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ABSTRACT Manufacturing organizations have been witnessing transformation in business strategy from
mass production to lean philosophy. Value Stream Mapping (VSM) is one of the primary analytical tools
for identifying waste and transforming the production environment into lean operational state. However,
traditional VSM lacks the capability to handle conflicting factors in the improvement scheme and to prioritize
multiple improvement initiatives. VSM enables only a static analysis of a system, and a static model does not
allow assessing how the system will be affected to various scenarios with different parameters in the future-
state map. Moreover, VSM optimization is a typical multiple-attribute decision-making (MADM) problem
that involves the evaluation of multiple performance metrics such as inventory levels, lead times and service
levels. Therefore, this paper proposes an improved VSMprocedure that incorporates simulation andMADM,
using grey Taguchi method, to overcome the limitation of standard VSM. Simulation introduces a dynamic
dimension to VSM, and grey Taguchi method prioritizes the scenarios with a minimum number of test series.
A lean implementation program is conducted in a footwear manufacturing company to validate the improved
VSM procedure. Two alternative future-state VSMs are proposed, each with nine different scenarios, and
the identified optimal solution realizes the reduction in defect rate, work-in-process inventory and lead time,
as well as the improvement in order fulfilment rate. The improved VSM procedure enables practitioners to
determine the optimal future-state VSM according to the preference of practitioners onmultiple performance
criteria.

INDEX TERMS Grey Taguchi method, lean production, multiple-attribute decision-making, simulation,
value stream mapping.

I. INTRODUCTION
Lean production, originated from the Toyota Production
System, has been receiving great attention from researchers
and practitioners since its introduction [1]. It is a system-
atic approach for identifying and eliminating waste through
continuous improvement in pursuit of perfection, using a
pull-control strategy derived from customer requirements [2].
Womack and Jones [3] defined five principles that character-
ize lean: specifying value, identifying the entire value stream,
making the product flow, letting the customer pull value
from the system, and continuously search for perfection.
Therefore, the analysis of the product value stream is always

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

implemented as the first step toward leanness, identifying
the areas where the improvement efforts should be concen-
trated [4]. Value Stream Mapping (VSM) is a visual tool
that facilitates the process of lean production system through
identifying value-added activities and eliminating wastes [5].
It can be described as ‘‘a graphical tool used to map the
as-is situation of the organization, to identify opportunities
for waste elimination, and to decide the improvements to
be implemented to eliminate the waste’’ [6]. The sources of
wastes identified by VSM include over production, waiting,
transportation, inappropriate processing, unnecessary inven-
tory, unnecessary motions, and defects [7]. Some of these
wastes are generated due to the incoordination between pro-
cesses, while others, especially defects in most cases, might
be associated with the improper parameter settings of some
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process [8]. Seven guidelines are to be followed based on the
concept of lean production to eliminate these wastes and con-
struct the future-state VSM, including ‘‘produce to your takt
time’’, ‘‘develop continuous flow wherever possible’’, ‘‘use
supermarkets to control production where continuous flow
does not extend upstream’’, ‘‘send the customer schedule to
only one production process’’, ‘‘level the production mix’’,
‘‘level the production volume’’, and ‘‘develop the ability to
make ‘every part every day’ (then every shift, then every hour,
or pallet or pitch) upstream of the pacemaker process’’ [9].
However, these guidelines mainly focus on the coordination
of the entire system and the interfaces between processes,
while little emphasis is laid on the optimization of a specific
working station. This leads to one of the deficiencies of VSM:

• It lacks the involvement of tools or guides aiming at
optimizing the parameter settings of individual working
stations, consequently, wastes generated by the inappro-
priate setting of working stations are ignored.

Multiple factors need to be considered according to the
guidelines [10], and different combinations of the factors
would result in different outcomes. For instance, guidelines
‘‘production mix levelling’’, ‘‘production volume levelling’’
and ‘‘every part every interval’’ promote batch size reduction
and facilitate the highest possible flow degree. However,
reduction of batch size is always accompanied by increase
of changeovers, and more frequent changeover may lead to
higher material or energy consumption, which is not in accor-
dance with the principle of lean [11]. Moreover, the imple-
mentation of these guidelines usually requires drastic changes
to the current setups. Some of the undertaken solutions may
be costly and time-consuming to implement or may not nec-
essarily lead to the expected results due to the unintended
consequences related to the complexity of the system under
observation [12]. Therefore, it is necessary to provide deci-
sion makers with visible evidence and quantifying potential
gains of committing these lean thinking concepts before real
implementation [13]. This generates another two major limi-
tations of VSM:

• It lacks the capability for a rapid development and evalu-
ation of multiple what-if analyses and potential benefits
that are required to prioritize different alternatives;

• Multiple improvement areas and their respective mul-
tiple improvement proposals would result in too many
possible combinations, making it complicated and time-
consuming to decide the optimal scenario.

This paper targets the development of an enhanced VSM
procedure that overcomes the above deficits. For this purpose,
VSM is integrated with simulation and multiple-attribute
decision-making (MADM) method to produce an efficient
identification of the optimal production parameter settings
and the optimal future-state scenario. Simulation dynamically
assesses feasibility and evaluates trade-offs in alternative
future-state scenarios, and MADM identifies the preeminent
combination of controllable variables. The MADM problem
is solved by grey Taguchi method that incorporates grey

relational analysis (GRA) into Taguchi method to transfer
multi-response problems into single-response problems.

The remainder of the article is organized as follows.
Section 2 reviews the previous studies relevant to the
proposed problem. Section 3 proposes the enhanced VSM
procedure. Empirical illustrations following the proposed
procedure are describes in Section 4. Finally, conclusions and
future research prospects are presented in Section 5.

