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ABSTRACT This paper presents a sectional water fractionmeasurement method using electrical capacitance
tomography (ECT) image. To achieve a desired measurement accuracy, an optimal threshold-search method
based on fast simulated annealing (FSA) algorithm is applied for image binarization; and to guarantee the
imaging time consumption, fast fixed point continuation (FFPC) iterative algorithm cooperating with the
compressed sensing (CS) theory was applied to the image reconstruction. In this study, the imaging time
consumption and the measurement accuracy of water fraction are used to compare the proposed method and
other methods. A numerical model is established with COMSOL Multiphysics to conduct the simulative
validation of the proposed method firstly and physical experiments are conducted then. The experiment
results show the average relative error of water fraction is lower than 15%, where the even as low as 3.68%.

INDEX TERMS Electrical capacitance tomography, fast simulated annealing, image binarization, com-
pressed sensing, water fraction measurement.

I. INTRODUCTION
Electrical capacitance tomography (ECT) has been widely
applied to multiphase flow phase fraction detection in various
industrial areas such as chemical engineering, natural gas
transportation, and electric power plant [1]. For some indus-
trial processes (e.g. natural gas mining and transportation),
gas-water two phase flow plays a crucial role and the water
fraction measurement for it has far-reaching impact in the
conveying system.

There are currently many studies trying to realize this
application of ECT. Dong et al put forward a method based
on ERT (mathematically similar to ECT) to extract cross-
correlation eigenvalue of void fraction and the measured
values [2]. Yu [3] applied ERT image to voidagemeasurement
for gas-liquid two-phase flow, usingmodifiedBFGS andOtsu
algorithms for image reconstruction and binarization, respec-
tively. Wangjiraniran et al. [4] investigated the effect of devi-
ation of signal obtained from each adjacent measuring plane
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of intrusive WMT on void fraction measurement. Wang [5]
proposed a new method based on ECT for voidage measure-
ment of gas-oil two phase flow, and the image reconstruction
algorithm is sample back projection. Based on ECT and LS-
SVM, Li et al. [6] put forward a new method for voidage of
gas-oil flow without imaging process. In 2018, Moreira da
Mota et al. [7] proposed a modified method ECTM (based
on ECT theory) to realize water fraction measurement. This
method simplifies the 12-electrode sensor into a 2-electrode
sensor, and uses rotation measurement to obtain 12 capaci-
tance values for water fraction measurement.

Generally, calculating the water fraction from an ECT
image is a kind of image gray operation. According to Multi-
phase fluid dynamics, the water fraction of gas-water two-
phase flow can be defined as

α =
Aw

Aw + Ag
(1)

where Aw is sectional area of water phase, Ag is cross-
sectional area of gas phase, a is value of water fraction. Once
the image (i.e. the phase distribution) of a certain section is
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obtained, the water fraction can be calculated from image
gray, expressed as

α =
1
M

M∑
i=0

fi (2)

In (2), fi is the gray value (regulated to [0,1]) of the i-th
pixel, where 1 stands for water phase, and 0 stands for gas
phase; M is the total number of pixels of sectional tube.
It can be seen from (2) that the performance of the ECT
image-based water fraction measurement is limited by the
quality of the reconstructed images; a sharped and deblurred
image is desired for such application. Moreover, to meet the
requirement in real-time, the fast-converging property of the
applied image reconstruction algorithm is necessary.

The reconstructed image of ECT contains a number of pix-
els far more than the measured capacitances of ECT sensor,
therefore the inverse problem of ECT is ill-posed [8]. All the
algorithms mentioned above are sensitivity-based, so the ill-
posed nature is hard to overcome. Thus, some researchers turn
to find a new method which does not rely on the sensitivity
matrix. Wang et al developed an AST-ELMmethod [9] which
directly establishes the map between measured capacitances
and images. This neural network based algorithm does not
need a sensitivity matrix compared with traditional algo-
rithms (such as the Landweber iterative and the linear back
projection algorithm), so the ill-posed nature of ECT’s inverse
system can be solved. However, the neural network based
algorithm requires a large training set which is unfeasible in
some occasions.

