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ABSTRACT This paper investigates the receiver design for probabilistic constellation shaping signaling
over inter-symbol interference channel. The key component performing the constellation shaping is an
adjustable distribution matcher, and the probabilistic shaping system is capable to adapt to variable data
rates by adjusting the distribution match rate rather than the modulation or coding mode. In this paper,
we resort to distinct techniques to derive two iterative receivers operating in time domain. Shaped-BCJR is a
trellis-based solution where forward/backward algorithm together with turbo iteration is used to compute the
posteriori probability in which the nonuniform a priori symbol probability initializes the calculation. Another
receiver is based on linear filtering where expectation propagation provides a Gaussian approximation
of the posteriori probability of each symbol. This receiver structure is represented by a factor graph and
we detail the derivation of messages exchanging between adjacent nodes. The Bayesian equalization in
each EP iteration brings unacceptable computational burden. An efficient block-wise matrix inversion
strategy is proposed to tackle this problem, significantly reducing the computational complexity with little
performance loss. Simulation results show that the proposed algorithms remarkably outperform LMMSE
solutions and traditional EP based algorithms. Proposedmatrix inversion strategy can also be used to improve
the performance of other filter-type solutions.

INDEX TERMS Probabilistic constellation shaping, distribution match, BCJR, decision feedback equaliza-
tion, expectation propagation.

I. INTRODUCTION
High-order modulation and flexible channel coding scheme
play important roles in optimizing the spectral efficiency (SE)
in wired and wireless communication systems. To promote
the SE, modulation formats should have a Gaussian-like
shape [1]. Huffman code based matcher is proposed in [2]
to achieve this goal, however, the codebook must be pregen-
erated and stored offline. Realtime solution is proposed in
[3] where arithmetic coding is used to calculate the codebook
online. Recently, Constant CompositionDistributionMatcher
(CCDM) [4] is proposed to map uniformly distributed data
bits to non-uniform amplitudes with a desired distribution.
By properly choosing the distribution, shaping gain predicted
in theory can be achieved by a practical scheme with a low
complexity. Probabilistic Constellation Shaping (PCS) is a
multilayer code modulation (CM) scheme implemented by
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combining DM with a systematic binary low-density parity-
check (LDPC) code [5]. This system has shown an advantage
of flexibility in terms of transmission rate even though fixed
forward error correction (FEC) code, modulation format and
bandwidth are used. Latest works on optimizing the distribu-
tion and practical implements can be found in [6] and [7].

We show the comparison of SE between non-equiprobable
shaping QAM, conventional equiprobable shaping QAM and
the Shannon limit in Fig. 1. Both CM schemes use LDPC
code as FEC and the operating points target at where the
frame error rate (FER) is no more than 10−2. The PCS
scheme uses only two CM modes, namely, 16-QAM with
a rate 3/4 code and 64-QAM with a rate 4/5 code. How-
ever, equiprobable constellation scheme uses up to 8 modes,
i.e., combining {4, 16, 64}-QAMwith rate {3/5, 2/3, 3/4, 4/5,
5/6, 9/10} codes. As shown in the figure, the gap between
the operating points of equiprobable scheme and the AWGN
channel capacity varies along different SNRs. Two factors
contribute to this gap: one is that LDPC code has a finite
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FIGURE 1. Spectral efficiency comparison between probabilistic
constellation shaped QAM, conventional equiprobable constellation
shaped QAM and the Shannon limit.

length (coding gap), another is due to the equiprobable con-
stellation shape (shaping gap) [5]. To provide a finer gran-
ularity and narrow the coding and shaping gap, it needs to
increase the number of code rates and modulation formats.
Rate-compatible codes are suggested in [8] and [9], however,
the system complexity also increases to support a large num-
ber of modes. In this work, another approach is adopted, and
proposed scheme works with a coarse CM granularity where
only one code rate is assigned to a modulation format, e.g.,
16-QAM only works with a rate 3/4 code. Compared with the
non-shaped scheme, it provides a dense ladder-like shaping
gain.

Faster-Than-Nyquist (FTN) is another solution to
improve the SE which has attracted great attentions recent
years [10]–[13]. FTNwas introduced byMazao in 1970s [14],
where the symbols are transmitted in a rate faster than the
Nyquist which increases the capacity and introduces the
intentional inter-symbol interference (ISI) at the same time.
In [11], authors compare the frequency-domain equalization
(FDE) and time-domain equalization (TDE) for FTN signal-
ing detection. Simulation results show that TDE outperforms
FDE in terms of bit error rate, especially for a low packing
factor, while FDE is attractive for its lower computational
complexity. In [12], the channel estimation and data detection
in doubly-selective channel are jointly designed through FD
message-passing. The algorithm is then refined by mitigating
the impact of colored noise and non-Gaussian symbol to
improve the performance. PCS and FTN signal improve
the spectral efficiency from different aspects. FTN signal
increases the rate by narrowing the symbol interval while
PCS signal through high-order modulation. FTN gets higher
information rate than Nyquist case mainly due to the benefit
of using the excess pulse bandwidth, however, pulse shaping
is beyond our scope. Because the average information per
symbol of PCS is less the equiprobable scheme, PCS can be
viewed as ‘‘Beneath-the-Nyquist’’ in a sense.

