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ABSTRACT Cracks are the most common road pavement damage. Due to the propagation of cracks,
the detection of early cracks has great practical significance. Traditional manual crack detection is extremely
time-consuming and labor-intensive. Researchers have turned their attention to automated crack detection.
Although automated crack detection has been extensively researched over the past decades, it is still a
challenging task due to the intensity inhomogeneity of cracks and complexity of the pavement environment,
e.g. To solve these problems, we propose an efficient pavement crack segmentation model based on deep
learning. The model uses pre-trained DenseNet121 as an encoder to extract pavement features. Feature
Pyramid Attention module fuses features under different pyramid scales and provides precise pixel-attention.
TheGlobal AttentionUpsamplemodulewhich is a combination of convolutional neural network and pyramid
module acts as a decoder. The sum of Cross-entropy loss and Dice loss is selected as loss function. We use
poly policy to tune learning rate. In order to verify the effectiveness of the proposed method, we conduct
training and testing on the Crack500 dataset and MCD dataset. Our method achieves a Dice coefficient
of 0.7681, an IoU of 0.6235 on the Crack500 dataset and 0.6909, 0.5278 on the MCD dataset. We perform
ablation study to verify the effectiveness of the loss function on improving the performance of our model.

INDEX TERMS Convolutional neural network, deep learning, DenseNet121 network, pyramid attention
network, pavement crack segmentation.

I. INTRODUCTION
Cracks are an important indicator reflecting the safety of
pavement. The formation of cracks will accelerate the aging
of road and affect the strength and stability of roadbeds.
If the crack can’t be maintained in time, it will give rise to
more serious defects, even affects traffic safety or road life,
causing casualties or waste of materials. According to the
2017 American Society of Civil Engineers (ASCE) Infras-
tructure Report Card, the road infrastructure in the United
States received a ‘‘D’’ grade [1], which is largely due to
maintenance delay. Cracks have great influence and diffu-
sion. Traditional manual detection methods have problems
such as low detection efficiency, affecting normal traffic,
time-consuming and unsafe [2]. Intelligent crack detection
method has become the focus of research.
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As image processing technologies (IPTs) develop,
researchers have proposed a series of automated detection
methods for pavement cracks. Akagic et al. [3] proposed a
crack image segmentation method based on histogram and
Ostu’s thresholding. The method divides the input image
into four sub-images of the same size, then performs a
crack search on each sub-image, and finally recombines
the sub-images into a predicted image. This unsupervised
learning method is suitable for rough estimation of asphalt
pavement cracks under low signal-to-noise ratio images.
Ayenu-Prah et al. [4] combined Bidimensional Empirical
Mode Decomposition (BEMD) with Sobel edge detector for
pavement crack detection. Firstly, they use BEDM to filter
images for the purpose of removing noise, and then use
Sobel edge detector to analyze the remaining images. But
edge detection is susceptible to noise. Subirats et al. [5] used
continuous wavelet transform for automated crack detection
and tested on pavement images. The wavelet-based crack
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image processing method does not work well for images
with wide number of textures. Hu et al. [6] proposed a
crack detection method based on texture analysis and shape
descriptors. This method uses shape descriptors to distinguish
between irregular texture and uneven brightness features,
and finally uses SVM classifier to output prediction results.
Compared with edge detection, this method has improved
the accuracy of crack detection in complex background.
Hizukuri et al. [7] used machine learning methods to classify
pavement cracks. The classification accuracy of pavement
cracks is only about 0.85, and there is still a gap for practical
engineering applications. Hoang et al. [8] built a model suit-
able for asphalt pavement crack detection and classification
tasks based on machine learning algorithms. The highest
classification accuracy of this model achieves 87.50%, which
can be used to assist professionals in evaluating road condi-
tions. Crack detection methods based on image processing
technology are sensitive to noise in crack images. When
applied to practical tasks, the performance of these methods
is not very satisfactory due to variations in image source,
the complexity of the crack background, the diversity of
textures, and the unevenness of illumination. The automated
detection of pavement cracks is still a challengeable task for
researchers.