The existing algorithms have different limitations. The
compressed sensing (CS) theory was proposed by Donoho
in 2006, using the sparseness or compressibility of the origi-
nal signal to reconstruct the original signal with only a small
amount of sampling [10]. In ECT applications, Xia et al. [11]
proposed an image reconstructionmethod based onCS theory
called fast linearized alternating direction method of multi-
pliers (FLADMM), and compared it with the linear back pro-
jection (LBP) algorithm, the Landweber iteration algorithm
(LIA), and the conjugate gradient (CG) method. Zhang et al.
[12] applied the CS theory based on gradient projection for
reconstruction algorithm to solve inverse-problem of ECT,
and draw a conclusion that the CS-based image reconstruc-
tion algorithm can improve the image quality and reduce the
time consumption.

In this study, a fast fixed point continuation (FFPC) itera-
tive algorithm based on CS was applied to ECT image recon-
struction, with the assistance of optimal threshold-search
method based on fast simulated annealing (FSA) heuristic
algorithm to binary images for water fraction measurement
on gas-water two phase flow. This stratagem can not only
inherit the merits of CS-based reconstruction algorithm, but
also further make the reconstructed image suitable for water
fraction calculation.

This study firstly introduces the fundamental of the pro-
posed CS-based image reconstruction algorithm and the FSA

binarization algorithm. Simulative and experimental valida-
tion are carried out then, with the results of the proposed
method and other traditional methods compared.

II. IMAGING ALGORITHM AND ECT SYSTEM
A. BRIEF INTRODUCTION OF COMPRESSED SENSING
THEORY AND ITS APPLICATION IN ECT
According to compressing sensing theory, k-sparse signal
means N dimensional signal x∈RN has at most k non-zero
elements, i.e. ‖ x ‖0≤ k . Another case, x can be converted by
sparse domain 9, i.e. x= 9z. As a result, a sparse signal z is
got, and ‖ z ‖0≤ k [13].
Now supposing [91, 92, . . . , 9N ] is an orthogonal basis

vector in RN , then any N×1 dimensional discrete signal in
domain RN can be linear expressed as

x =
N∑
i=1

9izi = 9z (3)

In (3), 9 = [91, 92, · · · , 9N ] is an N × N dimensional
sparse basis matrix, z is the sparse vector converted from x by
9. If only a few elements in z have large values but most of
them have small values, and original signal x can be recovered
by z, that is to say, x is compressible.

Then supposing an M × N dimensional (M � N ) matrix
8, called ‘‘observation set’’ [14], then use to sample the
M×1 dimensional signal of x, equation as follow

y = 8x = 89z (4)

where y is the observation vector converted by x. Let A =
89, then (4) can be simplified as

y = Az (5)

where A is called the probing matrix. The observation vector
y obtained by detection.

The most direct approach to calculate sparse vector z
is transforming (5) into an l0-norm constraint optimization
problem. But this is an NP-hard problem [15], hard to be
solved. However, (5) can be changed into an l1-norm con-
straint optimization problem [16], presented aszopt = arg min

z∈RN
‖z‖1 s.t. Az = y

xopt = 9zopt
(6)

There are three major approaches to solve (6): interior point
method (IPM), gradient projection for sparse Reconstruction
(GPSR), and fixed point continuation (FPC) [17]. But for
solving large-scale problems, the above three traditional iter-
ative methods are limited by their slow convergence rate.

Improved from FPC, fast fixed point continuation (FFPC)
[18] algorithm makes higher the peak signal to noise ratio of
image reconstruction and lower the relative errors. Further-
more, it reduces running time when the sampling rate is low.

Once FFPC is used to solve optimization problem (6), (6)
can be transformed into the following iterative formula

zn+1 = sgn(zn−τ∇f (zn))�max {|z− τ∇f (z)| − τµ, 0}

(7)
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whereµ is the contraction factor in [0,1], and τ is the regular-
ization parameter. τµ effects the iterative convergence of (7),
higher the value, faster the convergence speed. In this study,
µ is determined to be 1. The expression of f (z) in (7) is

f (z) =
1
2
‖Az− y‖22 (8)

To accelerate the convergence of (7), reference [18] indi-
cated that Barzilai and Borwein Gradient method [19], [20]
can be used for the updating of parameter τ in the k-th
iteration

τ k =

∥∥zk − zk−1∥∥2
(zk − zk−1)T(∇f (zk )−∇f (zk−1))

(9)

The initial value of τ (i.e. τ 0) can be determined by

τ 0 = α ·max(ATy) (10)

where α is a positive constant that makes τ 0 a relatively large
number. In this paper, we adopt α = 1. Equations (7)-(10)
have illustrated the iteration of FFPC algorithm in detail.