Communication systems suffer from ISI provoked by the
dispersive nature of wide-band channel. For a complex com-
munication system, a reliable receiver is needed to main-
tain robust transmission in ISI channel. Soft or probabilistic
channel equalization is a technique to mitigate the ISI [15].
Inspired by turbo code, iterative processing schemes are
extended to joint equalizing and decoding via soft-input
soft-output messages where a priori information provided
by the channel encoder is used to reduce detection errors.
The optimal detector is based on the maximum a posteriori
(MAP) criterion which can operate near the channel capacity
with properly designed coding and detecting scheme [16].
Assuming a perfect knowledge on channel impulse response
(CIR), BCJR algorithm [17] works on a trellis network to
compute the posteriori probability. But for a channel with
long memory or a large signal alphabet, the operational com-
plexity becomes intractable. This motivates the invention of
low-complexity detection algorithms, e.g., linear mini-mum
mean square error (LMMSE) detection algorithm, in which
the discrete-value symbols are directlymapped to exponential
variables [18].

Recent years, expectation propagation (EP) has been pro-
posed as a general framework for approximate variational
inference through moment matching [19]. Message pass-
ing algorithm is a technique solving the MAP problem in
the cascade system. Firstly, the jointly distribution of data
bits, symbols, channel taps and noise samples are factor-
ized into local functions. After formulating the system factor
graph, the factor nodes exchange messages with their neigh-
bors obeying the framework of EP-based message passing
rule. Specifically, the codeword log-likelihood ratio (LLR)
are exchanged between the channel decoder and demap-
per, while the extrinsic messages are exchanged between
demapper and channel equalizer [13], [20], [21]. EP-based
iterative receivers have shown their advantages over con-
ventional turbo-LMMSE schemes in channel decoding, user
detection, channel estimation and interference cancellation in
terms of error performance, achievable rate and convergence
speed [22]–[25].

The main contributions of this paper are summarized in the
following:

• A trellis-based approach for PCS system is developed,
applying both forward/backward algorithm and turbo
equalization to perform detecting and decoding in an
iterative way.

• A filter-type approach is proposed. Based on the system
factor graph, we show how the EP could operate in the
soft decision feedback equalization (DFE) in multipath
channel.

• To reduce the matrix inversion cost, a computation
reduced scheme capitalizing on block-wise matrix fac-
torization is proposed for Bayesian equalization.

In our work, PCS reaps the large shaping gain and achieves
a remarkable degree of flexibility with respect to the trans-
mission rate. Both trellis-based and filter-type algorithms are
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performed in PCS signaling to attain reliable receivers in ISI
channel. To the best of our knowledge, no other implemen-
tation of iterative receiver for PCS in ISI channel has been
reported in literatures so far.

The paper is organized as follows. We first describe the
system model to show how the PCS transmitter works in
Section II. Inspired by the classical BCJR algorithm, section
III is devoted to develop a new turbo receiver where the non-
uniform priors are taken into consideration. In Section IV
we apply the EP framework to derive the passing messages
along the system factor graph. A novel matrix inversion
strategy is proposed in Section V to reduce the computational
complexity of equalization. Several simulations are included
in Section VI to compare the performance between different
receivers. Finally, this paper ends with conclusions.

Through the paper, bold lowercase letters are used for
vectors, e.g., u is a T×1 vector where ut is its tth entries
where t = 1, . . . ,T . Capital bold letters denote matrices,
e.g., an M × N matrix H has M rows and N columns. I is
the identity matrix and 0 is all zeros matrix. E[·] and V[·]
return the expectation and variance value. The probability of
x at a is p(x = a) and the probability density function (PDF)
is denoted as p(x). CN (µ, σ 2) represents the circularly-
symmetric complex Gaussian distribution of mean µ and
variance σ 2.

II. PRELIMINARIES
A. DISTRIBUTION MATCHING
The CCDM transforms uniformly distributed data bits u =
[u0, u1, . . . , uT−1] to amplitudes a= [a0, a1, . . . , aN−1] with
the same empirical distribution

P (Ai) = nc (Ai)/N , where Ai ∈ A. (1)

The output set is of the equal distance amplitudes A =

{1, 3, . . . , 2m− 1} and function nc(·) counts the occurrences
of its input in a. TheDM rate is defined asRDM = T /N . At the
receiver, it also needs to know the distribution to achieve the
best performance [26].