In recent years, deep learning becomes popular. The out-
standing performance of convolutional neural networks in
the field of computer vision has aroused the interest of
researchers in automated pavement crack detection. The
essence of deep learning [9] is feature learning, by means of
building a deep-level machine learning architecture, and then
extracting features from a large amount of input data, layer
by layer abstraction. As the depth of the network increases,
deep learning models can learn more abstract features, and
finally make classifications and predictions. Compared with
traditional machine learning, the features of each layer in
deep learning do not need to be manually designed, but are
obtained from data using a general learning method.

At present, researchers have proposed a series of segmen-
tation algorithms based on deep learning. Cheng et al. [10]
used U-Net encoder-decoder structure to realize the pixel-
level detection of pavement cracks. The crack segmentation
method achieves an accuracy over 92%, which has obvious
advantage in comparison to other methods. This is the first
study that a deep learning-based method is used to process
the crack images as a whole and directly generate crack
segmentation. Jenkins et al. [11] used an encoder to compress
the input image into a low-level feature map, and then uses
the up-sampling layer in the decoder to restore the feature
map to its original resolution. However, the robustness of the
model is not very good. Kim et al. [12] proposed a model
suitable for surface crack segmentation of concrete infras-
tructures based on deep learning. The model uses a two-stage
image processing pipeline to obtain crack texture features,
and the accuracy of crack classification and segmentation is
over 90%. Mazzini et al. [13] proposed a data augmentation
method based on Generative Adversarial Network (GAN)