II. LITERATURE REVIEW
A. VALUE STREAM MAPPING
As a practical guiding tool for lean implementation, VSMcre-
ates a pictorial representation and common language for the
production line [5]. Compared to other mapping techniques,
VSM has some specific features, making VSM important and
unique for lean manufacturing. For instance, VSM not only
manages the manufacturing processes but also optimizes the
whole system by creating a holistic view of it [14], [15].
VSM is a door-to-door demonstration for visualizing a pro-
duction process at the plant level rather the single-process
level and illustrating the flow of materials and information in
the entire supply chain rather than for separate manufacturing
plants [9]. Thus, it includes information related to production
times, as well as to inventory levels, and offers a reflection of
systemic vision maintaining local details of process by dia-
grammatically linking material-flow, information-flow and
timeline [16]. Moreover, by using operating parameters such
as takt time, which determines the production rate at which
each processing stage in the manufacturing system should
operate, VSM links product planning and demand forecasts to
production scheduling and flow-shop control. Through visu-
alized mapping, VSM successfully forms a blueprint for lean
implementation and can be integrated into various qualitative
and quantitative analyses-based tools to refine and redesign
strategic improvements [13].

Due to its effectiveness and advantages in promoting
lean manufacturing, VSM has stepwise expanded to a wide
range of industries since originated from automotive indus-
try [13], [17]–[19]. However, it is recognized in the appli-
cation that VSM lacks the capability to handle conflicting
factors in the improvement scheme and to prioritize multiple
improvement initiatives [20]. Therefore, it is difficult to draw
a final decision from different potential scenarios when solely
using VSM to guide a lean production system.

To overcome this drawback, Librelato et al. [20] pre-
sented a process improvement approach based on VSM
and Thinking Process of the Theory of Constraints (TP-
TOC), providing an integrated view between the losses in
the process and the prioritization of the steps for the elimi-
nation of such losses. The prioritization of waste elimination
solutions identified by VSM was also studied by Behnam,
Ayough and Mirghaderi [21] by the usage of analytical hier-
archy process (AHP) method. Mohanraj et al. [22] integrated
fuzzy quality function deployment (QFD) with VSM frame-
work to scientifically prioritize the improvement proposals.
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While techniques such as TP-TOC, AHP and fuzzy QFD
introduce scenario prioritization to VSM, they fail to over-
come the static nature of VSM, thus fail to provide quantifi-
able evidence in the evaluation ofmultiple scenarios [23]. The
static nature of VSM is one of the fundamental limitations
of the tool, making it uncapable on studying a dynamic
problem [24]. For example, predicting inventory levels in
the production line is usually impossible with just a map of
future state, because with a static model one cannot observe
how inventory levels will vary for what-if scenarios [25]. In
general, a future-state map needs to be complemented by a
tool with predictive ability to quantify the inventory levels,
lead times, machine utilization and other parameters for dif-
ferent future-state scenarios [26]. In addition, value stream
optimization often requires making dramatic changes to the
organization. Therefore, it is essential to evaluate the changes
suggested by VSM before implementing the improvement
initiatives. The above-mentioned complementary tools fail to
incorporate such hypothesis testing function to VSM [13].
A very promising add-on is simulation [25].

B. SIMULATION OPTIMIZATION
Simulation has been widely recognized as one of the best
and most suitable methodologies for problem solving in real-
word complex systems in order to choose correctly, under-
stand why, diagnose problems, explore possibilities, and find
optimal solutions [27]. A simulation model enables analysts
to model either an existing system or a system that has
not been built yet in real life, and moreover, to test the
system under different conditions [28]. Since a simulation
model is able to visualize material flows and times, it can
detect bottlenecks using waiting times and utilization [13].
Atieh et al. [13] introduced simulation as a complemen-
tary tool to VSM: simulation adds a dynamic dimension
to VSM, and helps in judging changes and evaluating
potential scenarios in value stream improvement schemes.
Schmidtke et al. [11] developed an enhanced VSM procedure
with simulation to assess feasibility and analyze trade-offs of
the proposed future-state map prior to implementation. Hel-
leno et al. [29] integratedVSMwith discrete-event simulation
to direct themanagement investment in the best option among
the available scenarios. The results showed the efficiency of
VSM and simulation integration as decision-making tools.
Simulation contributes substantially in supporting the reason-
ing and prioritizing the alternatives for improvement to derive
the future-state VSM [30]. A simulation-enhanced VSM is
no longer a snapshot; it is a moving picture that enables
ideas to be tested without interruptions [28]. The applicabil-
ity and benefits of incorporating simulation into VSM have
been studied and supported by various researchers [15], [25],
[29], [31]. However, though simulation can be used to eval-
uate the performance of a new design, it cannot provide the
optimal design. Moreover, a value stream optimization usu-
ally involves multiple Kaizen proposals, each with multiple
possible Kaizen schemes, resulting in numerous improve-
ment portfolios. It is laborious and time-consuming to

examine the full combination of multiple improvement
schemes. Such problem, however, is not fully considered in
the above studies discussing simulation-VSM integration.