B. PROBABILISTIC CONSTELLATION SHAPING
The distribution of constellations approaching the channel
capacity is symmetric around zero. Therefore, the sign bits
should be equiprobable distributed, and the labeling of the
sign bits C1 is stochastically independent of the following
amplitude bits C2...Cm, where

PC (c)︸ ︷︷ ︸
codeword

= PC1 (c1)︸ ︷︷ ︸
sign

PC2...Cm (c2 . . . cm)︸ ︷︷ ︸
amplitude

. (2)

From [27], parity bits output LDPC encoder preserves
approximately uniform distribution even if the input bits are
non-uniformly distributed. For PCS, sign bits can be gen-
erated by copying parity bits and appending some data bits
if needed. Amplitudes are labelled by the binary reflected
gray code (BRGC) ASK in real and imaginary dimension,
and the transmitted symbol is formed by mapping two real

ASK symbols to one complex QAM symbol. For instance,
the PCS-16QAM sign label function β(·) and the amplitude
label function β(·) are defined as{

β (−1) = 0
β (1) = 1

and

{
β (1) = 0
β (3) = 1.

(3)

Their inverse labelling functions are defined as β−1(·) and
β−1(·), respectively. In Fig. 2 we show the visualization of
the probability distribution of PCS-16QAM constellations
and the height of each bar indicates the probability of the
constellation.

FIGURE 2. Graphical illustration of the probability distribution for
PCS-16QAM.

The distribution becomes more ‘‘shaped’’ if the probability
of constellations with lower energy increase and thereby
decreasing the whole entropy.

FIGURE 3. Bit-level assignment and interleaving scheme.

C. BIT-LEVEL INTERLEAVING
Since bit levels have different probabilities, interleaving
should be implemented by employing several interleavers that
independently scramble bits on row basis while the result-
ing binary frames are mapped to symbols column-wisely.
As shown in Fig. 3, the random interleaving scheme operates
on two bit levels where 0 and 1 are of different probabilities in
each level. Similar scheme can also be found in bit assignment
in block-fading channels [28].

D. MULTIPATH CHANNEL
We consider a single user, single carrier and single-input
single-output (SISO) transmission scenario. The multipath
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channel is modelled as a base-band symbol-space linear filter
with L taps:

h = [hL−1, hL−2, . . . , h0] (4)

in which the pulse shaping is also accounted for, and

yk = vk + wk =
L−1∑
l=0

hlxk−l + wk (5)

where k is the time index and vk is the noiseless channel
output. The signal going through the ISI channel is affected
by the thermal noise wk ∼ CN (0, σ 2

w). The transmission can
be written in a matrix form:

y = Hx+ w (6)

where H is a (K + L − 1) × (K + 2L − 2) matrix whose
k th row is [0k−1, h, 0K+L−1−k ]. For the sake of simplicity,
the receiver has a perfect knowledge on channel state infor-
mation. We also assume ideal time and frequency synchro-
nization, and the inter-block inference is ignored.

FIGURE 4. Transmitter of the PCS system. Interleaver is omitted for the
sake of simplicity.

The diagram of the transmitter of the PCS system is shown
in Fig. 4. The dashed lines are needed if there are not enough
parity bits, e.g., when the code rate is less than 1/2 for
16QAM or 2/3 for 64QAM. The function Mod. receives
amplitudes and signs to form QAM symbols. A significant
feature of this structure is that variable data rates are com-
patible through adjusting the DM rate while the distribution
imposed by DM is still preserved at the output.

III. SHAPED-BCJR RECEIVER DESIGN
A. OPTIMAL DETECTION
The optimal receiver computed the estimation ût by minimiz-
ing the bit error probability, which is equivalent to

ût = argmax
u∈{0,1}

p (ut = u |y ) . (7)

The posteriori probability p(ut = u|y) can be obtained
by marg-inalizing over variables in the sequential posteriori
probability p(u|y) as

p (ut = u |y ) =
∑

u∈{0,1}K ,ut=u

p (u |y )

=

∑
u∈{0,1}K ,ut=u

p (y |u ) p (u)/p (y). (8)

Since codewords and binary sources are matched one-by-one,
it is very convenient to work with codeword LLR than the bits
probability. LLR is defined as

L (ck |y ) = ln
p (ck = 0 |y )
p (ck = 1 |y )

. (9)

Then the decoding rule can be equivalently written as

ck =

{
0, L (ck |y ) ≥ 0
1, L (ck |y ) < 0.

(10)

Interleaving enables the independence of code-word bits ck ,
which yields

p (c) =
∏K−1

k=0
p (ck). (11)

Then the posteriori probability can be further decomposed
into extrinsic LLR and a prior LLR as

L (ck |y ) = ln

∑
a:ck=0

p (y |c )
K−1∏
n=0

p (cn)

∑
a:ck=1

p (y |c )
K−1∏
n=0

p (cn)

= ln

∑
a:ck=0

p (y |a )
K−1∏
n=0\k

p (cn)

∑
a:ck=1

p (y |a )
K−1∏
n=0\k

p (cn)︸ ︷︷ ︸
Lext(ck |y )

+ ln
p (ck = 0)
p (ck = 1)

︸ ︷︷ ︸
La(ck )

(12)

where extrinsic LLRLext(ck | y) represents the information on
ck from received samples y and cn for all n 6= k , and a priori
LLR La(ck ) represents the available a priori information on
ck .

