorithm presented for hierarchical approach has been stud-
ied in context of both type-1 and type-2 fuzzy inference
systems. The type-1 and type-2 fuzzy inference system dif-
fer by membership function definitions and representation
of rules. The type-1 fuzzy system has crisp membership
definitions, however, the type-2 fuzzy inference system has
fuzzy membership definitions in nature. The advantage of
using type-2 fuzzy over type-1 fuzzy is its ability to man-
age uncertain and irregular environments. Type-2 fuzzy [14]
has high computation due to a large number of parameters
required to design and also it requires the type-reduction
mechanism in its defuzzification level. Themembership func-
tion of type-2 fuzzy inference system is known as interval
type-2 fuzzy system and is bounded by two layers: lower
and upper membership function. Type reducer defuzzifica-
tion produces the output by averaging the intervals at various
stages. Figure 1 below represents the membership function of
type-1 and type-2 fuzzy inference system [11].

In this paper, type-1 fuzzy design has been considered but
the same algorithm can be used for the type-2 fuzzy inference
system.

Consider the diagram given in Figure 2 for proposed
methodology in this paper. There are N-inputs andM-outputs.
Users provide different inputs as a training data. The training
data is grouped into two parts: common data and uncommon
data. Sort both the common and uncommon data into the
number of small size data samples. For every sample, gener-
ate a fuzzy inference system using fuzzy c-mean clustering.
The clustering method reduces the number of rules required
for the fuzzy system. Arrange these fuzzy subsystems in a
desired hierarchical structure. Aggregate the outputs of the

FIGURE 1. Membership function representation for type-1 and type-2
fuzzy inference system.

FIGURE 2. Graphical representation of multi input multi output
hierarchical system.

hierarchical system obtained using both common and uncom-
mon datasets. Themulti input multi output hierarchical model
has been designed using Simulink. The simulation has been
done in the MATLAB and Simulink environment and output
has been shown in scope.

Section II describes various hierarchical tree structures
along with mathematical representation. The section also
discusses various real-life applications of hierarchical fuzzy
systems. Section III discusses the advantages of hierarchical
fuzzy logic over conventional systems. Section IV presents
the algorithm for the multi-input single-output hierarchical
fuzzy system. The detailed steps have been discussed and
steps to reduce rule-base using fuzzy c-mean clustering have
been shown. Section V shows the comparison of a multi-
input single-output systemwith conventional and hierarchical
approaches. Section VI shows the systematic and generalized
algorithm for a multi-input multi-output hierarchical system.
Section VII shows the results of a multi-input multi-output
hierarchical fuzzy system and its comparison with a conven-
tional fuzzy system.

II. HIERARCHICAL FUZZY SYSTEMS
Hierarchical systems, as defined in wiki, are an arrangement
of items (objects, names, values, categories, etc.) in which
items are represented as being ‘‘above’’, ‘‘below’’, or ‘‘at the
same level as’’ one another.
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There has always been a challenge in using fuzzy sys-
tems to solve complex or high dimension problems, mainly
due to its working limitation within a certain dimension.
To overcome this problem, the hierarchical fuzzy system has
appeared to be a viable and most effective option.

Fuzzy logic is a white-box system that enables trans-
parency between interpretation and analysis. However, con-
ventional fuzzy systems are the universal approximators with
random function approximation to any accuracy. Due to trans-
parency, fuzzy systems have been utilized in complicated
systems and thus lead to its limitation of dimension, which
becomes a bottleneck in most cases.

The limitation arises due to the increase in number of input
parameters. The increase in input parameters leads to expo-
nential increase in number of rules, number of parameters in
mathematical relations and number of dataset or knowledge
base required for searching systems.

The outcome of the above consequences results in
over-fitting of systems that loses generalization of systems
and its transparency. To deal with this problem, in the early
90’s, Raju, Zhou and Kisner [5] ignited the idea of hier-
archical fuzzy systems [5]. A number of sub-categorized
structures, known as fuzzy logic units, with low dimensions
are connected in the form of hierarchy. In some areas, var-
ious researchers consider hierarchical systems on the top
of fuzzy logic to refine final output. Common applications
to hierarchical fuzzy systems are classification, clustering,
planning, and tracking systems etc. The system presented
as MISO (Multi-Input and Single-Output) system, whereas
MIMO (Multi-Input and Multi-Output) systems, without
losing generalization, can be represented in several MISO
subsystems. The lowest level of hierarchical structure gets
access to real inputs whereas all the consecutive levels
are connected to both output from previous level and real
inputs.

A. HIERARCHICAL TREE STRUCTURE
The hierarchical fuzzy tree structure [5] can be described
in multiple levels, and multiple systems in each level. The
output of these fuzzy systems is used as inputs to the next
consecutive level along with inputs as shown in Figure 3(a).

Chung and Duan [5] proposed the hierarchical fuzzy sys-
tem as incremental structures in the year 2000, shown in
Figure 3(b). The model showcases multiple-stage structure
where every level represents one stage. In this architecture,
there is one fuzzy system defined at every stage. The next
level consumes the output from the previous level with orig-
inal input parameters. To maintain accuracy, it is highly
important to consider similar inputs for the first stage and less
important shall be defined later.