C. GREY TAGUCHI METHOD
Taguchi method is extensively used in industrial design to
improve product quality through the robust design of products
and has been used to address problems in manufacturing [32].
It can systematically determine the effects of all process
parameters using only a small number of experiments and can
optimize the process parameters by combining the orthogonal
array and the quality loss function concept [33]. According
to Taguchi [34], a small fraction of setting factors produces
the most information from all possible combinations [35].
Taguchi method thus suggests a special design of orthogo-
nal arrays to study the effect of process parameters using
a small number of experiments [36]. For instance, if the
given problem has 4 independent variables and 4 levels for
each, the conventional design requires 256 experiments to
find out the optimum setting portfolio, while Taguchi DoE
requires only 16 experiments [37]. Thus, the Taguchi method
is a powerful approach to improve experimental efficiency
and has been used in various industries for designing prod-
ucts that combine reduced cost with enhanced quality [38].
Normally, more than one performance measure needs to be
examined in a VSM optimization, which might include pro-
duction lead time, work-in-process inventory, waiting time,
resources utilization, productivity, and order fulfil rate, etc.
[13], [23]. However, the conventional Taguchi method does
not provide a solution for multiple-response optimization by
default. Therefore, Taguchi method needs to be accompa-
nied by a MADM problem-solving procedure to prioritize
VSM improvement schemes [39]. GRA uses a grey relational
grade to evaluate multiple performance characteristics, and is
effective in the problem solving of MADM like value stream
improvement [13], [40]. Thus, GRA can be incorporated with
the Taguchi method, namely, grey Taguchi, to achieve a single
set of optimal level of different parameters for various prop-
erties (responses) simultaneously [41], and the grey Taguchi
method can be incorporated with VSM simulation to produce
an efficient assessment of the performance criteria and a
quick decision on the optimal scenario [42].

III. PROPOSED METHOD
The proposed enhanced VSM is shown in Figure 1. The first
step creates a current-state VSM based on the investigation
and field research to the case company. The second step iden-
tifies the processes that contribute to themost frequent quality
failures and their respective control factors, and accordingly,
determines the optimal parameter settings to the processes
using grey Taguchi method to minimize product defects. The
third step highlights the wastes in the current-state VSM,
identifies improvement opportunities, and creates the future-
state VSM proposals accordingly. In this research, two alter-
native future-sate VSMs with their respective control factors
are proposed at this stage. Next, develop simulation models
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FIGURE 1. The proposed procedure.

for future-sate VSMs and search their respective optimal
scenario using grey Taguchi method. The final step compares
the optimal schemes from two future-sate VSMs in terms of
leanness evaluation criteria, and determines the ideal future-
state VSM accordingly.

A. DEVELOPMENT OF CURRENT-STATE VSM
Current-state VSM graphically documents the processes in
the current manufacturing system. Related data, including
cycle time, changeover time, work-in-process (WIP) levels,
etc., is collected from the manufacturing executive system
(MES) and the field investigation of the case company. With
reference to current-state VSM, analysts identify and mea-
sure the wastes generated from incapacity, inefficiency, and
the unreliability of information, time, money, space, people,
machines, materials and manufacturing tools during the man-
agement of processing within an organization, and improve-
ment initiatives are created accordingly [6].

B. OPTIMAL PRODUCTION PARAMETER DESIGN USING
GREY TAGUCHI METHOD
The parameter settings of each process should be optimized
prior to optimizing the flow ofmaterial and information along
the value stream. Multiple factors need to be considered,
thus a MADM procedure should be followed. Grey Taguchi
method is applied to explore the cause-and-effect relationship
between process variables (process parameter settings) and
output variables (defect rates). The first step is to maximize
the signal-to-noise (S/N) ratio of each control factors, as a
greater value for S/N ratio suggests greater robustness of
system. The objective function of the S/N ratio is [43]:

Yij = −10 log (
1
r

∑r

k=1
v2ijk ), (1)

for the ‘‘smaller-the-better’’ responses; and

Yij = −10 log (
1
r

∑r

k=1

1

v2ijk
), (2)

for the ‘‘larger-the-better’’ responses; where Yij represents the
S/N ratio of ith experiment for jth response, vijk denotes the
result of ith experiment for jth response in kth replication, and
r is the number of replications.

Next, GRA is applied to synthesize the responses and
to achieve a single optimal combination of the parameters
with respect to multiple responses. The S/N ratio of each
response can be transformed into a normalized value using
the following equation:

Zij =
maxYij − Yij

maxYij −minYij
, (3)

for ‘‘smaller-the-better’’ criteria [44]; and

Zij =
Yij −minYij

maxYij −minYij
, (4)

for ‘‘larger-the-better’’ criteria [45]; where Zij is the nor-
malized S/N ratio of ith experiment for jth response [44],
[46], [47]. Note that maxYij = minYij suggests the out-
put variable (response) is insensitive to any input variable
(controllable factor). This might be caused by the absence
of influencing factors or the mistaken selection of response.
In such cases, the missing factors should be included in the
experiments, or the improper response should be excluded.
For instance, four controllable factors A, B, C, D are iden-
tified for response J1 and J2. If the S/N ratio of J1 remains
constant in all Taguchi experiments, then the first possible
reason may be the influencing factor of J1 is not identified.
In such case, additional factors should be included in the
experiments. The second possible reason may be J1 is not
the suitable output variable to determine the optimal input
variable, then response J1 should be excluded, or replaced by
other response.

Grey relational coefficient (GRC) gives the relationship
between the reference value and normalized value and is
calculated using:

GRC0ij =
1min + ρ1max

10ij + ρ1max
, (5)

where GRC0ij represents the grey coefficient of ith experi-
ment for jth response;10ij is the difference between the ideal
value of normalized S/N ratio (Z0j) and the normalized S/N
ratio (Zij);1min = min∀imin∀j10ij;1max = max∀imax∀j10ij;
ρ is the identification coefficient or distinguishing coefficient
that ranges between 0 and 1, and is set as 0.5 in this study [46].

Finally, the grey relational grade (GRG) is computed using:

GRG0i =
∑n

j=1
ωjGRC0ij, (6)

whereGRC0i represents the grey relational grade of ith exper-
iment, ωj represents the normalized non-negative weight
assigned to jth response, determined by the judgements of
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decision makers or the structure of the proposed prob-
lem [46], and

∑n
j=1 ωj equals to 1.

With reference to the result of GRG, the alternative scenar-
ios can be prioritized according to GRG in descending order,
and the ideal parameter settings can be determined.