FIGURE 5. Three receiver structures: a) optimal receiver, b) Separated
equalization and decoding (left: hard decision, right: soft decision), c)
Turbo receiver.

B. SHAPED-BCJR
Optimal detection has an intractable computational complex-
ity of order O(2K ). A general approach to reduce that cost
is separating the detection problem into two subproblems:
equalizing and decoding. Three different structures are shown
in Fig. 5, in which the components communicate with their
neighbors using either hard estimates x̂, ĉ, â and û from
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their alphabets or corresponding soft estimates s(x̂), s(c), s(a)
and s(û), respectively. When considering the subproblem of
equalization, MAP algorithm estimates symbol xk from its
alphabets 4 as follows

x̂k = argmax
x∈X

p (xk = x| y) . (13)

This can be efficiently processed using the BCJR algorithm
when the ISI channel has a trellis structure with a sufficiently
small number of states.

Consider the Proakis-B channel [29] which has an impulse
response length of L + 1 = 3, and the tapped delay line
contains L = 2 memories. Corresponding to the possible
content of the channel memory, the channel trellis has totally
4L states in each dimension of 16QAM alphabets. We denote
S = {r1, r2, . . . , r4L} the set of all the possible states, and the
state of the channel is a random variable from the set sk ∈ S
at each time instance. Given current state sk , the next state
sk+1 only lies in four possible states depending on the input
+3, +1, −1 or −3 fed into the channel. Therefore, the state
evolution can be depicted in a trellis form as shown in Fig. 6.
Each path across the trellis corresponds to the sequence of
input symbols, and any branch of the trellis can be fully
characterized by a four-element tuple (i, j, xi,j, vi,j), where
index pair (i, j) indicates the valid branch. For the trellis
defined in Fig. 6, the set of index pair is

I = {(0, 0), (0, 4), (0, 8), (0, 12), (1, 0), (1, 4),
. . . , (15, 15)}, (14)

where xi,j denotes the channel input when the state transforms
from ri to rj, and vi,j is the corresponding noise-free channel
output. This trellis representation will then be used to com-
pute the posteriori probability p(xk |y).

FIGURE 6. Trellis for Proakis-B channel and 16QAM modulation format.

Random variable xk is assumed to be independently dis-
tributed, so p(x) can be fully factorized into

∏K−1
k=0 p(xk ).

Then p(xk |y) can be computed efficiently using the for-
ward/backward algorithm [25] along the paths contained in
the branches. The computation is based on the decomposition
of the joint probability p(sk , sk+1, y) as

p (sk , sk+1, y) = p (y) p (sk , sk+1|y) . (15)

Sequence y can be separated into casual and non-causal
samples as

p (sk , sk+1, y)

= p (sk , sk+1, y0, . . . , yk−1, yk , yk+1, . . . , yK−1) . (16)

Applying the joint probability decomposition chain rule
p(α, β) = p(α) × p(β|α), p(sk , sk+1, y) can be further
decomposed into

p (sk , y1, . . . , yk−1)︸ ︷︷ ︸
Fk (sk )

p (sk+1, yk |sk)︸ ︷︷ ︸
Rk(sk ,sk+1)

p (yk+1, . . . , yK |sk+1)︸ ︷︷ ︸
Bk+1(sk+1)

.

(17)

The terms Fk (sk ) and Bk+1(sk+1) can be computed via the
forward/backward recursion:

Fk (s) =
∑
s′∈S

Fk−1
(
s′
)
Rk−1

(
s′, s

)
Bk (s) =

∑
s′∈S

Bk+1
(
s′
)
Rk

(
s, s′

) (18)

with F0(s) = p(s = s0), which corresponds to the shaped
distribution. This initial state is different from the classical
BCJR algorithm. BK (s) is initialized as 1 for all s ∈ S. The
transition probabilityRk (ri, rj) can be further decomposed as

Rk
(
ri, rj

)
= p (sk+1|sk) p (yk |sk+1, sk) (19)

where the value of p(sk+1|sk ) is governed by channel input
xi,j which is non-uniformly distributed, and p(yk |vk = vi,j)
depends on the corresponding noiseless channel output vi,j.
The transition probability Rk (ri, rj) is zero if the its index is
not in I, i.e.,

Rk
(
ri, rj

)
=

{
p
(
xk = xi,j

)
p
(
yk |vk = vi,j

)
(i, j) ∈ I

0 (i, j) /∈ I.
(20)

Since we have yk = vk + nk , from the noise distribution,
p(yk |vk = vi,j) is given by

p (yk |vk) = exp(− |yk − vk |2/σ 2)/
√
πσ 2. (21)