Wang [9] proposed another architecture commonly defined
as aggregated hierarchical structures, refer to Figure 3(c).
In this architecture, every stage has multiple fuzzy systems,
and all the original inputs are handled at the lowest stage.
In the next stage onwards, outputs from previous systems are
managed by next stage fuzzy systems.

To refine the accuracy of the model, another method
defined by Karr and Magladena [5] is to consider and dis-
tribute original inputs at all levels as shown in Figure 3(d).

None of the above authors gave any methodical approach
to design multi-input multi-output hierarchical systems. The
comparison between different hierarchical tree structures is
described above. In literature review, no one has developed
any methodology for a hierarchical fuzzy system rules reduc-
tion especially for multi-input multi-output systems and also
no multi-input multi-output hierarchical model design proce-
dure is available in literature. In this paper, the authors for
the first time present a systematic and generalized approach
for the development of multi-input multi-output hierarchi-
cal systems with reduced common sub-systems by avoiding
and removing duplication of common terms across various
sub-systems of hierarchical systems. Any of the given hier-
archical structures can be designed and implemented by the
given algorithm.

B. REPRESENTATION OF HIERARCHICAL SYSTEMS
To represent hierarchical systems in mathematical form [13],
consider an incremental hierarchical tree structure, where the
first fuzzy logic unit at the lowest level consumes two real
inputs. Similarly, the second fuzzy logic unit consumes the
output from the previous fuzzy logic unit and real input and
so on. This process advances till all the real inputs have
been used. Assuming there are n-input parameters {x1, x2,
x3, . . . xn} and {x̂1, x̂2...x̂n} are the fuzzy variables extracted
from input variables. ‘m’ presents total fuzzy rules, mem-
bership functions for inputs and outputs are presented by
µU j

i
(xi) and µOj (yi). With singleton fuzzifier and centroid de-

fuzzifier, the hierarchical system can be represented below by
equation 1(a) where mathematical forms of fuzzy logic units
are shown by equation 1(b).

IF (x̂1 = U j
1) AND (x̂2 = U j

2), THEN (y1 = Oj1)

IF (x̂i+1 = U j
i+1) AND (ŷi−1 = Oji−1), THEN (yi = Oji)

(1a)

where, ‘j’ = 1, 2, 3, . . ., m; {U j
1 and U j

2;O
j
1 represents the

fuzzy sets for inputs and outputs respectively. ‘i’ ranges from
(2, 3, 4, . . . n− 1). x̂1 and x̂2 present inputs to the first fuzzy
logic unit. x̂i+1 and ŷi−1 present the real-input variable and
output from the previous fuzzy logic unit respectively.

y1 =

∑m1
j=1Q1,jµU j

1
(xi)µU j

2
(xi)∑m1

j=1 µU j
1
(xi)µU j

2
(xi)

yi =

∑mi
j=1Qi,jµOji−1

(yi−1)µU j
i+1

(xi+1)∑m1
j=1 µOji−1

(yi−1)µU j
i+1

(xi+1)
(1b)

C. APPLICATIONS OF HIERARCHICAL SYSTEMS
With the current transformation towards extension of wireless
sensor networks (WSNs), network transformation towards
Internet of things (IoT) etc., most of the real-life problems
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FIGURE 3. Structure of hierarchical systems.

are very much evolved and have uncertain behavior. The rule
dimensions have been increased drastically and so thus the
complexity of the system. The conventional systems are inca-
pable of handling large dimension datasets. Thus, the increase
in complexity for real-life problems becomes unmanageable
and goes beyond the capabilities of conventional algorithms.
However, hierarchical systems are an appropriate answer to
those problems due to its ability to reduce the complexity,
handle large dimensions and large uncertainty.

Other applications of hierarchical fuzzy in real-life is to
implement data mining that requires multi-objective pro-
gramming for Type 1 and Type 2 fuzzy systems [9]. Similarly,
for the search problem and optimization task of structure and
parameter spaces in model, the hierarchical fuzzy system has
been used for multi-agent architecture [11] to efficiently par-
allelize and distribute the optimization tasks between struc-
ture and set of parameters.

Another application is the use of hierarchical fuzzy in
designing adaptive Kalman filtering [8]. The objective of
hierarchical fuzzy is to provide more effective representation

irrespective of high dimensions. It consists of membership
functions based on the concept of vagueness and uncertainty.
However, complex abstractions can be achieved by combin-
ing functions with other mathematical systems. The system
design using the Kalman filter is unable to handle uncertain
behavior whereas hierarchical fuzzy can handle uncertain
behavior. With similar context, the fusion of Kalman filter
concept and hierarchical fuzzy system for the estimation
process can be achieved. This inductive inference of the hier-
archical fuzzy can be beneficial while supplementing from
probabilistic theory and it is more reliable to relate to non-
linear relations.