C. DEVELOPMENT OF FUTURE-STATE VSM PROPOSALS
After the parameter settings of individual working station
have been optimized, the next step is to redesign value stream
to make a leaner production system. The paper proposes
two alternative future-state VSMs, both following principles
including:
• Takt time: takt time is used to synchronize the pace
of production with the pace of customer demand [9],
calculated by:

Takt time =
available working time per shift/day

customer demand per shift/day
, (7)

Then cycle time should be set according to the takt time:
cycle time is the actual time between completion of consec-
utive units of product or component, which should be less or
equal to the takt time. An ideal lean production system is to
have cycle time equal to takt time [48].
• Heijunka levelled scheduling: using levelled schedul-
ing (Heijunka) to construct a schedule that matches
actual production to takt time and cycle time [48], thus
to reduce the variability of the production rate, resulting
in a short lead time and a quick response to customer
demand [9].

• Supermarket and Kanban systems: Supermarket and
Kanban systems are to be applied to the production line
in order to replace WIP and prevent overproduction.

• CONWIP: Constant WIP (CONWIP) strategy is to be
implemented where Kanban does not perform well (for
instance, in uncertain or dynamic environment).

• Cell and FIFO: The layout of the plant is to be adjusted
to reorganize adjacent working stations into a single cell
where applicable, and replace the WIP buffer with FIFO
flow where applicable.

D. DEVELOPMENT OF SIMULATION MODELS FOR
FUTURE-STATE VSMS
Simulation experiments are to be conducted under differ-
ent scenarios of future-state VSM proposals. This study
adopts the simulation software Flexsim 2019 for the empirical
illustration. The process flow chart in Flexsim is used to
design discrete-event models with block diagram schemes.
Abstract objects called ‘‘tokens’’ transit between blocks
instantaneously, triggering at their arrival states transitions in
the model. The tokens in the simulation model denote two
different entities: firstly, they represent the Pitch, that is,
the consistent amount of production instruction released at
the pacemaker process and the basic unit of the production
schedule; secondly, they represent the customer request (of
a Pitch), suggesting the arrival of an order to produce a
new Pitch chosen from the order-backlog list. Blocks called

‘‘activities’’ define a transition in the state of the model or
a delay in the flow of the token. To verify and validate the
simulation model, the current-state VSM is modelled and
examined, and the outputs of the simulation are compared
with the performance of the actual system. The results show
the numerical outputs from the simulation are all within the
range of the actual data, suggesting the established simulation
model is valid as the experimental platform for the VSM
optimization experiments. Recording the WIP level, produc-
tion lead time and order fulfilment rate in each simulation
experiment as performance criteria to determine the optimal
improvement scheme in the final step.

E. OPTIMAL IMPROVEMENT SCENARIO DESIGN USING
GREY TAGUCHI METHOD
For each future-state VSM alternative, using the same proce-
dure as described in Section III. (B) to determine the optimal
value stream parameter settings that produce the best perfor-
mance in terms of WIP level, production lead time and order
fulfilment rate. Practitioners can set the acceptable levels of
performance criteria to exclude unsatisfactory scenarios and
rank the scenarios according to GRG in descending order.

F. DECISION ON FUTURE-STATE VSM
The decision on future-state VSM solutions can be made by
comparing the performance criteria of the alternatives. The
proposed simulation-integrated VSM evaluates the produc-
tion line using multiple criteria including WIP level, lead
time, order fulfillment rate, etc., whereas the conventional
VSM performs the assessment based only on the estimated
time-related factor. If additional criteria need to be included,
or some criteria need to be excluded, data can be easily
obtained by adding or removing the outputs from the simula-
tion in step D, and recalculating the GRG in step E accord-
ingly. Moreover, the comparison results between the ideal
future-state VSM and the current-state VSM can be given
using the performance criteria. This makes the optimized
value stream and lean system more visible, providing deci-
sion makers with more quantitative evidence of lean initia-
tive implementation. The optimized future-state VSM then
becomes the roadmap to make a lean system, which would
be achieved by implementing and fulfilling the proposed
strategy, as described in Section III. C.

IV. CASE ANALYSIS
A. DEVELOPMENT OF CURRENT-STATE VSM
In this study, an athletic shoe manufacturer named EA is
investigated. EA outsources the production of soles and
imports the raw materials for the uppers in the global mar-
ket. The uppers are manufactured and attached to the soles
in the manufacturing plant. The manufacturing procedure
mainly consists of fivemajor steps: (1) cutting, (2) pre-fitting,
(3) computer stitching, (4) manual stitching and (5) assembly.
Production begins in the cutting room. Here, rawmaterials for
the uppers are cut into prescribed shapes using instruments
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FIGURE 2. Current-state VSM.

that look like cookie cutters. After cutting is the process
of pre-fitting, in which some of the cut parts are skived
for better fit and some are embossed or embroidered with
details or logos. Next, the parts are brought to the computer
stitching department, where a machine guided by computer
vision joins the separate parts to the uppers. Parts that cannot
be automatically stitched are taken to a manual stitching
workshop. Here, uppers are transformed from a flat form to
a three-dimensional form. Finally, the nearly-finished uppers
circulate to the assembly line, where the uppers are placed and
stretched on foot-shaped moulds called ‘‘lasts’’ and attached
to the soles.