A distinct difference of shaped-BCJR is that the symbol
probability is imposed by the DM rather than uniformly
distributed. After above preparations, the posteriori proba-
bility p(xk = x|y) can be obtained by margining the joint
probability p(sk , sk+1|y) over all the possible branches that
correspond to the channel input where xk = x as

P (xk = x |y ) =
∑
xk=x

P
(
sk = ri, sk+1 = rj |y

)
. (22)

Then from (15) and (22), we have the conditional LLR of the
bit ck as

L (ck |y ) = ln

∑
xi,j:ck=0

Fk (ri)Rk
(
ri, rj

)
Bk+1

(
rj
)

∑
xi,j:ck=1

Fk (ri)Rk
(
ri, rj

)
Bk+1

(
rj
) . (23)

Finally, the codeword estimates ĉk can be recovered from
L(ck |y).
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C. TURBO EQUALIZATION
In the shaped-BCJR based symbol detection algorithm, a pri-
ori knowledge on the probability of each symbol along the
trellis is initialized by the DM empirical distribution. The
forward/backward evolution does not have extra information
to calculate Eq. (15) but solely relies on the observations.
Commonly, the performance can be improved if a priori
information is available. It is natural to feed the information
provided by the encoder as the priori information and the
decoder can also uses the posteriori probability provided by
the equalizer to improve performance. This is the main moti-
vation of turbo equalization. However, feeding back L(ck |y)
contains La(ck ), which is a direct positive feedback. In order
to create feedback that is not too strong and avoid too fast
convergency, extrinsic information is usually more practical.
Therefore, only extrinsic information is fed back both in
equalization and decoding in Fig. 5. Note that equalizing and
encoding may introduce extra correlation between adjacent
entries, interleaving helps to suppress the correlation between
neighbors.

The major drawback of this trellis-based algorithm is that
its computational complexity grows exponentially with the
number of stored trellis states. It will become intractable for
high order modulations or multiple channel taps. So, filter-
type approaches are more preferred as high order modulation
is concerned in PCS system.

IV. EP-BASED DECISION FEEDBACK RECEIVER DESIGN
This section focuses on the design of a filter-type receiver
that approximates the posteriori probabilities using EP-based
message passing algorithm along the system factor graph.

A. EXPECTATION PROPAGATION FRAMEWORK
EP can be viewed as an extension of loopy belief propagation
where variable nodes (VNs) are assumed to be lie in the expo-
nential distribution families [31]. The messages exchanged
between VNs and factor nodes (FNs) can be characterized by
brief distributions. This enables approximating the posteriori
PDF p(c|y) in a fully-factorized iterative way. The basic rule
of updating the massages between FN F and VN v at its ith

entry is as follows
mv→F (vi) =

∏
G6=F

mG→v (vi)

mF→v (vi) = ProjQvi [qF (vi)]/mv→F (vi)
(24)

where ProjQvi (·) is the well-known Kullback-Leibler projec-
tion to the target probability distributionQvi . The belief qF(vi)
is an approximation of the marginal of the true posteriori
p(vi), which can be obtained by combining the factors on FN
F with messages from neighbor VNs

qF (vi) =
∑
v\vi

fF (v)
∏
vi

mv→F (vi) (25)

where v\vi denotes the set of VNs without vi. This projec-
tion to exponential families is the moment matching, which
significantly simplifies the messages calculation [19].

Symbol VNs are assumed to be multivariate circularly
symmetric Gaussian distributed with diagonal covariance
matrices. Interleaving reduces the correlation between nearby
symbols and allows the neglection of non-diagonal entries in
the covariancematrix. Therefore, the approximated posteriori
distribution can be factorized into independent Gaussians,
i.e., the message on xi can be fully defined by a mean and
a variance. Codeword VNs are assumed to be Bernoulli dis-
tributed, their messages can be represented by bit-level LLR.

B. FACTOR GRAPH MODEL
The optimal receiver satisfies the MAP criterion by maximiz-
ing the posteriori probability, where the posteriori PDF can be
factorized as

p (u |y ) = p (u, c, x |y ) ∝ p (y |x )︸ ︷︷ ︸
channel

p (x |c )︸ ︷︷ ︸
maping

p (c |u )︸ ︷︷ ︸
coding

, (26)

in which p(x|c) =
∏K−1

k=0 p(xk |ck ) is the memoryless mapping
and p(c|u) is the overall coding scheme, i.e., from binary
sources to codewords. Channel factor in Eq. (26) represents
the relationship between the received samples and the trans-
mitted symbols. This posteriori PDF results in the factor
graph shown in Fig. 7, and posteriori probabilities will be
estimated through messages passing algorithm iteratively.

FIGURE 7. Factor graph representation of the posteriori PDF.