in order to solve the problem of dataset expansion of pave-
ment crack segmentation. This method is very helpful in
improving model performance. Wang et al. [14] proposed a
novel large-scale irregular masks image inpainting method.
Compared with state-of-the-art models, this method has bet-
ter performance. It is a good choice for image denoising to
embed multistage attention module into a neural network.
Lee et al. [15] proposed a semantic segmentation model to
detect infrastructural cracks and measure the maximum crack
width. A shape-sensitive kernel and a modified deep mod-
ule are the core part of the model. Cai et al. [16] proposed
a novel cross-attention mechanism and graph convolution
integration algorithm. This method overcomes the shortcom-
ings of traditional attention mechanism that may lose fea-
ture information. Wang et al. [17] proposed a deep learning
algorithm suitable for the classification of small samples
of hyperspectral remote sensing images. Experiments were
performed on three public hyperspectral datasets, and the
results proved the effectiveness of the algorithm. Benefited
from the development of computer vision, Rubio et al. [18]
used a fully convolutional neural network to realize the
multi-class damage segmentation of bridge. This model can
be used as an automated damage judgment system for bridge
deck inspection. Bang et al. [19] used the residual network
as encoder for feature extraction. The decoder is composed
of a deconvolution module. This method obtains an IoU
value of 59.65% when testing images in black-box. This
method is not ideal for the detection of very fine cracks,
nor can it quantify the number and types of road cracks.
Huang et al. [20] used compressed sensing with a genera-
tive model to decompress images for crack segmentation
tasks. Compared with the traditional compressed sensing
method, the calculation cost of this method is greatly reduced.
Li et al. [21] proposed a semi-supervised pavement crack
semantic segmentation model. This method can generate
supervision signals for unlabeled road images to make up
for the shortcomings of manual labeling, and use a full con-
volution discriminator to distinguish ground truth and pre-
dicted output images. You et al. [22] proposed an improved
SRNN and attention-treated GCN-based parallel (SAGP)
model to improve the accuracy of image recognition. This
methodmakes full use of the contextual semantic relationship
between features in pixels, and makes features with high
probability weight related to each other. Choi et al. [23] pro-
posed a real-time concrete cracks segmentation model. The
encoder consists of a standard convolution module, a depth
separable convolution module, and a modified atrous spa-
tial pyramid pooling module. This model structure enables
the model to improve the performance of the model while
reducing the amount of parameters. Hoskere et al. [24] pro-
posed a multi-task semantic segmentation model to detect
multiple damages in infrastructures with different mate-
rial. Dong et al. [25] proposed a semantic segmentation net-
work to obtain the spatial and topological information of
cracks in building materials. This method greatly reduces
the amount of manual labeling and effectively avoids the
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subjectivity of labeling, but the ability to detect small cracks
needs to be further improved. The proposed model can
make structural inspection more autonomous and flexible.
Wang et al. [26] combined fully convolutional neural net-
works and multi-scale structured forests, and proposed a
crack segmentation model. This network solves the problem
of poor utilization of local information in complex back-
grounds and overcomes the limitations of edge detection, but
the robustness of the classification method needs to be fur-
ther improved. Kim et al. [27] proposed an automated detec-
tion method for concrete surface cracks based on AlexNet
network. They increased the robustness of sliding window
detection through the proposed probability map of the soft-
max layer and proved that the method has good applica-
bility in field crack detection tasks. However, this method
unable to classify the cracks at the pixel level, so the tex-
ture characteristics of the cracks cannot be well described.
Dung et al. [28] used VGG16 which is superior to Incep-
tionV3 and ResNet in crack classification task as the feature
extraction backbone of the full convolutional neural network
(FCN), and then conducted end-to-end training of the entire
network and verified the performance of the method. Their
method can well detect cracks and accurately assess crack
density. Santos et al. [29] realized the detection of concrete
cracks with biological stains through processing and ana-
lyzing hyper-spectral images. By combining the number of
clusters with the original hyper-spectral images, the crack
detection effect is improved. This method takes the surface
cracks with biological stains into consideration, which is
a great improvement for the field application of automatic
detection. The above research clearly shows that deep learn-
ing, more specifically, deep convolutional neural networks,
is becoming the main choice for automated crack detection.
There are few learnable features of crack images, and most
of the existing crack segmentation methods attempt to com-
bine the features of adjacent stages to enhance the low-level
features, but ignore their different representations and global
context information. The results of crack image segmentation
are not very satisfactory. To solve this problem, we propose
a crack image segmentation model using Pyramid Attention
Network.

In this paper, our contributions are as follows:
We propose a crack segmentation model, which combines

attention mechanism and spatial pyramid to extract accurate
dense crack features for pixel labeling, and achieves good
performance on the benchmark dataset.

We introduce a loss function, which consists of two parts:
Dice loss and Cross-entropy loss, and proves the effect of
this loss function on improving model performance through
ablation study.

The remaining of this paper is structured as follows.
Section II focuses on the architecture of pavement crack
segmentation model, the loss function, and various steps dur-
ing training procedure. Section III describes the Crack500,
DeepCrack, GAPS384, MCD datasets. Section IV presents
experimental results and discussion. Section V shows

ablation study on loss function and encoder. Section VI deliv-
ers the conclusion of this paper.

II. NETWORK STRUCTURE
In this paper, we propose a new model suitable for pixel-
level detection of cracks. The model is based on Pyramid
Attention Network (PAN) [30] and uses DenseNet121 [31]
(pre-trained on ImageNet, its last two layers removed) as
the encoder. The model structure is shown in Fig. 1. Firstly,
the encoder DenseNet121 is used to extract features of the
input image, a Feature Pyramid Attention (FPA) module
is inserted between the encoder and the decoder to collect
the dense pixel-level attention information extracted by the
encoder to guide the classification and positioning of pixels.
The decoder module is Global Attention Upsample (GAU)
module which combines low-level and high-level feature
information accurately. Finally, the model restores the image
resolution through an up-sampling operation.