To apply the CS theory in ECT, the gray vector g of image
to be constructed is the original signal x in CS as discussed
above. In this study, discrete Fourier transform (DFT) basis is
used as sparse domain 9DFT to make g sparse for satisfying
the premise of CS theory firstly, to get sparse expression

g = 9DFTz (11)

Substituting (11) into the linear model of ECT system

cm = Sg (12)

and the linear model expressed as (12) based on CS theory
can be transformed into

cm = S9DFTz (13)

In (12) and (13), cm is the M×1 dimensional vector of nor-
malized capacitance measurement, functioning as the obser-
vation vector. S is theM ×N dimensional sensitivity matrix,
functioning as the observation matrix of CS. N × N dimen-
sional matrix 9DFT is the sparse domain and N× 1 dimen-
sional vector z is the sparse signal vector of original signal
vector g. A=S9DFT is the probing matrix.

As Candes proposed before [17], probing matrix A satisfy
the restricted isometry property (RIP) condition if sparse
basis matrix 9DFT and observation matrix S are not related.
Reference [21] proved that a Gaussian randommatrix is irrel-
evant with the sparse basis 9DFT. Therefore, if a Gaussian
random matrix is chosen as observation matrix, the sens-
ing matrix can meet the RIP. Following this idea, we must
rearrange the rows of the sensitivity matrix with a Gaussian
random vector; the length of the Gaussian random vector
is the same as the number of S’s row, and each element of
the random vector indicates the new row index for S. There-
fore, such rearrangement of S (denoted as Snew) becomes
the applied observation matrix in this paper, which approx-
imately satisfy the RIP condition (according to Ref. [23]).
Obviously, the rearrangement of S is still the sensitivity

matrix of ECT. The same rearrangement is conducted to the
capacitance vector cm. Since, the inverse problem of ECT
based on the CS theory can be written aszopt = arg min

z∈RN
‖z‖0 s.t. cnew = Snew9DFTz

gopt = 9DFTzopt
(14)

where cnew is the Gaussian rearrangement for cm. Equa-
tions (14) is a classical minimum l0 norm problem, can be
solved by FFPC iterative algorithm mentioned above.

In brief, the whole process of ECT inverse problem solving
based on CS and FFPC is: 1) solve the sparse vector zopt in
(14) by FFPC (as described in (7)-(10)); 2) calculate the gray
vector gopt by according to (11).

B. OPTIMAL THRESHOLD SEARCHING METHOD BASED
ON FSA
The main purpose of the optimal threshold searching is to
find an optimized threshold for a reconstructed gray vector g,
and binarize g accordingly; the artifact can be removed and
the areas (where medium exists) of small gray value can be
enhanced. Such binary image (gray vector) are suitable for
water fraction calculation by formula (2).

To globally search the optimal threshold th (0<th<1),
the optimal threshold searching can be turned into an opti-
mization problem that search a threshold for g, which min-
imize the capacitance residual δ. This optimization problem
and the definition of δ are written asg

th
opt = arg min

g∈RN
‖δ‖22

δ = SPth(g)− cm
(15)

In (15), gthopt is the binary gray vector of g (binarized by
the optimal threshold th); Pth(·) is the threshold operator,
making the elements of g one if those are equal or greater
than th, and zero if those are less than th. cm and S are the
normalized measurement vector and the sensitivity matrix
of ECT.
To rapidly solve the optimization problem of (15), the fast

simulated annealing (FSA) algorithm is employed. Improved
from the simulated annealing (SA) algorithm, FSA has a
faster convergence speed. FSA is a kind of heuristic algo-
rithms, inspired by thermodynamics. It explores the entire
surface of the function and tries to optimize the function as it
moves uphill and downhill. Other than gradient algorithms,
it is independent of the starting value, and able to deviate
from local optimal values, continuing to find global optimal
values.
And compared with other typical heuristic algorithms,

such as the particle swarm optimization (PSO) and the
genetic algorithm (GA), FSA consumes less time to find
a global optimal solution. The next, FSA and its applica-
tion in optimal threshold searching problem is to be briefly
introduced.
According to [22], when use FSA to search a vector