C. BAYESIAN EQUALIZATION
FromBayesian’s perspective, the channel inputs aremodelled
as random variables with Gaussian priori PDF CN (xd, vd),
and the inputs x and outputs y are assumed to be jointly
Gaussian. Hence, the Bayesian estimation of posteriori PDF
CN ( µe, 0e) has an explicit expression [32]:µ

e
= xd + VdHT

(
HTVdH+ σ 2

wI
)−1 (

y−Hxd
)

γ e = Vd
− VdHT

(
HTVdH+ σ 2

wI
)−1

HVd .

(27)

Matrix operations in Eq. (27) need a lot of computations,
especially the computational complexity of matrix inversion
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is usually unaffordable. For a more general implementation,
windowed process is adopted by applying a sliding window
[k − p, k + d], where k is the window index, p and d are the
number of pre-cursor and post-cursor samples, respectively.
Then Eq. (27) can be rewritten as
µek = xdk + v

d
kh

T
k

(
HT
kV

d
kHk + σ

2
wI
)−1 (

yk −Hkxdk
)

γ ek = vdk

(
1− vdkh

T
k

(
HT
kV

d
kHk + σ

2
wI
)−1

hk

)
.

(28)

By selecting p and d larger than the finite length of channel
taps, Eq. (28) transforms the matrix inversion into equivalent
element-wise operations. Finally, we have

qEQU (xk) ∝ CN
(
µek , γ

e
k
)
. (29)

D. MESSAGE EXCHANGING RULE
In this section, we detail the messages exchanged along the
paths in the considered factor graph. The messages arriving
at the VN xk are independent Gaussians, we have{

mEQU→x (xk) ∝ CN
(
xek , v

e
k
)

mDEM→x (xk) ∝ CN
(
xdk , v

d
k

)
,

(30)

and the messages across the VN ck,j are Bernoulli distributed
and represented by bit LLR as{

mDEC→c
(
ck,j
)
∝ La

(
ck,j
)

mDEM→c
(
ck,j
)
∝ Le

(
ck,j
) (31)

where La(·) and Le(·) denote a priori and extrinsic LLR,
respectively. In the factor graph of Fig. 7, each VN only
connects with a pair of distinct FNs and the message out-
put VN is only characterized by its input message, e.g.,
mDEM→c(ck,j) = mc→DEC (ck,j).

1) MESSAGES FROM DEC TO DEM
DEC node generates a priori information La(c) and feed
them to DEM nodes. The DEM node uses the priori LLR to
compute the priori probability on xk = α as

pk (α) ∝
∏q−1

j=0
e−ϕ

−1(α)La(ck,j), ∀α ∈ X (32)

where ϕ−1(·) denotes the constellation mapping. Above is
the Probability Mass Function (PMF) corresponding to the
message

mDEM→x (xk) = fDEM (xk , ck)mc→DEM (ck) , (33)

which will be used to compute qDEM (xk ).

2) MESSAGES FROM EQU TO DEM
Based on the approximate posteriori probability of xk at EQU,
the message output the equalizer can be derived using the
message passing rule of Eq. (24) as

mEQU→x (xk) = qEQU (xk)/mx→EQU (xk)

= qEQU (xk)/mDEM→x (xk). (34)

Accordingly, the message can be extracted via the Gaussian
density division

xek =
µekv

d
k − x

d
k γ

e
k

vdk − γ
e
k

, vek =
vdk γ

e
k

vdk − γ
e
k

. (35)

Gaussian divisionmay lead to a negative variance. This unsta-
ble value can be directly replaced by its modulus or parame-
terized by a damping or mixing factor [33].

3) MESSAGES FROM DEM TO EQU
The demapper calculates its approximate posteriori on xk by
combining messages from connected VNs

qDEM (xk) = mDEM→x (xk)mx→DEM (xk)

=

∑
dk

fDEM (xk , ck)mc→DEC (ck)mEQU→x (xk)

(36)

which is also the posteriori PMF on the elements xk over the
constellation setX . Using Eq. (30) and (32), it can be denoted
as

Dk (α) ∝ exp
(
−
∣∣α − xek ∣∣2/vek) pk (α) , ∀α ∈ X . (37)

We make a small modification on computing D(α) by
replacing simply product (SP) with geometric mean (GM)
over its inputs

Dk (α) ∝

√
exp

(
−
∣∣α − xek ∣∣2/vek) pk (α), ∀α ∈ X . (38)

We term it DFE-GM and Eq. (37) DFE-SP. A major differ-
ence is that geometric mean ‘‘normalizes’’ the inputs, i.e.,
no range dominates the weighting and a given percentage
change in each of its inputs has equal effect on the geometric
mean product. The simulation results in Sec. VI show its
advantages. Through moment matching, it is projected as

µdk = E [Dk (α)] =
∑

α∈X
αDk (α),

γ dk = V [Dk (α)] =
∑

α∈X
|α|2Dk (α)−

∣∣∣µdk ∣∣∣2 . (39)

Based on the approximate posteriori on xk from Bayesian
equalization, the message to the equalizer mx→EQU (xk ) is
calculated according to Eq. (24) as

xdk =
µdk v

e
k − x

e
kγ

d
k

vek − γ
d
k

, vdk =
vekγ

d
k

vek − γ
d
k

. (40)

This Gaussian density division corresponds to the extrin-
sic information to the Bayesian equalizer which ‘‘partially’’
removes themessagemx→DEM (xk ). However, it is completely
removed in BP.