A. DENSE BLOCKS
DenseNet121 achieves better results and fewer parameters
through the ultimate use of features. It is used in our model
as an encoder to extract crack feature, which plays a sig-
nificant role in mitigating the disappearance of gradients
and enhancing feature transfer. The DenseNet121 encoder
starts with a convolution operation with a kernel size of
7 × 7 and stride of 2. Next comes the Dense Block,
the core module of DenseNet121. Fig. 2 shows a 5-layer
dense block. The dense block uses dense connection,
and each layer uses all preceding feature maps as its
own input:

xl = Hl ([x0, x1 . . . ., xl−1]) (1)

where [x0, x1 . . . ., xl−1] is the concatenation of feature maps
produced by layer 0, 1, . . .l − 1. H is a compound function,
with three consecutive operations, batch normalization (BN),
rectified linear unit (ReLU), and 3× 3 convolution.
So that, each layer and input are directly connected to loss,

which can account for the fact that it can alleviate the problem
of gradient disappearance.

The structure of the layer in the Dense Block is illustrated
in Fig. 3. Firstly, batch normalization and ReLU operations
are performed on the input, and then the number of channels
is reduced through a 1× 1 convolution operation. Therefore,
the number of feature maps output by each convolutional
layer in the dense block is small, the model width is limited,
making the model easier to train. Then perform batch normal-
ization, ReLU, and 3×3 convolution operations on the model
in turn to complete all operations in a layer.

B. TRANSITION LAYERS
The transition layer is located between the two dense blocks
to perform dimensionality reduction operations. As shown
in Fig. 4, this module includes a 1× 1 convolution layer and
a 2× 2 average pooling layer with a stride of 2.
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FIGURE 1. The overall structure of proposed model.

FIGURE 2. A 5-layer dense block.

C. FEATURE PYRAMID ATTENTION (FPA)
Recent models mainly use SPP or ASPP modules, but when
performing image feature extraction, it may cause the lack
of spatial local information and loss of pixel positioning,
which will do harm to the consistency of the feature map and
the precision of image segmentation. We use FPA module to

FIGURE 3. The structure of the layer in the dense block.

FIGURE 4. The architecture of transition layer.

solve this problem. The design of FPA module is inspired by
Attention Mechanism, which can realize pixel-level attention
of high-level feature maps. Fig. 5 shows the implementation
of FPA. The FPA module has a U-shaped network structure
like Feature Pyramid Network, which fuses the features of the
input feature map under three different scales. The convolu-
tion kernel in pyramid structure has three sizes, 3× 3, 5× 5,
and 7 × 7, which can extract effective semantic information
in a larger range. The feature information obtained after the
input feature map passes through the pyramid structure is
multiplied by the feature information after the 1 × 1 con-
volution operation, and finally concatenate with the feature
information after the global pooling and 1× 1 convolution in
order to achieve multi-scale pixel-level information feature
extraction, improve model performance.

D. GLOBAL ATTENTION UPSAMPLE(GAU)
The function of the decoder module is to map the features
of the low-resolution encoder to the full input resolution to
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FIGURE 5. Feature pyramid attention representation.

FIGURE 6. The component of global attention Upsample.

achieve the classification of pixel. The GAU module pro-
vides global information for the category positioning of the
low-level features through the global pooling operation. The
component of the module is illustrated in Fig. 6. Firstly,
we perform a 3 × 3 convolution operation on the low-level
features, perform global pooling and 1 × 1 convolution
operations on the high-level features, then multiply the two
features, and finally concatenated with the high-level features
to guide the classification of low-level features.

E. LOSS FUNCTION
The loss function is a representative of the optimization
objective, which can be described as the ‘‘baton’’ of the
entire network model. It is mainly used to measure the per-
formance of the model’s prediction. The learning of network
parameter is guided through the back propagation of the error

between predicted value and true value. Therefore, how to
choose a loss function to make it closer to the optimiza-
tion goal is extremely important. For semantic segmenta-
tion tasks, the commonly used loss functions mainly include
cross-entropy loss function, Dice loss function, IOU loss
function, Tversky loss function and others.