According to the historical data from the case company’s
MES database, the average customer demand for the inves-
tigated footwear model is 400 pairs per day, of mixed men’s
and women’s styles and mixed sizes. Men sizes range from
39 to 44, including half sizes, i.e., 39-39.5-40-40.5-41-41.5-
42-42.5-43-43.5-44, and the women sizes range from 35-40,
including half sizes, i.e., 35-35.5-36-36.5-37-37.5-38-38.5-
39-39.5-40 (Note that the 39, 39.5 and 40 sizes for man style
are different from those for woman style). The cycle time
for cutting, pre-fitting, computer stitching, manual stitching
and assembly is 20s, 30s, 320s, 300s, and 510s, respectively.
For each shoe, five different parts, including the upper body,
shoe tongue, heel counter, and other functional or decorative
pieces, need to be cut from the fabric or leather rolls. A cutting

TABLE 1. The controllable process factors and their levels.

machine can handle up to ten tiers of flat stock at a time and
a pre-fitting machine can process up to ten pieces at a time.
For cutting, pre-fitting and assembly, there is no change-over
time, and the computer stitching and manual stitching has the
same change-over time of 90s. The current-state VSM in the
manufacturing plant is shown in Figure 2. At the bottom of the
figure, the timeline from rawmaterial receipt till final product
shipping is depicted. Note that the valued-added times of
cutting and pre-fitting is five times of their respective cycle
times because the cutting and pre-fitting operation, respec-
tively, repeats five times to produce the five different parts for
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TABLE 2. Experimental results for inspection defect rate.

every single shoe. As a result, the total production lead time in
days (TPLT) is 4.5 days, whereas the total value-added time
in seconds (TVAT) is only 1,380s, leaving a great margin for
improvement. In addition to the low efficiency (measured by
the ratio of TVATwith respect to the TPLT, i.e., TVAT/TPLT)
of the production line, the company is now suffering from
high defect rate, as reported by the quality control manager.
As a consequence, the company has to keep a certain level of
finished products in their warehouse in case delay in delivery
aroused by too many defects. Since the shoes produced by the
company are in various series, colors, and sizes, the inventory
volume is very huge as the result of the large number of SKU.
Head of sales and marketing also pointed out that the frequent
customer complaints is a serious impediment to the further
expansion of the market.

B. OPTIMAL PRODUCTION PARAMETER DESIGN USING
GREY TAGUCHI METHOD
It is discovered from the inspection results that the most
frequent quality failures come from the stitching (including
both computer stitching and manual stitching) and assembly
stages. After carefully examining the product defects and

referring to the quality guidelines, four controllable factors
influencing stitching performance and two factors influenc-
ing assembly are identified, as illustrated in Table 1.

Accordingly, DoE-based Taguchi method is employed to
determine the optimal parameter settings. An L27(36) orthog-
onal array (OA) is applied consisting of six controllable
factors, with three levels of each factor [49]. Experiments
on the shop floor were performed at different parameter
settings. Two series of quality examination were conducted:
the first was visual inspection performed immediately after
assembly, checking the stitching, sewing and upper-sole
bonding; the second wasmachine inspection testing the wear-
ing durability of the manufacturing materials and stitching
method. The two different inspections reflect two dimensions
of customer satisfaction index: the first influences the rate of
order fulfilment and/or the level of safety stock; the second
serves as an important indicator of the after-sales satisfaction.
For each parameter setting, the sampling and testing exper-
iment was repeated three times to minimize the influence
of external uncontrollable factors. The experiment results
are illustrated in Table 2. Defect (V) refers to the result of
the visual inspection, and Defect (M) refers to result of the
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TABLE 3. S/N ratio for visual inspection (YV) and machine inspection (YM) results.

FIGURE 3. The effect of S/N ratio of defect rates.

machine inspection. Accordingly, the AVG (V) and
AVG (M) represents their average values, respectively.

Since the defect rate is ‘‘smaller-the-better’’ type of prop-
erty, according to (1), the S/N responses for visual inspec-
tion and machine inspection results are calculated and listed
in Table 3.

It is observed fromTable 3 that, for visual inspection result,
A has the greatest impact, followed by B, E and C whereas D
and F have insignificant influence. For machine inspection,
the greatest influence factor is also taken by A, followed
by B, D and C whereas F and E have the lowest impact.
According to the S/N ratios in Table 3, the effect of each factor
level on visual inspection and machine inspection results is
shown in Figure 3. Therefore, the levels of process parame-
ters/factors are decided as A2B2C1D3E2F2 to minimize the
defect rates in visual inspection, and A2B3C1D3E2F3 to min-
imize the defect rates in machine inspection.

It can be seen from the results that different optimization
goals (minimizing defects from visual checking and machine
inspection respectively) have different optimal parameter set-
tings. Therefore, GRA is applied to determine the optimal
setting scenario with respect to both responses. The results of
S/N ratio are transformed into normalized values using (3) for
‘‘smaller-the-better’’ response, and GRC for both responses
is calculated using (5), respectively. By assuming that equal
weight is assigned to visual and machine inspection, i.e.,
ω1 = ω2 = 0.5, GRG is computed using (6). The results of
other attribute weight settings are discussed at the end of this
section. The normalized value of S/N ratio, GRC and GRG
for visual and machine inspection are listed in Table 4.

It can be observed from Table 4 that the experiment 17 has
the highest GRG of 0.96. Accordingly, the optimum fac-
tors for minimum total defects from visual and machine
inspection is A2B3C1D2E2F3, i.e., double stitching lines,
4.2 stitches per cm (in average), 19/21D sewing thread, stitch-
ing margin of 1.4mm, sole pressing of 7s and 35p.
To illustrate the impacts of attribute weight settings, GRG

is calculated under different weight assignment of visual
inspection (ω1) and machine inspection (ω2), and experiment
with the highest GRG is identified, respectively. The results
are summarized in Table 5.
According to Table 5, experiment 17 remains the opti-

mal design unless the weight of visual inspection is over-
whelmingly higher than the weight of machine inspection,
i.e., (0.8, 0.2) and (0.9, 0.1) settings of (ω1, ω2). However,
such occasion is unadvisable and rarely chosen by decision
makers in practical operation, as wearing durability has a
significantly influence on the after-sale satisfaction of the
product, and consequently, on the long-term development of
the organization.