4) MESSAGES FROM DEM TO DEC
Message from DEM to DEC is calculated using the approxi-
mate posteriori on the VN dk,j as bit LLR

Le
(
dk,j

)
= ln

∑
α∈X 0

j

Dk (α)−ln
∑
α∈X 1

j

Dk (α)−La
(
dk,j

)
. (41)
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FIGURE 8. EP based receiver structure.

FIGURE 9. Illustration of banded matrix M and its submatrix mk .

FIGURE 10. Complexity comparison of FDE and TDE.

This message is obtained bymarginalizing on k th symbol’s jth

bit, and X p
j is the set of symbols whose jth bit is p. Bit-level

LLR calculation is followed by a bit-level assignment before
fed to the FEC decoder.

The receiver structure is shown in Fig. 8, interleaving and
bit assignment are omitted for the representation simplicity.
Unlike turbo iteration where mild extrinsic information is
always feedback, this receiver feeds approximate a priori
information to the equalizer to calculate its posteriori prob-
abilities because most of the symbol posteriori information
has already been removed in Eq. (40).

V. BLOCK-WISE MATRIX INVERSION USING CHOLESKY
FACTORIZATION
Bayesian equalization requires excessive computational
costs, and symbol-wise matrix inversion contributes to the
major part of the computation. Therefore, an efficient calcu-
lation method is in need. In this section, we consider a block-
type matrix inversion strategy. In detail, we define

M =
(
HTVdH+ σ 2

wI
)

(42)

which is a banded matrix with equal lower and upper band-
width. As shown in Fig. 9, we define its submatrixmk which

FIGURE 11. BER versus SNR for proposed algorithms and algorithm with
FDE.

is formed by taking serial entries, namely (kl+1)th ∼ (kl+l+
p + d)th row and column, from the original matrix. We still
use p and d denoting the number of pre-cursor and post-
cursor samples. The block size is (p + l + d) where l is a
positive variable that affects the algorithm granularity and
computational burden. Then the Bayesian equalization can be
written as{

µek = xdk + Vd
kH

T
km
−1
k

(
yk −Hkxdk

)
γ ek = Vd

k − Vd
kH

T
km
−1
k HkVd

k

(43)

where xdk , V
d
k , µ

e
k and γ

e
k are the corresponding k th submatri-

ces of xd , Vd , µe and γ e, respectively, and

mk =

(
HT
kV

d
kHk + σ

2
wIk

)
. (44)

Clearly, Eq. (27) and (28) are two special cases of Eq. (44).
When l reduces to one, this scheme degrades to typical
element-wise filtering, and when l is set to K , the algorithm
is equivalent to Eq. (28).

From the definition, we can see that mk is symmetric and
positively defined and it can be factored as

mk = RTR (45)

where R is an upper triangular with positive diagonal ele-
ments. The matrix inversion can be solved by Cholesky
decomposition in a recursive way.

Then we give a brief complexity analysis of proposed
algorithm, linear MMSE and FDE [12]. The Cholesky factor-
ization has a computational complexity ofW 3/3+2W 2 where
W is the matrix order. Denoting l, L and N as the block size,
channel length and total symbols, totally (2L + 4(l + p +
d + 1))×N + (l + p + d)2 × N /3 operations are required
in proposed algorithm during the block-wise equalization.
The FDE involves the calculation of NFFT-point FFT/IFFT
which has a complexity of O(NFFT×log(NFFT)). Taking the
prior knowledge in calculation, the total operations required
in FDE is 4N×log(NFFT) +15N . For LMMSE equalization,
the complexity is (N × l2)/3+ (L + 1)×N .
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FIGURE 12. BER versus SNR for different algorithms.

In Fig. 10 we show the computational complexity compa-
ration of different block sizes where up to N = 210 sym-
bols are considered. LMMSE has the lowest computational
complexity when the block size is small. Once initialized,
the LMMSE detector requires no update during the computa-
tion, so the initialization becomes themajor computationwith
the growing of l. Benefited from the rapid FFT computation,
single-tap FDE saves a lot of computations, especially when
a large block size is adopted. As depicted in the figure,
proposed block-wise matrix inversion strategy saves up to

70% computational burden than the symbol-wise implement
(l = 1), and themost computational efficient block size varies
with different overlapping samples.