In our research, loss function consists of two parts:
cross-entropy loss and Dice loss [32].

The cross-entropy loss function is distribution-based loss.
When the semantic segmentation platform uses Softmax to
classify pixels, it is used and can be calculated by the follow-
ing formula:

Lcross−entropyloss = −
1
N

N∑
i=1

C∑
i=c

gci logp
c
i (2)

Dice loss is Region-based loss. Dice coefficient is an
ensemble similarity measurement function. It is usually used
to calculate the similarity of two samples. The value range
is [0,1]. The Dice loss function can be expressed as:

LDiceloss = 1−
2
∑N

i=1
∑C

c=1 g
c
i p
c
i∑N

i=1
∑C

c=1 g
c
i +

∑N
i=1

∑C
c=1 p

c
i

(3)

where i is a single pixel, N is the total number of pixels, c is the
classification,C is the total number of categories, gci indicates
whether the classification is correct; pci is the probability of
belonging to a certain category.

The following equation determines the loss function we
use:

Loss = 1−
2
∑N

i=1
∑C

c=1 g
c
i p
c
i∑N

i=1
∑C

c=1 g
c
i +

∑N
i=1

∑C
c=1 p

c
i

−
1
N

∑N

i=1

∑C

i=c
gci logp

c
i (4)
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F. OPTIMIZATION
Most deep learning algorithms involve optimization.
Researchers have proposed a series of optimization algo-
rithms to update and calculate network parameters that affect
model training and output. The optimizers are helpful to
approximate or reach the optimal value, thereby minimizing
the loss function. We choose an adaptive learning rate Adam
optimizer [33] to minimize the loss function, which utilizes
the first moment estimate and second raw moment estimate
of the gradient to adjust the learning rate of parameters
dynamically. The implementation of the Adam optimizer is
as follows:

For the initial vector θ , we initialize the first moment
vector s, second moment vector r , and time step t to 0, and
then take outm samples

{
x(1), . . . ,x(m)

}
with the target of y(i)

from the training dataset. Gradient g is defined as:

gt =
1
m
∇θ

∑
i
L
(
f
(
x(i); θ

)
, y(i)

)
(5)

For t+1, update biased first moment estimate and
biased second raw moment estimate:

st+1 = ρ1st + (1− ρ1) gt (6)

rt+1 = ρ2rt + (1− ρ2) gt � gt (7)

Then bias-corrected first moment estimate and second raw
moment estimate are computed:

ŝt+1 =
st+1

1− ρt+11

(8)

r̂t+1 =
rt+1

1− ρt+12

(9)

Finally, we update parameters with the following equation:

θt+1 = θt − ε
ŝt+1

√
r̂t+1 + δ

(10)

where ρ1, ρ2 is the decay rate of moment estimate (setting
to 0.9, 0.999 respectively), ε is step size (setting to 1e-3),
δ is a constant to ensure that we don’t divide by zero (setting
to 10e-8).

G. TUNING THE LEARNING RATES
When training the neural network, the learning rate is the
most significant hyperparameter that we need to set. The
learning rate controls the speed of updating model weights
and has a great influence on the effective capacity of model.
If the learning rate is too small, it will cause the neural net-
work to converge slowly or get stuck in the local minimum; if
the learning rate is too large, it will cause the neural network
to fail to reach the global minimum and the model cannot
converge.

At the beginning of training, a larger learning rate can
speed up the convergence of the model. As the training epoch
increases, the learning rate should gradually decay to avoid
skipping the optimal value and to improve training stability.
In our research, we set the initial learning rate to 3e-5, and
use poly learning rate strategy to adjust the learning rate.

The learning rate of each step can be calculated by the fol-
lowing formula:

LearningRate = Initiallr ×
(
1−

epoch
max_epoch

)0.9

(11)

The learning rate of each epoch during training can be seen
from Fig. 7.