C. DEVELOPMENT OF FUTURE-STATE VSM PROPOSALS
After the process parameter settings related to the product
defects are optimized, the next step is to establish an ideal, or
optimized, VSM for the future implementation. Two alterna-
tive VSMs are proposed, both of which follow the guidelines
including takt time of 36s per shoe (calculated by (7): cus-
tomer demand is 400 pairs per day, and daily working time
is 8 hours), Heijunka levelled schedule, supermarket/Kanban
leading production and delivery, CONWIP, and cell layout
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TABLE 4. Normalized value of S/N ratio, GRC and GRG for visual and
machine inspection.

and FIFO where applicable, as listed in the previous section.
Differences between the two alternative solutions are as
follows.

1) FUTURE-STATE VSM1
The first solution of the future-state value stream
(see Figure 4) is supposed to change the layout of the plant to
move the cutting and the pre-fitting units closer to each other,
thus to realize the sharing of the operator between these two
units. Such modification is to be made after the productivity
of each production process and the takt time of the whole
value stream (36s per shoe) are compared. In particular, for
cutting and pre-fitting, the processing times of an upper are
100s and 150s, respectively. Because the concurrent output of
these two processes is ten items, the times required to produce
one item by these two processes are 10s and 15s, respec-
tively. For computer stitching, manual stitching and assembly,
the numbers of facilities working concurrently are 10, 10 and

TABLE 5. Sensitivity analysis for different attribute weights of visual
inspection (ω1) and machine inspection (ω2).

15 while the corresponding cycle times are 320s, 300s and
510s, respectively. Each machine can handle a single shoe at
a time. Therefore, the output paces of these three processes
are 32s, 30s and 34s per shoe, respectively. The cutting and
pre-fitting have the output paces, as measured by the time
taken to produce one shoe, of less than half of the takt time
of the line. Therefore, the proposal of shift working between
cutting and pre-fitting processes is generated, as indicated
by the arrow connecting cutting and pre-fitting in Figure 4.
In accordance with this hypothesis, the manufacturing line
is balanced under the condition that the cutting unit works
on half-shift but keeps its original productive rate. Hence,
it is necessary to place a buffer immediately after the cutting
unit to store the items released at a rate that is double that
of the line, and the shift frequency between cutting and pre-
fitting units is one of the key factors that influence WIP
and production lead time. Such modification reduces both
WIP volumes and labor density. A supermarket is placed
after the pre-fitting unit to inform the production Kanban
of the number of items to be produced. The upper limit of
the supermarket is another key factor to be optimized. When
it goes to the Computer Stitching, Manual Stitching and
Assembly Departments, the batch approach is replaced by the
flow approach. First-in-first-out (FIFO) rule is implemented
between the cells of two adjacent departments.

Accordingly, four controllable factors are identified as:
(1) shift frequency between cutting and pre-fitting units,
(2) upper limit of the finished product inventory, (3) upper
limit of the supermarket between pre-fitting and computer
stitching units, and (4) level scheduling frequency, to deter-
mine the optimal lean implementation rules in this future-
state solution. In Table 6, the four controllable factors are
donated as A, B, C and D, and the respective level of them
are donated as 1 to 3 (from low to high level).

2) FUTURE-STATE VSM2
In the second solution (see Figure 5), the hypothesis is to
change the overall layout of the plant to unify the cutting and
the pre-fitting units into a single cell and the computer and
manual stitching units into another to realize a ‘‘one-piece’’
flow within each working cell [50]. Consequently, the new
manufacturing line has a ‘‘cutting + pre-fitting’’ cell and
ten ‘‘computer + manual stitching’’ cells. The ‘‘cutting +
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FIGURE 4. Future-state VSM1.

TABLE 6. Control variables for future-state VSM1.

pre-fitting’’ cell is operated by one worker: the worker cuts
ten tiers of flat stock each time, and immediately takes the ten
pieces into pre-fitting without interruption, thus to eliminate
the WIP between the two processes and reduce unnecessary
transporting due to the isolation of the two departments as in
the original plant layout. Similarly, in the ‘‘computer+man-
ual stitching’’ cells, an upper is transferred from the computer
stitching directly to the manual stitching without temporary
storage. Each ‘‘computer+manual stitching’’ cell is operated
by two workers: the computer stitching operators finishes the
first shoe, passes it to the manual stitching worker, and starts
his work for the second shoe at the same time. Since the
computer and manual stitching has similar cycle time (320s
and 300s respectively), the two operators in the cell can work
in an almost synchronous rhythm without long-time waiting.
Afterwards, the stitched uppers are sent to the assembly line
following a FIFO lane.

Accordingly, the controllable factors in this scenario are:
(1) upper limit of the finished product inventory, (2) upper
limit of the supermarket between pre-fitting and computer
stitching units, and (3) level scheduling frequency. In Table 7,

TABLE 7. Control variables for future-state VSM2.

the three controllable factors are donated as A, B and C, and
the level of these factors are donated as 1 to 3 (from low to
high level).

D. DEVELOPMENT OF SIMULATION MODELS FOR
FUTURE-STATE VSMS
The proposed future-state VSM is modelled by Flexsim sim-
ulation software to test the performance of the production
line in different settings of the four controllable factors. (See
Appendix for the process flow simulation model.) The daily
working time and customer demand is supposed to be consis-
tent with the current state, i.e., 8 hours and 400 pairs per day,
with random distribution for man or woman style and normal
distribution for respective sizes. The present study adopts
WIP, lead time and order fulfilment rate as the performance
criteria. The case-study company aims to reduce WIP and
production lead time through implementing lean pull strategy,
but it is important to keep their order fulfilment rate.

E. OPTIMAL IMPROVEMENT SCENARIO DESIGN USING
GREY TAGUCHI METHOD
1) IDENTIFICATION OF OPTIMAL SCENARIO FOR VSM1
An L9 (34) Taguchi orthogonal array is applied to facilitate
searching for optimal scenario in VSM1 [8]. The experimen-
tal scenarios and simulation results are shown in Table 8.
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FIGURE 5. Future-state VSM2.