x minimizing the objective function f (x), firstly, the start
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temperature T0, needs to be initialized, and the initial energy
E0 can be set as f (x0). Then, set the step length of each
iteration v. Both x and v are vectors of n×1. The updating
formula for x

xi = xi−1 + rv (16)

where r is a random obeying standard uniform distribution in
[−1,1], and i is number of iteration.
In every step, a new energy Ei is calculated by f (xi). If Ei

is lower than Ei−1, Ei is accepted as current energy, and the
algorithm goes downhill; if Ei is the lowest current energy,
save xi as current best value of optimization.
If Ei is greater than or equal to Ei−1, a criteria motivated

by thermodynamics (called ‘‘Metropolis criteria’’) decides
acceptance or not, if the value of

p = exp(
Ec − Ei
T0

) (17)

is larger than pr (which is a uniformly distributed random
number in [0,1]), Ei is accepted as current energy, and the
algorithm goes uphill; otherwise, Ei is rejected. Obviously,
the higher energy is, the more probability to accept Ei and go
uphill.

As for conventional simulated annealing (SA), the iteration
of the temperature follows

Ti = T0/log(1+ i) (18)

The temperature declining schedule shown as (18) is too slow
to practise [23]. Instead, FSA uses another iteration schedule
expressed as (19)

Ti = T0/(1+ i) (19)

It is much faster than the conventional method (SA) to utilize
expression (19) to set down temperature.

The algorithm ends by comparing the last minimum energy
with the energy of each annealing step, until the iteration end
temperature; if all these difference less than a certain positive
number ε, iteration terminates.

When FSA is applied to the optimization problem (15),
optimal threshold value gopt is the target vector x, and the
step length is set up as 10−10 for higher accuracy. Initial
temperature T0 is 90 ◦C and end value is 10 ◦C. The annealing
repeats 1000 times. The energy expression is

E =
∥∥∥Sgth − cm∥∥∥2

2
(20)

And the iteration steps in each temperature cooling process
can be described as:

step1: xthi = xthi−1 + r · 10
−10
;

step2: if gni > xni g
n
i = 1,

else gni = 0;

step3: Ei =‖ S · gthi − cm ‖22;

step4: if Ei < Ei−1Ec = Ei,

else if p > prEc = Ei,

else i = i+1; i = 1, 2, . . . , 1000

TABLE 1. Units for magnetic properties.

where xthi = [x1i , x
2
i , . . . , x

n
i ] is the threshold vector, and

gthi = [g1i , g
2
i , . . . , g

n
i ] is the threshold gray vector. n is the

vector length. p is the Metropolis criteria mentioned before.
Steps 1-4 are a single loop (called annealing) of FSA iteration.
Repetitively execute the 4 steps until the end temperature
reached.

In summary, optimal threshold searching method based on
FSA contains three parts [23]: 1) generate the states are with a
standard uniform distribution; 2) use theMetropolis criteria to
allow occasional upward-climbing among decreasing; 3) arti-
ficially cool the temperature by (16) for faster and accurate
convergence.

III. SIMULATION AND EXPERIMENT
A. INTRODUCTION OF THE DESIGNED ECT SYSTEM
In this study, we design an ECT system for experimental
validation. The designed ECT system is presented in Fig. 1.
This system is consisted of a 12-electrode ECT sensor, a
capacitance measurement circuit, and an upper computer
(a PC). Geometry parameters of the designed 12-electrode
ECT sensor are listed in Table 1. The sensing electrodes
are mounted outside the 2mm-thickness acrylic insulation
pipe, and a grounded outer screen is used for preventing
interference of ambient noise (Fig. 1(b)).

FIGURE 1. The designed ECT system. (a) ECT system; (b) cross-sectional
view of 12-electrodes ECT sensors.

The measurement circuit is designed following AC capac-
itance measurement principle [24], whose capacitance reso-
lution is less than 0.01 pF. The whole system for experiments
is shown in Fig. 1(a).
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The PC in this system has a CPU in 3.20 GHz (Intel R©

CoreTM i7-8700) and two channels of 8 GB RAMs. In the
next of this paper, the image reconstruction algorithms,
the image binarization algorithms, and the experiments are
also tested on the same PC.