FIGURE 7. Learning rate of each epoch.

H. TRANSFER LEARNING
Transfer learning refers to the transfer of a pre-trained model
to other tasks, so that the training of model has a higher
starting point, without needing to train from scratch. The
pre-trained model is more effective for feature extraction,
which can greatly shorten model training time and accelerate
model convergence [34]. In the crack segmentation model
training stage, we use the transfer learning method to transfer
the pretrained DenseNet121 (pre-trained on ImageNet, its
last two layers removed) weights to the crack segmentation
task. Using the pre-trained weights to initialize the decoder
part of our model, and initialize the rest of the parameters
in the neural network using he normal initialization. Finally,
we train the entire neural network.

III. DATASETS
A. CRACK500
The Crack 500 [35] dataset contains 500 images with a
resolution around 2000 × 1500. These images are obtained
on main campus of Temple University via a phone. Due to
the limitation of computing resources, each image is cropped
to 16 non-overlapped image regions, and only the regions
containing more than 1000 crack pixels are saved. Each
crack image is annotated at the pixel level. Therefore, Crack
500 contains 3368 crack images, of which the training data
contains 1896 images, the test data contains 1124 images, and
the validation data contains 348 images. Some data samples
can be seen in Fig. 8.

B. DEEPCRACK
The DeepCrack [36] dataset contains 537 crack images, with
complex background and various crack scales, which can
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FIGURE 8. Crack500 data sample. (a) image; (b) ground truth.

better reflect crack characteristics. The DeepCrack dataset
contains three textures (bare, dirty, rough) and two scenes
(concrete, asphalt) and the crack width ranges from 1 pixel
to 180 pixels. The crack area in each image only accounts for
a small percentage, which is similar to the actual situation.
The dataset is divided into a training data (300 images) and a
test data (237 images). All crack images have been manually
annotated and presented as a binary image. Some representa-
tive samples in DeepCrack are shown in Fig. 9.

FIGURE 9. DeepCrack data sample. (a)(c) image; (b)(d) ground truth.

C. GAPS384
GAPS384 [35] is obtained via manually annotating 384 crack
images selected from the GAPS dataset [37] at pixel level
by Yang et al. Due to the limitation of GPU memory, each
image is then cropped to 6 non-overlapped images. There-
fore, GAPS384 includes 509 raw images and 509 annotated
images. The images in the GAPS dataset were captured in
summer 2015 by a measuring vehicle with mobile mapping
system S.T.I.E.R, which is manufactured by LEHMANN +
PARTNER GmbH. Specifically, the measuring vehicle using
the surface camera system which is composed of two JAI
Pulnix TM2030 cameras equipped with Kodak KAI-2093 1’’
progressive scan CCD imager. The GAPS dataset provides
high-quality crack images with a resolution of 1920 × 1080
as a neural network training dataset. Some samples are shown
in Fig. 10.

FIGURE 10. GAPS384 data sample. (a)image; (b)ground truth.

D. MIXED CRACK DATASET (MCD)
Crack segmentation model needs to be sufficiently robust
to accommodate surface crack in different environment and
materials. To improve the robustness of our model, we merge
the images in Crack500, DeepCrack, and GAPS384 datasets
to form a mixed crack dataset (MCD), which contains con-
crete cracks and asphalt cracks. All the images are resized to
the size of 512× 512. The MCD contains a total of 4414 raw
images and 4414 annotated images. The detailed information
is illustrated in Table1.

TABLE 1. The detail of mixed crack dataset.

IV. CRACK SEGMENTATION EXPERIMENTAL RESULTS
AND DISCUSSIONS
A. TRAINING SETTINGS
All the experiments in this paper are carried out on Tensor-
flow in Windows system.