III. ADVANTAGE OF HIERARCHICAL FUZZY LOGIC OVER
CONVENTIONAL FUZZY LOGIC
In conventional fuzzy logic, membership functions are
mainly used to create input segments and form possible inter-
connections between input and output in the form of rules.
This leads to exponential growth in a number of rules as a
number of inputs increases.
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Consider a fuzzy system with ‘n’ inputs and each input has
‘m’ membership functions. Then the total possible rules can
be described in the form of: ‘mn’. Similarly, for hierarchical
fuzzy systems with n-inputs and each input has ‘m’ mem-
bership functions. It is assumed that two inputs are used for
every fuzzy logic unit in each layer of hierarchy. Thus ‘(n−1)’
fuzzy logic units are required to cover ‘n’ inputs. Then the
total number of rules for the overall hierarchical fuzzy system
can be described in the form of: ‘(n−1).m2’.
For a large number of inputs, it is very difficult to build con-

ventional fuzzy systems that can handle such combinations
of rules. This is why the hierarchical fuzzy system has been
preferred over the fuzzy system that offers solutions with
reduced rules. Consider Mackey-Glass (MG) time delay [12]
differential equation (2):

˙x(t) =
0.2x(t − T )

1+ x10(t − T )
− 0.1x(t) (2)

For the above time-series, considering the known values of
time series up to ‘‘t’’ point in time, to predict future values
at some point (t + P). A standard method is to map D
sample points with every ‘u’ unit in time (x(t-(D-1) u), . . . ,
x(t-u), x(t)) to a predicted future value x (t + P). Using
the conventional settings for predicting time series, assume
D = 4 and u = P = 6, the example for an input training
data can be considered in vector form as represented in
equation (3):

W(t) = [x(t− 19), x(t− 12), x(t− 6), x(t)] (3)

Gather 500 samples as training data extracted from above
equations. Build a conventional fuzzy system using the
dataset. Design a fuzzy inference system using fuzzy clus-
tering and with 16 cluster points. It is assuming that all
the inputs are categorized into two gaussian membership
functions each. For conventional fuzzy logic, the maximum
possible fuzzy rules are 24 = 16 rules.

Figure 4 shows the conventional fuzzy systems for
Mackey-Glass time-delay differential model. Using the same
training data set, design a two-level hierarchical fuzzy sys-
tem. Assuming level-1 with two fuzzy logic units and each
unit contains two inputs. The two outputs from level 1 i.e.,
output from each fuzzy logic unit from level 1, becomes input
to the level-2 fuzzy logic unit. The output of level 2 becomes
the final output.

FIGURE 4. Conventional fuzzy system for Mackey-Glass time delay
differentials model.

As discussed above, each input has categorized into two
membership functions. With two inputs, each fuzzy logic
unit at level 1 has the maximum of 22 = 4 rules possible.

Consider four rules for the level-2 fuzzy logic unit. Total rules
in hierarchical fuzzy structure is reduced to 4 + 4 + 4 = 12
rules.

Figure 5 shows the hierarchical fuzzy systems for Mackey-
Glass time-delay differential model.

FIGURE 5. Aggregated hierarchical fuzzy structure for MG time delay
differentials model.

Figure 6 shows the comparison between three
approaches [9]: final x(t) extracted from equation (1), con-
ventional and hierarchical fuzzy system.

Where, ‘Expected’ = x(t) extracted from equation (1);
‘Conventional’ = Fuzzy inference system output x’(t) from
Conventional System; ‘Hierarchical’ = fuzzy inference sys-
tem x’(t) from a two-layer Hierarchical fuzzy inference sys-
tem. It is observed that the correlation between ‘Expected’
and ‘Conventional’ fuzzy systems is 0.93 and correlation
between ‘Expected’ and ‘Hierarchical’ fuzzy systems is 0.91.

FIGURE 6. Comparison of various approaches.

Table 1 below gives descriptive comparison for conven-
tional fuzzy logic, neuro-fuzzy logic and hierarchical fuzzy
logic approach. The comparison has been made on the basis
of number of rules, system performance, processing time,
development of overall system etc.

IV. DESIGN OF MULTI INPUT SINGLE OUTPUT SYSTEM
USING HIERARCHICAL FUZZY LOGIC
For Multi-Input-Single-Output, one of the methodologies to
design hierarchical models is discussed in paper ‘‘Hierar-
chical Fuzzy Systems’’ by Radek Sindelar [4]. This paper
addresses rule-base explosion in conventional systems for
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TABLE 1. Comparison between fuzzy, neuro-fuzzy and hierarchical fuzzy
logic.

large dataset and proposed solution by converting to hierar-
chical structure. The author developed the hierarchical sys-
tem layer-by-layer to avoid making a conventional model

without leveraging previous information about known struc-
tures. The author introduces structure, prototype algorithm
and weighted analysis. It is preferred to connect inputs with
similar behavior to one subsystem and inputs with different
behavior to another.

Consider the fuzzy system with three inputs (x1, x2, x3)
and 1 output (y) has been divided into two subsystems: S1 and
S2 with different rule bases corresponding to their respective
input-output combinations. Assume three inputs two-layer
hierarchy structure, where x1 and x2 are inputs to subsystem
S1 and output of subsystem S1 along with input x3 drives
subsystem S2 to obtain final output.

FIGURE 7. Flowchart of 3 × 1 hierarchical system.

Figure 7 shows three inputs two-layer hierarchy structure,
where X1 and X2 are inputs to subsystem S1 and output
of subsystem S1 along with input X3 drives subsystem S2
to obtain final output. The proposed algorithm started with
the lower layer. Subsystem S1, comprises Inputs x1 and x2.
However, in the next layer, a combination of input and output
from the lower layer is passed through subsystem S2.