B. SIMULATIVE ANALYSIS
The simulation model for the 12-electrode ECT sensor
is established with COMSOL Multiphysics, following the
parameters shown in Table 1. The geometry model estab-
lished is presented in Fig. 2. In this simulation section, we set
5 different medium distributions (shown in the first column
of Fig. 3) to simulate different flow regimes.

FIGURE 2. The 12-electrodes sensor model for simulation.

For the first three distributions, the water region is limited
into several cylinder areas, simulating the gas-dominated situ-
ations. And the remaining two annular distributions represent
water-dominated situations. The radius of each cylinder is
5.75 mm, taking up 6.25% of the sensor’s cross section area,
and the distance between the axes of the cylinder and the
sensor is regulated to 15 mm. The thicknesses of the two
annular mediums are 7 and 14 mm, taking up 57.47% and
81.10% of the cross section area.

The 5 different medium distributions are used to test the
algorithms illustrated above. The simulated measured capac-
itances of the ECT sensor is obtained via the AC/DC mod-
ule of COMSOL Multiphysics. Set the medium distribution
alternatively, and the capacitances can be extracted after the
corresponding numerical solving. And then, the simulated
data can be used for the algorithm evaluation, with the aid
of MATLAB.

1) COMPARISON BETWEEN LBP, LIA, AND CS-FFPC
The imaging area is divided into 2401 pixels. The proposed
CS-FFPC image reconstruction algorithm is compared with
linear back projection (LBP) algorithm and Landweber iter-
ative algorithm (LIA) for each medium distribution. The
reconstructed images are shown in Fig. 3. The iterations of
LIA is 2500, and the initial regularization parameter τ of
CS-FFPC algorithm is determined by (10).

It can be read from Fig. 3 that the boundary between
phases is hardly to distinguish by LBP-reconstructed images;
as for LIA, there is artifact in the reconstructed images
and the boundary of water is blurred. However, the recon-
structed images of CS-FFPC have clearer boundaries com-
pared with LBP and LIA; the high-permittivity phase (water)
can be identified easily from the images. It can be read from
Fig. 3 that the water areas near to the center of the sensor

FIGURE 3. Images reconstructed by LBP, LIA, and CS-FFPC using
simulated data.

are much bright than the areas at the edge. This is because
the sensitivity of ECT has much smaller values at the center.
Further, a widely used factor, image correlation coefficient
(ICC) [25], is adopted to evaluate the quality of the three
algorithms, which is defined as

ICC =

n∑
i=1

(ĝi − ¯̂g)(gi − ḡ)√
n∑
i=1

(ĝi − ¯̂g)2
n∑
i=1

(gi − ḡ)2
× 100% (21)

where {ĝi} and {gi} are the gray vectors the reconstructed
image and the real image, respectively; ¯̂g and ḡ are the mean
value of elements in { ¯̂gi} and {gi}, respectively. The higher the
ICC is, the more precise the image reflects the real medium
distribution.

The ICC calculated for the images presented in Fig. 3 is
listed in Table 2.

As can be seen from Table 2, the ICC of CS-FFPC is much
higher than that of both LBP and LIA, meaning the images
reconstructed by CS-FFPC are more similar to the real object.

The average time consumptions of the three image recon-
struction algorithms are listed in Table 3. It can be read from
Table 3 that LBP has the minimum time consumption among
the three, and LIA takes the most time to reconstruct an
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TABLE 2. The ICC of three reconstruction algorithms.

TABLE 3. Average time consumption of LBP, LIA, and CS-FFPC.

TABLE 4. The water fraction calculation based on ECT images.

image. As an iterative algorithm, CS-FFPC takes much less
time compared with LIA, although it still needs much longer
time than LBP. However, according to Fig. 3 and Table 2, CS-
FFPC performance is the most desired (evaluated by the ICC
and artifact).

To summarize, CS-FFPC is an algorithm guarantees both
convergence speed and image quality, meeting the require-
ment of this study.

2) PERFORMANCE COMPARISON BETWEEN THREE
HEURISTIC-ALGORITHM-BASED OPTIMAL THRESHOLD
SEARCHING METHODS
To further process the reconstructed images, this part utilizes
the optimal threshold searching method to binary recon-
structed images. The performance of three optimal threshold
searching methods based on the FSA, the Genetic Algo-
rithm (GA), and the Particle Swarm Optimization (PSO)
respectively are compared. The inertia factor for the SPO is
0.729; a 5-bit gene encoding is used for the GA; for FSA,
the initial and the lowest temperature are set to 90◦C and
10◦C, respectively, and the number of annealing in each tem-
perature is 1000. The results of the three image binarization
algorithms are shown in Fig. 4.