TABLE 8. The experimental scenarios and simulation results for
future-state VSM1.

WIP and lead time is ‘‘smaller-the-better’’ type of property,
the S/N for which is calculated using (1). Order fulfilment
is ‘‘larger-the-better’’ type of property, thus, the S/N ratio is
computed using (2). The results are listed in Table 9 (lead
time abbreviated to LT, and order fulfilment rate abbreviated
to OFR; the same applies to the tables following).

It is observed from Table 9 that, for WIP level, C has
the greatest impact, followed by D and A, whereas B has
the lowest significance. For lead time, the greatest influence
factor is also taken by C, followed by A and D, whereas
B has the lowest impact. For order fulfilment rate, the sig-
nificance ranking from high to low is C, D, A, B, same
with that for WIP. According to the S/N ratios in Table 9,
the effect of each factor level on WIP, lead time and order
fulfilment rate is shown in Figure 6. It can be seen from the
figure that A1B1C1D1 is the best design for the future-state
VSM1 to minimize WIP, A1B2C1D1 is the best design for the

future-state map to minimize lead time and A2B2C3D2 is
the best design for the future-state map to maximize order
fulfilment rate.

As different optimization goals (minimizing WIP, mini-
mizing lead time and maximizing order fulfilment rate) have
different optimal settings, GRA is applied to determine a
single optimal combination of the parameters with respect to
all responses. S/N ratio for WIP and lead time is transformed
into normalized values using (3) for ‘‘smaller-the-better’’
response, and S/N ratio for order fulfilment rate is normal-
ized according to (4) for ‘‘larger-the-better’’ response. The
GRC for all responses is calculated using (5), respectively.
By assuming that equal weight is assigned to WIP, lead time,
and order fulfilment rate, i.e., ω1 = ω2 = ω3 = 1/3, GRG is
computed using (6). The impact of attribute weight allocation
is discussed later in this section. Note that experiments with
order fulfilment rate lower than 90% are removed from the
decision options, as indicated by ‘‘/’’ in the GRG and Rank
column in Table 10, since it is agreed that customer service
level should be the prerequisite of all redevelopment plans.
The normalized values of S/N ratio, GRC and GRG for WIP,
lead time and order fulfilment rate are listed in Table 10.

It can be observed from Table 10 that the experiment 2
has the highest GRG of 0.83. Accordingly, the optimum
scenario for future-state VSM1 is A1B2C2D2, i.e., shifting
between cutting and pre-fitting units every hour; maximum
1600 shoes (800 pairs) of the finished product inventory;
maximum 200 shoes (actually separated parts for 200 shoes)
of the supermarket between pre-fitting and computer stitching
units; level scheduling every 2 hours.

To illustrate the impacts of attribute weight settings, GRG
is calculated under different weight assignment of WIP (ω1),
lead time (ω2), and order fulfilment rate (ω3), and experiment

204924 VOLUME 8, 2020



Q. Liu, H. Yang: Improved VSM to Prioritize Lean Optimization Scenarios Using Simulation and MADM Method

TABLE 9. S/N ratio for WIP (YWIP), LT (YLT) and OFR (YOFR) in future-state VSM1.

FIGURE 6. The effect of S/N ratio of WIP, lead time and order fulfilment rate in future-state VSM1.

TABLE 10. Normalized S/N ratio, GRC and GRG for WIP, LT and OFR in future-state VSM1.

TABLE 11. Sensitivity analysis for different attribute weights of WIP (ω1),
lead time (ω2), and order fulfilment rate (ω3).

with the highest GRG is identified, respectively. The results
are summarized in Table 11: the first line represents the equal
weight of ω1, ω2, and ω3; line 2-4 suggest WIP is given the
highest weight, (ω1 : ω2: ω3) = (3: 2: 1), (3: 1.5: 1.5), and
(3: 1: 2), respectively; line 5-7 suggests lead time is given the

TABLE 12. The experimental scenarios and simulation results for
future-state VSM2.

highest weight, (ω1 : ω2: ω3) = (1: 3: 2), (1.5: 3: 1.5), and
(2: 3: 1), respectively; line 8-10 suggests order fulfillment
rate is given the highest weight, (ω1 : ω2: ω3) = (1: 2: 3),
(1.5: 1.5: 3), and (2: 1: 3), respectively.

According to Table 11, experiment 1 is identified as the
optimal scenario for future-state VSM1 in the (1/2, 1/3, 1/6),
(1/2, 1/4, 1/4) and (1/3, 1/2, 1/6) settings of (ω1, ω2, ω3),
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TABLE 13. S/N ratio for WIP (YWIP), LT (YLT) and OFR (YOFR) in future-state VSM2.

TABLE 14. Normalized S/N ratio, GRC and GRG for WIP, LT and OFR in future-state VSM2.

FIGURE 7. The effect of S/N ratio of WIP, lead time and order fulfilment rate in future-state VSM2.

and experiment 2 is the optimal scenario in other weight
assignments. However, 1st experiment has been excluded
from the decision options as it fails to meet the minimum
order fulfilment rate (90%). Therefore, the optimum sce-
nario for future-state VSM1 remains 2nd experiment, i.e.,
A1B2C2D2, insensitive to the weight assignment ofWIP, lead
time, and order fulfilment rate.

2) IDENTIFICATION OF OPTIMAL SCENARIO FOR VSM2
An L9 (33) Taguchi orthogonal array is designed to identify
the optimal scenario [8]. The experimental scenarios and
simulation results are shown in Table 12.