The rule base of these subsystems is described as:
For subsystem S1:

R1 : IF x1 is Ai AND x2 is Bi, THEN z is Ui
For Subsystem S2:

R2 : IF x3 is Ci AND z is Ui, THEN y is Pi
The fundamental limitation of the conventional fuzzy is the

increase of the rule base proportionally with the number of
input variables. With a large set of data, there is a high proba-
bility to lose transparency and accuracy etc. There are several
approaches available in the literature on designing hierarchi-
cal fuzzy systems [2] i.e., decomposition of large conven-
tional fuzzy into small systems with simple sub-structures
and interconnect them all with certain methodology.

For example, consider a fuzzy system with two layers
with single output per layer. The output of one subsystem
becomes the input to another subsystem. This paper presented
a procedure to design hierarchical fuzzy systems and in any
of Mamdani and Sugeno type methods. The algorithm starts
with the lower level, where inputs are real. The implementa-
tion uses a two-side Gaussian membership function that is
smooth, continuous, differentiable. Triangular membership
functions can be used as it is presented by straight line and
are simple to represent. The reason to choose gaussian mem-
bership function is because most of the real-life applications
behave in a gaussian manner.
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Like conventional fuzzy, each hierarchical system has three
blocks [3] for each subsystem: Fuzzifier, Rule editor and
Defuzzifier. The ‘‘centroid’’ weighted approach has been
considered as a defuzzification method. The approach con-
siders cluster approach to define subsystems, extracted from
random data. The steps to design hierarchical subsystems are
defined below. As given above, hierarchical systems have
been illustrated by various authors. It has been implemented
for a two-inputs one-output system by Radek Sindelar [4].
In this paper, we implement the procedure for a new example.
All the respective tables and results are generated using the
MATLAB simulation environment.

Considering a nonlinear function ‘y’ with training set of
random generated 1500 samples in specified range, where ‘y’
is represented by equation (4) as:

y = x1(1− x2)+ x2x3 (4)

Consider input membership functions as: small and large,
whereas output membership functions as: small, medium, and
large. To convert in hierarchical system, expression above is
further decomposed and is shown by equation (5):

y = z+ x2x3 (5a)

z = x1(1− x2) (5b)

The equation 5(b) represents subsystems S1 and equation
5(a) represents subsystem S2. Where subsystem S1 has two
inputs: x1 and x2; and one-output ‘z’; however, subsystem
S2 has two inputs: x3 and z; and one-output y. It is observed
that output ‘z’ from subsystem S1 becomes input to the
subsystem S2. Following all the above steps following math-
ematical sequence, Table 2 shows the rule base for subsystem
S1 and S2.

TABLE 2. Rule base.

Rules shown in Table 2 are generated in following steps:
Step 1 (Random Data Generation): Generate ‘P’ numbers

in the interval (a, b) with the formula given below in equation

FIGURE 8. Fuzzy clustering of subsystems S1 and S2.

(6). Where, ‘r’ defines random data and ‘rand(P,1)’ is the
MATLAB function to generate ‘P’ random numbers

r = a+ (b− a).∗rand(P, 1) (6)

Step 2 (Scaling of Parameter in Range): Fuzzy works well
in the specified range of [0, 1], to scale, divide each individual
element of input-output from its own maximum value.
Step 3 (Center Points Using Fuzzy Clustering): Use ‘‘find

cluster’’ to identify the center points within the required
number of clusters [7].

Center Points = find cluster ([In, Out], No. of Cluster)

Step 4 (Generate FIS Model Using ANFIS):
: MATLAB Syntax for Type-1 FIS:

Type1FIS= genfis3([In, Out], ‘Type’, ‘Cluster’)
: MATLAB Syntax for Type-2 FIS:

Type2FIS = convertToType2(Type1FIS)
To design the sub-system, any of the four defuzzifica-

tion methods (grid partitioning, back propagation, subtractive
clustering and fuzzy C-mean clustering) can be picked in this
research. Fuzzy C-Mean clustering [7] is considered due to
its ability to generate subsystems with both Mamdani- and
Sugeno- type fuzzy inference systems. Figure 8 represents
the fuzzy clustering of inputs x1 and x2 within the region for
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subsystem S1 and of output z of subsystem S1 and input x3
for subsystem S2. In figure 8 below, for S1, x1 is presented as
Input 1 and x2 as Input 2 respectively. For S2, x3 is presented
as Input 1 and z as Input 2 respectively. With required center
points for a dataset, these regions are contrived to four or eight
points.

Where, top plot describes the input space of S1 with four
clusters. These center points along with expected output are
further used to extract rules defined in Table 3 below:

TABLE 3. Subsystem S2 – cluster.

RULES SIMPLIFICATION
Data for every subsystem is clustered and then the relation-
ship is established as rules. Consider multiple inputs that
have similar clusters and same output, then these clusters
can be clubbed together to reduce the number of rules.
Figure 9 shows four clusters of subsystems S2 and its reduced
number of clusters to two. As three out of four clusters have
the same output behavior for input x2, so these clusters can
be clubbed to one cluster. Thus, a number of clusters has been
reduced from four to two. The number of clusters represents
the number of rules.

The similar behavior clusters can be clubbed into another
cluster V and thus further simplified to two clusters instead
of four. Table 4 shows the re-structure of rule base from eight
rules to four rules for subsystem S2. However, the rule base
for subsystem S1 remains the same.