Hardware settings of the computer are as follows:
CPU: Intel(R)Core (TM)i7CPU@3.20GHz
RAM: two 8GB DDR4 memories
GPU: NVIDIA GTX1080Ti
The input image size of our model is 512 × 512. When

the input image does not meet the requirement, the image
is then resized. During model training process, we use data
augmentation to create fake data and add them to the training
data to increase the number of training data, so that the
crack segmentation model can obtain better generalization
capabilities. The data augmentation methods we use include:
flipping, rotation, and brightness change.

B. EVALUATION CRITERIA
For the crack segmentation task in this research, we intro-
duce four essential metrics, Precision (Pr), Recall (Re), Dice
Coefficient (Dice), and Intersection over Union (IoU) to
evaluate the performance of segmentation model. Precision
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FIGURE 11. Examples of positive instance(left) and negative
instance(right).

describes the purity of crack pixel detection, which means
the ratio of all pixels predicted to be cracks that are actually
positive. Recall is a measure of predictive completeness, that
is, the proportion of identified crack pixels. Dice Coefficient
considers the precision and recall comprehensively, which is
the harmonic mean of them. IoU is also known as Jaccard
Index, which is the ratio of the intersection and union between
prediction and ground truth. MIoU can be calculated via
taking the IoU of each class and averaging them. We make
the following definitions: the crack pixels are seen as positive
instances. As shown in Fig. 11, if the value of pci (refer to (2))
is over 0.5, the pixel is a positive instance, otherwise it is a
negative instance. The precise definition of Pr, Re, Dice, IoU
are as follows:

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

Dice = 2 ·
Precision · Recall
Precision+ Recall

(14)

IoU =
GroundTruth ∩ Prediction
GroundTruth ∪ Prediction

(15)

where TP is true positive (the number of crack pixels that are
correctly detected), FP is false positive (the number of pixels
that are wrongly detected as cracks), FN is false negative (the
number of crack pixels that are wrongly detected).

Considering the subjectivity of manual labeling and the
existence of crack transition region, we consider all predic-
tions to be true positive pixels, if crack pixels are two pixels
near the manually labeled crack pixel. The method has been
used in [38].

C. RESULTS
In order to evaluate the performance of our model on
unseen images, we evaluate our model on Crack500 dataset
firstly. Fig. 12 shows the output of crack segmentation at
different epochs. We can see that as the training epoch
increases, the crack segmentation results become more
detailed and closer to the ground truth. The comparison of test
results among our proposed crack segmentation model and
other four recently proposed crack segmentation models on
Crack500 dataset (the first three models are reimplemented
by Lau et al.) can be seen from Table 2. The results are

TABLE 2. Comparison of test results using different methods on
Crack500 dataset.

TABLE 3. Performance comparison when tested on MCD and
Crack500 datasets.

quantitatively represented using four metrics: Pr, Re, Dice,
and IOU (the optimal results have been highlighted in bold).
From Table 2, we can see that compared with the other
four methods, our method has a great improvement in terms
of Pr, Re, Dice, IoU evaluation metrics, which are 0.8163,
0.7654, 0.7681, 0.6235 respectively. From the results, we can
conclude that our model has a good generalization capability.
It is worth noting that our model sacrifices some recall in
exchange for higher precision. Fig. 13 shows some segmen-
tation results of our best model.

To further verify the performance of our model, we re-train
and test it on the MCD dataset. The results are shown
in Table3, the values of Pr, Re, Dice, IoU are all decreased
compared with that on the Crack500 dataset. This illustrates
that complex background, multi-surface materials, and multi-
scale crack conditions have great influence on crack segmen-
tation performance.

TABLE 4. Performance comparison when training with different loss
functions.

V. ABLATION STUDY
A. ABLATION FOR LOSS FUNCTION
In order to show the effect of loss function we proposed on
improving the performance of segmentation model, we per-
form ablation study on Crack500 dataset. In this experiment,
we train two neural networks, one with the loss function
of cross-entropy (refer to (2)), and the other with the loss
function of the sum of cross-entropy and Dice loss (refer
to (4)), other conditions remain unchanged. Table4 shows
the test results of the two methods. From Table4 we can see
that, when the sum of the cross-entropy and Dice loss is used
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FIGURE 12. Output at different epochs.