The S/N ratio for WIP and lead time is calculated using
‘‘smaller-the-better’’ function (1), and the S/N ratio for order
fulfilment rate is calculated using ‘‘larger-the-better’’ func-
tion (6). The S/N responses are listed in Table 13.

It is observed fromTable 11 that the significance ranking of
controllable factors from high to low is B, C, A for both WIP
and lead time property, and C, B, A for order fulfilment rate.
According to the S/N ratios in Table 13, the effect of each
factor level on WIP, lead time and order fulfilment rate are

TABLE 15. Sensitivity analysis for different attribute weights of WIP (ω1),
lead time (ω2), and order fulfilment rate (ω3).

shown in Figure 7. It can be seen from the figure that A1B1C1
is the best design for the future-state map to minimize WIP,
A2B1C1 is the best design for the future-state VSM2 to
minimize lead time and A2B2C3 is the best design for the
future-state map to maximize order fulfilment rate.

In order to determine the optimal scenario with respect
to all response, S/N ratio for WIP and lead time is
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TABLE 16. Comparing results between current-state VSM and future-state VSM.

transformed into normalized values using (3) for ‘‘smaller-
the-better’’ response, and S/N ratio for order fulfilment rate is
normalized according to (4) for ‘‘larger-the-better’’ response.
The GRC for all responses is calculated using (5), respec-
tively. By assuming that equal weight is assigned toWIP, lead
time, and order fulfilment rate, i.e., ω1 = ω2 = ω3 = 1/3,
GRG is computed using (6). The impact of attribute weight
allocation is discussed later in this section. The results are
shown in Table 14. Also, experiments with order fulfilment
rate lower than 90% are removed from the decision options,
as indicated by ‘‘/’’ in the GRG and Rank column in the table.

It is observed from Table 14 that the experiment 4 has
the highest GRG of 0.86. Accordingly, the optimum scenario
for future-state VSM2 is A2B1C2, i.e., maximum 1600 shoes
(800 pairs) of the finished product inventory; maximum
100 shoes (actually separated parts for 100 shoes) of the
supermarket between pre-fitting and computer stitching units;
level scheduling every 2 hours.

To illustrate the impacts of attribute weight settings, GRG
is calculated under different weight assignment of WIP (ω1),
lead time (ω2), and order fulfilment rate (ω3), and experiment
with the highest GRG is identified, respectively. The results
are summarized in Table 15.

According to Table 15, experiment 1 is identified as the
optimal scenario for future-state VSM2 in the (1/2, 1/3, 1/6)
and (1/3, 1/2, 1/6) settings of (ω1, ω2, ω3), and experiment
4 is the optimal scenario in other weight assignments. How-
ever, 1st experiment has been excluded from the decision
options as it fails to meet the minimum order fulfilment
rate (90%). Therefore, the optimum scenario for future-state
VSM2 remains 4th experiment, i.e., A2B1C2, insensitive to
the weight assignment ofWIP, lead time, and order fulfilment
rate.

F. DECISION ON FUTURE-STATE VSM
According to the above analysis, the future-state VSM1 has
its best performance, measured by WIP, lead time and order
fulfilment rate, in experiment 2, with 277 WIP level, 12470s
lead time per shoe, and 97% order fulfilment rate; future-
state VSM2 has the ideal performance in experiment 4, with
71 WIP level, 2648s lead time per shoe, and 98% order
fulfilment rate. The result indicates that the second solution
is superior to the first in terms of all performance criteria,
thus is determined to be the optimal improvement scheme.
An additional point needs to mention is that the experiment
4 in the future-state VSM2 performs a 98% order fulfilment
rate, while the experiment 7 which ranks second in the overall

performance has the order fulfilment rate of 100%. Therefore,
if order fulfilment is strictly required, the company can adopt
the property settings in the 7th experiment of future-state
VSM2, with 197 WIP level, 6816s lead time per shoe, and
100% order fulfilment rate (still superior to those of any
experiment of future-state VSM1). The comparing results
between the current-state VSM and the proposed future-state
VSM are highlighted using three performance measurements
and summarized in Table 16.

V. CONCLUSION
This article proposes an enhanced VSM procedure that inte-
grates VSM with simulation and grey Taguchi method to
achieve the prioritization of lean optimization scenarios. The
improved VSM overcomes the weakness of traditional VSM
by visualizing the future-state plans in the simulation model
and prioritizing these plans using grey Taguchi method.
The implementation in a footwear manufacturing company
validates the improved VSM procedure, and the identified
optimal future-state production line improves performance
in terms of defect rate, WIP, lead time and order fulfilment
rate in compared with the current state. From the analysis,
the integration of VSM with simulation and grey Taguchi
method introduces the following benefits:
• incorporating simulation into VSM helps quantify WIP
levels, lead times, order fulfilment rate and other param-
eters in different future-state scenarios;

• grey Taguchi method helps determine the optimal
parameter settings in minimizing defects and provides
the ranking list of multiple future-state scenarios to aid
optimal future-state VSM decision;

• the decision on the optimal future-state VSM can vary
according to the specific requirement of the practitioner,
for instance, the lower limit of the order fulfilment rate,
or different weights for different performance criteria,
etc.;

• the comparison and assessment is not limited to multiple
scenarios in a single future-state VSM; it can extend
to prioritization and decision from multiple future-state
VSMs.

Future research can extend theVSM to a supply chain view,
possibly encompassing supplier and/or customer considera-
tions. Further, the demand variation could be taken into con-
sideration and the extended VSM with bullwhip effect in the
value stream might be an interesting topic to be investigated.

APPENDIX
See Figures 8–10.
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FIGURE 8. Simulation model for future-state VSM: the overall process flow.

FIGURE 9. Simulation model: cutting and pre-fitting processes in future-state VSM1 (a) and VSM2 (b).
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FIGURE 10. Simulation model: computer and manual stitching processes in future-state VSM1 (a) and VSM2 (b).
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