V. VERIFICATION OF MULTI INPUT SINGLE OUTPUT
SYSTEM (MISO)
The idea of merging clusters in the rule base is to simplify
the structure of the system but it is expected to maintain and
retain the total rule base behavior. Two types of aggregation

FIGURE 9. Fuzzy clustering for subsystem S2 with four center points
contrived to two center points.

TABLE 4. Subsystem S2 – reduced cluster.

methods have been discussed: maximum and weighted aver-
age. Table 5 shows the properties, such as, standard devi-
ation and variance, of conventional and hierarchical fuzzy
models for different aggregation methods using MATLAB
commands [10].

VI. DESIGN OF MULTI INPUT MULTI OUTPUT SYSTEM
USING HIERARCHICAL FUZZY LOGIC
Themain contribution of the paper is the development of gen-
eralized algorithms for multi-input multi-output hierarchical
systems. This concept has not been presented by any author
so far in the literature.

In this paper, the multi-input single-output approach has
been extended to multi-input multi-output for the first time.
This approach is different from Radek in the sense that in
Radek’s approach, subsystems have been generated based
on decomposition of mathematical expressions, whereas in
our approach subsystem has been generated by segmenting
input-output data. Each segment leads to a fuzzy unit in the
structure.
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TABLE 5. Properties of various fuzzy approaches.

Consider n outputs, where all outputs are functions of four
inputs: x1, x2, x3, x4. Equation (7) represents outputs as:

y1 = f(x1, x2, x3, x4; . . .

y2 = f(x1, x2, x3, x4); . . .

. . . .

yn = f(x1, x2, x3, x4); (7)

To design hierarchical structure, the main strategy is to gather
all input-output combinations that are common among all the
outputs. This will reduce the number of fuzzy logic units in
the hierarchical structure. Using these input-output combina-
tions, a fuzzy logic system has been designed that will be
common for all outputs. The generic procedure is as described
below:
• Generate random data for all the outputs using mathe-
matical equations

• Gather all the input-output data combinations that are
common among all the outputs
◦ Design common fuzzy logic system
◦ Evaluate output

• Gather all the input-output combinations that are uncom-
mon across all the outputs separately
◦ Define hierarchical level and number of fuzzy logic

unit per level
◦ For individual output

� Design fuzzy logic units
� Evaluate final output

• Final output for individual function will be average
between evaluated output from common component and
output from hierarchical structure

Fuzzy logic supports multi-input-single-output (MISO) sys-
tems. In this paper, the methodology to design multi-input-
multi-output (MIMO) is presented using hierarchical fuzzy
logic. Random data of 1500 samples have been taken as
training data and then evaluate output from mathemati-
cal expressions for Y1 and Y2. For multi-output systems,
to reduce the complexity, filter the input-output data common

across all systems and generate an independent fuzzy infer-
ence system. For uncommon data, depending on the number
of fuzzy logic units required at a lower level of hierarchy, pool
input columns in various samples with the same desired out-
put. Find the required number of cluster points and consider
these points as a rule base. Generate a fuzzy inference system
for every fuzzy unit using these samples. The output from a
lower layer becomes input to the next layer. Repeat the same
process to collect input, pool in various samples, generate a
fuzzy inference system and evaluate it. For any system, the
measured output is average of output from final fuzzy output
and common fuzzy. The pseudo code is given as:

Algorithm Pseudo Code to Design Hierarchical Systems
Data Generation: Generate random data of 1500 samples
Segmentation: Using Mathematical analysis, create and
pool common and uncommon inputs and pair them with
output
Find Cluster: Find center points (relation between Input and
Output) for each group by following syntax
Center Points = findcluster ([Input, Output], Total Clus-

ter)
Execution:
• Define membership functions for Input and Outputs
• Design fuzzy inference system for common dataset and
evaluate the output

• For all the outputs follow next steps separately
For: Hierarchy Level = ‘1’ to (Final Level)
◦ If (Lower level of hierarchy)

� Create different sub-groups or segments from
uncommon dataset

◦ Else
� Output from previous level becomes input to the
next level with real output

� Create different sub-groups or segments from
input (previous level output) dataset, keeping
same output

◦ Generate Fuzzy Inference system as follows:
For (Number of Sub-groups)
• Find center points (IO Mapping)
• Generate Type-1 FIS:
Type1FIS = genfis3([In, Out], ‘FIS’, ‘Cluster’)

• (Optional) Generate Type-2 FIS: Type2FIS =
convertToType2(Type1FIS)

• Evaluate Output using ‘‘evalfis’’
Result: Output is average of final hierarchical output for
individual system and final output from common fuzzy unit

The algorithm presented below can be used for N outputs.
Following steps are given below to realize both type-1 and
type-2 multi-input-multi-output systems for ‘N’ outputs:

STEP [1]. Consider randomly generated training data sepa-
rately
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a. 1500 random samples have been generated for both
y1 and y2 separately as shown below in (8):∑2

i=1
r(yi) = a+ (b− a).∗rand(Q, 1) (8)

where, Q denotes the generation of random numbers
in the range (a, b) and ‘‘i’’ defines output.