VI. PERFORMANCE EVALUATION
In this section, we show the performance of DFE-SP, DFE-
GM, nuBEP, B-EP [34] and LMMSE for different scenarios.
Shaped-BCJR and AWGN are also presented in Proakis-B
channel as lower bound. From [35], MMSE families show
similar performance as LMMSE, so other MMSE approaches
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are not included in simulation. We also do not include EP-F
because it exhibits almost identical performance with nuBEP
for each iteration when 16QAM is used [36]. A detailed
comparison of BCJR families is reviewed in [30] and the
shaped-BCJR runs in Proakis-B channel with a tolerable
computational complexity, but it is not included in Proakis-C
channel simulations.

We average the simulation over 104 random frames with
PCS-16QAM. DVB-S2 LDPC code of rate 3/4 is used as
FEC code and belief propagation performs decoding with a
maximum of 10 iterations. The pre- and post-cursor samples
are both set to 20, and the block size is set to 10. Coefficients
are [0.407, 0.815, 0.407] and [0.227, 0.46, 0.688, 0.46, 0.227]
for Proakis-B and -C channel, respectively.

BER performance of shaped-BCJR, DFE-GM and FDE
in Proakis-B channel are given in Fig. 11 where the DM
rate is 0.8. FDE in 64-order exponential-decay channel is
also presented as reference while the performance of shaped-
BCJR is not included due to the unaffordable quantities of
trellis states. It can be observed that DFE-GM has a perfor-
mance gap of almost 6 dBwith respect with the shaped-BCJR
at BER=10−4, and FDE falls behind the DFE-GM about
8 dB. Simulation results show that TDEs have substantially
superior performance to the FDE in Proakis-B channel which
contains a strong dominant component.

In Fig. 12 we depict the BER performance versus SNR
with two channel configurations where the DM rate is 0.5.
At first iteration EP based approaches have similar perfor-
mance which are about 2 dB better than the LMMSE. After
5 iterations, BEP keeps about 2 dB better than LMMSE.
Proposed algorithmwith SP has an improvement of 5 dBwith
respect to the LMMSE and 1 dB compared to the nuBEP
algorithm. When the GM is applied, another 0.5 dB further
gain can be obtained in both channel configurations, and the
gap with shaped-BCJR narrows to about 2 dB in Proakis-B
channel.

FIGURE 13. BER versus SNR for different DM rates and LDPC iterations.

In Fig. 13, we compare the BER performance of DFE-
GM with different DM rates and LDPC iterations for PCS-
16QAM in Proakis-B channel. It can be observed that higher
SNR enables a larger DM rate for reliable transmission, on the

other hand, transceiver could adjust the DM rate to maxi-
mum the system throughput or reliability. The performance
can also be improved by increasing the number of LDPC
iterations, but the effect is limited. It improves only 0.1dB
by increasing the number of LDPC iterations from 10 to 50,
which means five times the decoding computational burden.

FIGURE 14. BER versus SNR for different block sizes and overlapping
samples.

Fig. 14 shows the BER performance of DFE-GM with
different block sizes and overlapping samples where the DM
rate is 0.5. We observe that block size does not affect the BER
performance significantly. From 10 to 100, it only improves
0.01 dB when there are 20 overlapping samples. Note that
the behavior of proposed algorithm could be improved by
increasing the pre- and post-cursor samples, because a more
accurate inverse matrix could be obtained. From 3 to 20,
about 0.1 dB gain could be achieved at 10−3 BER, and
another 0.05 dB could be achieved if the number of over-
lapping samples extends to 50, however, the computational
burden nearly doubled according to Fig. 10.

VII. CONCLUSION
In this paper, we show how PCS with LDPC as FEC could
work in ISI channel. PCS is a promising technique to opti-
mize the SE, and enables the system compatible with a
wide variety of source rates. In order to obtain a reliable
receiver, we design two receivers based on different detection
algorithms: MAP detection through shaped-BCJR algorithm
and filter-type iterative detection using EP approximation.
The major advantage of EP-based algorithms lies in the fact
that they perform better than the LMMSE-based algorithms,
at the same time, computational complexity does not grow
exponentially with the channel states as opposed to most
MAP-based algorithms.

First, the forward/backward algorithm together with turbo
equalization is used to derive the posteriori probability. The
algorithm is adapted by exploiting the shaped probability
of each symbol, resulting in the shaped-BCJR algorithm.
Second, we detail the messages exchanged along connected
nodes in the factor graph. Proposed solution iteratively finds
the best Gaussian distribution that approximates the true
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posteriori of target symbols. This solution presents quite
an improved performance compared to previous approaches
after several iterations. Finally, we present a novel matrix
inversion strategy to cut down on computational complexity
with the help of block-wise decomposition.

From numerical simulations, we demonstrate that the
proposed techniques achieve better performance than
LMMSE or conventional EP algorithms. Proposed matrix
inversion scheme saves more than half of the computational
burden than the element-wise equalization. In this paper,
we deal with the detection in SISO channel, applications
in MIMO channel and multi-user detection remain to be
explored.
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