FIGURE 13. Segmentation results.

as loss function, the values of Re, Dice and IoU have been
improved by a small margin at the cost of precision. The
loss function we designed can produce better model param-
eters and better model performance during neural network
optimization.

B. ABLATION FOR ENCODER
The semantic segmentation architecture can be seen as an
encoder-decoder network. After giving input images, the
encoder generates feature images with semantic informa-
tion through neural network learning. The decoder gradually
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TABLE 5. Performance comparison of different encoders.

implements the category labeling of each pixel after the
encoder provides feature maps. The choice of encoder is
very important to the performance of segmentation mod-
els. We choose four classic convolutional neural networks
as the encoder, keeping other conditions unchanged, and
conducte training and testing on the Crack500 dataset.
The results are shown in Table 5. We can see that,
for pavement crack segmentation tasks, Pyramid Attention
Network using DenseNet121 as the encoder has the best
performance, the Dice coefficient and IoU are 0.7681 and
0.6235 respectively.

VI. CONCLUSION
This study concentrates on the method of applying convolu-
tional neural network to detect pavement cracks. Our network
structure is a Pyramid Attention Network with an encoder
of pretrained DenseNet121. The crack features in the image
are well extracted in the encoder part. Compared with the
commonly used methods such as dilated convolution which
may cause local information missing, our model combines
the attention mechanism with the spatial pyramid network
to extract precise crack features information. In addition,
through fusion of contextual information at different scales,
better pixel-level attention is obtained. In the decoding net-
work part, our model makes full use of feature information
at different scales and combines CNN and pyramid modules
to reduce computational cost and realize the classification
guidance of high-level semantic information to low-level fea-
ture maps. We use the Adam optimizer which is an adaptive
learning rate algorithm to guide the training of the neural
network. Cross-entropy focuses on a fitting situation of the
overall pixel and describes the difference between two prob-
ability distributions. When the semantic segmentation model
uses softmax to classify the pixels, it is used. The Dice loss
focuses on the overlap between the ground truth and the
prediction. In order to have a comprehensive measure of the
error between the predicted value and the true value from
a global and local perspective, we use the sum of the Dice
loss and the Cross-entropy loss as the final loss function
to help the model converge faster and perform better. The
performance of our method is tested and compared with the
other four models on the Crack500 dataset. The Dice and IoU
values achieved by our approach are 0.7681 and 0.6235 on
the Crack500 dataset which outperforms other four recent
models. In order to test the performance of our model under
different environmental and material conditions, we retrained
and tested the model on the MCD dataset. The Dice and IoU
values achieved by our approach are 0.6909 and 0.5278 on

the MCD dataset. Compared with other machine learning
methods, our model requires less feature engineering and has
better performance.

The proposed pavement crack segmentation model
achieves good performance on the Crack500 dataset and the
MCD dataset. For areas lacking professionals in pavement
cracks analyzing, our model is a good choice. Although
the method in this paper shows good performance, it still
has a long way to go for automated detection of pavement
cracks. One limitation of our proposedmethod is that we need
to input lots of manual annotated pixel-level crack images
to train efficient and accurate models. The manual annota-
tion method is time-consuming and subjective, in addition,
the performance of the model is closely related to the dataset.
With the development of unsupervised learning, this problem
may be solved in the near future. Another limitation is that our
model only realizes the texture representation of pavement
cracks, but cannot characterize the extent and severity of
distresses. Combining the power of computer vision with
natural language processing provides a good solution to
this problem. The actual road conditions are complex and
changeable. How to achieve high-precision and real-time
crack detection is a difficult problem. Formulti-task detection
of different materials and different damages, how to build a
robust model is still an important research direction in the
future.
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