STEP [2]. Define following information:
a. Number of hierarchical levels
b. Fuzzy logic units in every level
c. Number of clusters corresponds to required number

of rules for every fuzzy logic unit
STEP [3]. Grouping

a. Group common Input-Output samples common
across data samples for both the outputs

b. Segment uncommon data separately for each output
STEP [4]. For the first or lower level of hierarchical struc-

ture i.e., aggregated tree structure, all the real
input adheres to the first or the lower level of
hierarchical structure. This layer consists of a
fuzzy logic unit generated for all input samples
extracted in Step 3. The steps to generate fuzzy
logic unit are as follows:

a. Take input sample and map with desired output
b. Using MATLAB commands [10], the syntax to gen-

erate Fuzzy inference system is defined below:
i. Type1FIS = genfis3([Input], [Output],’FIS

Type’, ‘Number of Cluster’); Where –
1. [Input] = Input sample matrix
2. [Output] = Expected output matrix
3. ‘FIS Type’
4. ‘‘Number of Clusters’’ = Desired number of

rules for fuzzy logic unit
ii. If Type-2 Fuzzy is designed, use syntax:

Type2FIS= convertToType2(Type1FIS); where
‘Type1FIS’ is the type-1 fuzzy inference system
and ‘Type2FIS’ is type-2 fuzzy inference system
converted from type-1 inference system

iii. Evaluate output of fuzzy unit with ‘evalfis’ com-
mand and Store the values in a buffer

STEP [5]. For the next level(s) of hierarchical structure,
a. Take all the output from previous hierarchy levels and

consider them as input to current level
b. Create a group of segments of matrix and map each

segment with map with desired output
c. Using MATLAB commands, the syntax to generate

Fuzzy inference system is defined below:
i. Type1FIS = genfis3([Input], [Output], ‘FIS

Type’, ‘Number of Cluster’); Where –
1. [Input] = Input sample matrix
2. [Output] = Expected output matrix
3. ‘FIS Type’
4. ‘‘Number of Clusters’’ = Desired number of

rules for fuzzy logic unit

ii. If Type-2 Fuzzy is designed, use syntax:
Type2FIS= convertToType2(Type1FIS); where
‘Type1FIS’ is the type-1 fuzzy inference system
and ‘Type2FIS’ is type-2 fuzzy inference system
converted from type-1 inference system

iii. Evaluate output of fuzzy unit with ‘evalfis’ com-
mand and Store the values in a buffer

STEP [6]. For the last hierarchy level
a. Take all the output from previous hierarchy levels and

consider them as input to current level
b. Create a group of segments of matrix and map each

segment with map with desired output
c. Using MATLAB commands, the syntax to generate

Fuzzy inference system is defined below:
i. Type1FIS = genfis3([Input], [Output], ‘FIS

Type’, ‘Number of Cluster’); Where –
1. [Input] = Input sample matrix
2. [Output] = Expected output matrix
3. ‘FIS Type’
4. ‘‘Number of Clusters’’ = Desired number of

rules for fuzzy logic unit
ii. If Type-2 Fuzzy is designed, use syntax:

Type2FIS= convertToType2(Type1FIS); where
‘Type1FIS’ is the type-1 fuzzy inference system
and ‘Type2FIS’ is type-2 fuzzy inference system
converted from type-1 inference system

iii. Evaluate output of fuzzy unit with ‘evalfis’ com-
mand and Store the values in a buffer

STEP [7]. Repeat STEP [4] – STEP [6] for common data
samples

STEP [8]. Final output is the average of evaluated output at
last level of hierarchy at STEP [6] and output at
STEP [7].

In the above said methodology, three hierarchy levels are
used, and the number of fuzzy logic units considered for each
level is 2R, where R is the number of levels and R = 1 is
the top level. Higher value of R represents the lower level of
hierarchy.

The algorithm is illustrated with the help of the following
example below.

Two non-linear mathematical functions y1 and y2 have
been taken with a training set of R random generated sets,
where R is the number of samples. Equation (9) represents
y1 and y2 as:

y1 = x1x2 + x3x4
y2 = x1x2 + (x3 + x4) (9)

To convert in hierarchical system, the equation (9) above can
be further decomposed into parts as shown in (10):

y1 = c+ z1
y2 = c+ z2
c = x1x2
z1 = x3x4
z2 = x3 + x4 (10)
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where, ‘x1’, ‘x2’, ‘x3’, ‘x4’ represent four inputs; ‘c’ repre-
sents the common component or term between two outputs
y1 and y2. ‘z1’ and ‘z2’ are the subcomponents for output
y1 and y2 respectively. The relationship between zi and yi are
shown in equation (10).

Figure 10 shows the block diagram of a multi-input multi-
output systemwith four inputs (x1, x2, x3, x4) and two outputs
(y1 and y2). In the diagram, ‘c’ represents the fuzzy logic
unit, which is common across outputs y1 and y2. Whereas
z1 represents the subsystem of output y1 and z2 represents
the subsystem of output y2. The combination of ‘c’ and ‘z1’
gives final output ‘y1’ and the combination of ‘c’ and ‘z2’
gives final output ‘y2’.

FIGURE 10. Block diagram of 4 × 2 system.

Following all the above algorithm steps and mathematical
sequence, Table 6 shows the rule base between inputs and
outputs of a single fuzzy logic unit of hierarchical fuzzy
system, as mentioned in figure above. In this example, inputs
and outputs are categorized in three membership functions
each as: small (‘S’), medium (‘M’) and large (‘L’).

TABLE 6. Rule base.

Where, ‘Input 1’ and ‘Input 2’ are the inputs to each fuzzy
logic unit of every layer of a hierarchical fuzzy system. ‘Y1’
and ‘Y2’ are the two outputs of a hierarchical fuzzy system.

A. REDUCTION OF RULES
For the above said system with four inputs and two out-
puts, where each input and output have three membership

functions. To design the system using conventional fuzzy
requires a total number of (2∗34 = 162) rules for a
two-outputs system. However, to design the above system
using hierarchical fuzzy, requires the total of (2∗7∗32 + 9
= 135) rules for a two-outputs system. Where, the common
fuzzy logic unit between two outputs has nine rules.

B. SIMULINK MODEL
The Simulink model for the hierarchical system described in
equation (10) is given below, to aid the reader in implemen-
tation of hierarchical fuzzy systems for control applications.
Figure 11 shows the Simulink model with four inputs (x1,
x2, x3, x4) and two outputs (y1 and y2) using two-layers
hierarchical fuzzy logic.

FIGURE 11. Simulink model for two-layer 4 × 2 system.

A system has been generated using the common data sam-
ples across two outputs. For data samples other than common
data, hierarchical fuzzy approach has maintained separate
fuzzy units. This approach will provide a reduced rule base,
as the common fuzzy inference system has been used for
both outputs that have common input output relation. The
Simulink model has been designed to showcase the system
overview of multi-input multi-output systems. ‘Scope’ in the
diagram represents outputs: y1 and y2.
The steps to design 3-layer hierarchical fuzzy model using

Simulink have been described below as:

1. Random data generator block has been used to gen-
erate 1500 random data samples as per equation (9)
for 4 inputs (x1, x2, x3, x4) and 2 outputs (y1, y2)

2. Consider N-layer (where, N=3) aggregated hierarchical
tree structure with 2N−1, 2N−2, 2N−3 and so on with fuzzy
logic units at the first, second and third layer of hierarchy.
Assuming all the fuzzy logic units at the first layer have
[1×1] input-output system and [2×1] input-output system
at other layers.

3. Rules Generation for fuzzy logic unit: Using fuzzy c-mean
clustering, find desired number of clusters. Each cluster
represents the rule/relation between input and output.
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4. Fuzzy inference system generation: using clusters and
input-output data samples, use the ‘‘genfis3’’ command in
MATLAB to auto-generate a fuzzy inference system.

5. Filter the data samples in two parts. Input-Output data
samples. In other words, filter common and uncommon
datasets between outputs y1 and y2

6. Design of a fuzzy inference system. Generate a fuzzy
inference system using fuzzy c-mean clustering with
desired clusters using samples filtered in step 5. Evaluate
output using ‘‘evalfis’’ command

7. Final Outputs for (y1 and y2): Using centroid defuzzifi-
cation method, final output is the average of output from
following: Common and not-common fuzzy system

C. CLUSTERING
Figure 12 (a) shows the fuzzy clusters for lower level with
four center points. System has four fuzzy logic units and
with four inputs (x1, x2, x3, x4) respectively. For the lower
layer, one real input consumes one fuzzy logic unit and every
unit has one segregated output. Number of clusters will be
contrived to four points for every fuzzy logic unit.

Figure 12 (b) shows the fuzzy clusters for level-2 with
four center points. System has two fuzzy logic units and with
four outputs from previous levels as inputs. For level 2, two
outputs from the previous level are consumed by one fuzzy
logic unit and every unit has one segregated output that goes
to the next level. Figure 12 (c) shows the fuzzy clusters for
level 3 with defined center points for every fuzzy logic unit.
System has one fuzzy logic unit and with two outputs from
previous levels as inputs.

Similarly, the data has been extracted by filtering common
data from the datasets of y1 and y2 (assuming outputs are
common for the input combinations). Using common data,
a fuzzy logic unit with 4 inputs and 1 output has been gen-
erated as a common component. The objective of generating
a common component is to reduce the number of fuzzy logic
units and the rule bases, as this will reduce complexity. The
final output is the average between the output of the final
fuzzy logic unit and common component, as shown in the
Simulink block diagram.

D. SYNTHESIS USING XILINX ISE ENVIRONMENT
With the increasing use of FPGA in almost all the areas. The
hardware implementation of fuzzy systems has been a topic
of recent interests [16]. The implementation of hierarchical
fuzzy logic using FPGA would be a topic of future interest
by various authors.

In this paper, the Simulink environment has been used
to develop and validate models for the given approach. For
simulation in real-time, an FPGA environment has been con-
sidered using HDL language [15]. To the best of the authors’
knowledge, no one has presented the steps to synthesis using
Verilog HDL. In this paper, Verilog HDL has been consid-
ered. One of the major benefits of Verilog for the developer
is the ability to quickly create, simulate and verify a test
model.

FIGURE 12. Fuzzy clustering of various levels.

The steps below present the procedure used to auto-
generate Verilog code using the Simulink HDL coder and
simulate the same in Xilinx platform.
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The first step is to generate Verilog code using the Simulink
HDL coder. In the code generation settings, select Generate
HDL option as code style and select ‘‘Verilog’’ option as tar-
get code generation. After the settings have been completed,
compile the system and generate Verilog code. HDL Coder
does create a link to Xilinx ISE project and runs the selected
logic synthesis and place-and-route steps in generated code.

The second step is to simulate and synthesize in an FPGA
environment. The simulation of Verilog code has been done
via ISim simulator. ISE 14.1 is used to synthesize with Xilinx
ARTIX 7 XC7A100T as a target device with 4ns IO delay.
HDL design is synthesized where an abstract form of desired
circuit behavior is turned into a design implementation in
terms of logic gates. Netlists are generated by post synthesis.
The program maps the logical design to Xilinx. It performs
the DRC check on the design and it then maps directly to the
target Xilinx FPGA Device. The next step is to assign cells
to the specific locations within an FPGA device, called cell
placement where all the cells and resources are connected
with the step called Routing. After place and route is com-
pleted, a bit stream is created that configures FPGA when
downloaded into it, using the program iMPACT.

VII. VERIFICATION OF RESULT FOR MULTI INPUT MULTI
OUTPUT SYSTEM (MIMO)
Figure 13 shows the comparison [9] among three approaches.
Green shows outputs ‘y1’ and ‘y2’ from the mathematical
expression shown in equation (9), Red shows the fuzzy infer-
ence system output from conventional logic and Blue is the
fuzzy inference system output from hierarchical fuzzy logic.

Raw comparison represents the final result for y1 and
y2 using three approaches: mathematical expression as pre-
sented in equation (9), conventional fuzzy system and hierar-
chical fuzzy system. With raw comparison, it is observed that
results from hierarchical fuzzy systems are much closer to
results from mathematical expression. The expected results
will represent the results from the mathematical expression
presented in equation (9).

To compare the quality of the methodology presented in
this paper, two criteria have been used. These criteria have
been described below as:
1. The mean average percentage error defined as

MAPE =
1
L

(∑ |Ymeasured − Ydesired |
Ymeasured

)
∗ 100%

2. Zone Error – which counts the sample belongs to class

Class I =
|Ymeasured − Ydesired |

Ymeasured
≤ 5%

Class II = 5% <
|Ymeasured − Ydesired |

Ymeasured
≤ 10%

Class III =
|Ymeasured − Ydesired |

Ymeasured
> 10%

where, ‘L’ = length of samples, ‘Ymeasured’ = output
from model and ‘Ydesired = output from mathematical
expression.

FIGURE 13. Comparison between different approaches.

TABLE 7. Fuzzy models comparison.

Table 7 shows comparison between different approaches.
While comparing the qualities between conventional fuzzy

systems and hierarchical systems, it is clearly observed that
the number of rules required to design hierarchical systems is
less than conventional systems that reduces the complexity
of the overall system. The performance of a hierarchical
system is better than conventional systems as the majority of
error points of a hierarchical system lie in Class I category
whereas most of the error points of a conventional system lie
in between Class I and Class II. In other words, compared
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with a conventional system, the result of a hierarchical system
has less deviation or error percentage from results of mathe-
matical expression as in equation (9).

Table 8 shows the properties of all three approaches:
mathematical expression described by equation (9), conven-
tional fuzzy model and hierarchical fuzzy model. Table 8(a)
presents the correlation among these approaches to see which
one provides more accuracy. Similarly, Table 8(b) shows
the properties of given approaches. Six parameters have
been used to show properties: Standard deviation, variance,
median, mean, maximum and minimum.

TABLE 8. Properties of various approaches.

Where, ‘Expression’, ‘Conventional’ and ‘Hierarchy’ rep-
resents output ‘y1’ and ‘y2’ from mathematical equations,
conventional and hierarchical fuzzy systems, respectively.
‘SD’, ‘VAR’, and ‘MD’ represents Standard deviation, Vari-
ance, andMedian respectively. It is observed that hierarchical
fuzzy systems have higher accuracy and are much closer to
results from mathematical expression with the correlation
> 93%, whereas conventional fuzzy has correlation of 82%
approx. Where the expected result represents results from
mathematical expression presented in equation (9).

VIII. CONCLUSION
The large rule base, due to increase in inputs, becomes a
bottleneck for using conventional fuzzy systems in complex
real-life applications. To overcome these limitations, this
paper presents a methodology to design a hierarchical fuzzy
system. Themulti-input single-output system has been imple-
mented first and then the implementation has been extended
to multi-input multi-output systems. The aggregated hierar-
chical tree structure has been considered for implementation.
The algorithm can be used to design different hierarchical
structures. This algorithm supports design of both Type-1 and
Type-2 fuzzy logic systems. It is clearly demonstrated that
the multi-input multi output hierarchical fuzzy system can be
successfully designed by reducing the common sub-system
terms without losing accuracy of the system. The current

implementation has been done in theMATLAB and Simulink
environment. The fuzzy clustering has been used to find
desired clusters of input-output combinations. Several prop-
erties, such as standard deviation, variance, median, mean,
max and min have been compared. It has been shown that
the number of rules for a hierarchical fuzzy system has been
reduced compared to a conventional fuzzy system. The pro-
posed methodology will help researchers to use hierarchical
fuzzy logic for multi-input multi-output systems and big data
applications such as WSNs, IoTs etc.
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