As can be seen from Fig. 4, the binarization based on
FSA performs better in approximating the distribution of
high permittivity mediums than SPO and GA. To evaluate
the performance of the three algorithms, the calculated water
fraction (according to Eq. (2) and the relative error (RE) of the
measurement are listed in Table 4 and Table 5 respectively.

It is obvious (from Table 5) that the relative error of
water fraction calculated by the FSA-based optimal threshold
searching method is much lower than PSO and GA, which

FIGURE 4. Images binarized by optimal threshold searching method
based on FSA, GA, and SPO using simulated data.

TABLE 5. Relative error (RE) of water fraction calculation based on ECT
images.

TABLE 6. Average time consumption of the image binarization algorithms
based on PSO, GA, and FSA.

means FSA performs well on global solution search because
of the ‘‘metropolis criteria’’; the binary images of it are
more similar to the real medium distributions, and the water
fraction calculation is much more accurate.

The average time consumptions of the three optimal thresh-
old searching algorithms are listed in Table 6. It can be read
from Table 6 that FSA has the minimum time consumption
among the three, and GA needs the longest time. Table 5
and Table 6 demonstrate that FSA can not only save time
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TABLE 7. The ICC of the images reconstructed by CS-FFPC, LIA, and LBP
(experimental).

consumption, but also obtain an acceptable threshold for
image binarization.

To conclude, FSA is the most suitable optimal threshold
searching method for water fraction calculation.

IV. EXPERIMENTAL ANALYSIS
For the air-dominated situations, we use thin acrylic tubes
(whose inner and outer diameters are 10 mm and 12 mm,
respectively) filled with water (relative permittivity is 81) to
simulate a static cylindrical aqueousmedium, and place it into
the designed 12-electrode ECT sensor (whose parameters are
illustrated in Table 1). And for the water-dominated situa-
tions, set an empty acrylic tube in the center of the sensor,
and inject water into the volume between the sensor’s and the
acrylic tube’s wall, simulating annular distribution. The outer
diameters of the empty tube for the annular distributions are
18 mm (Fig. 5 (d)) and 16 mm (Fig. 5 (e)), respectively. The
spatial positions configurations are shown in Fig. 5.

FIGURE 5. ECT gas-water two-phase flow static simulation experiment.

Alternatively change the objects configuration and obtain
the capacitance vector of the ECT sensor for each configu-
ration, then use the measured data to validate the proposed
method. The reconstructed images are shown in Fig. 6. It can
be seen from Fig. 6 that the images reconstructed by CS-
FFPC algorithm are much clearer than that of LIA and LBP
algorithm. Especially for the annular distribution, it is hard to
distinguish the water fraction difference from the images of
LBP, and the artifact is serious in the images of LIA.

The ICCs of the images in Fig. 6 are then calculated
according to Eq. (21), listed in Table 7. The data in Table 7
quantitatively support the advantage of CS-FFPC algorithm.

Then, apply the FSA-based image binarization algorithm
to the reconstructed images; the results are presented in Fig. 7.
Obviously, after binary processing, the boundaries of medium
distributions are much easier to distinguish, and the water
fraction can be calculated then, shown in Table 8.

It can be seen fromTable 8 that relative error increases with
increasing water fraction. One possible explanation for such

FIGURE 6. The images reconstructed by CS-FFPC, LIA, and LBP
(experimental).

TABLE 8. Results of water fraction calculation in static experiment.

phenomenon is that the volume proportion of the acrylic pipe
wall (of the tubes used to simulate the water phase) decreases
with the radius.

For the annular distribution number 5, the water fraction
calculated by LIA is better than CS-FFPC; however it can be
read from Fig. 7 and Table 8 that the binarized images (of
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FIGURE 7. Results of the binarized images in static experiment.

TABLE 9. Total time consumption of the three.

annular distributions) of LIA and LBP can hardly correctly
reflect the real shape of medium, and the calculated water
fractions (of annular distributions) are less sensitive to the
increment of water volume compared with CS-FFPC. One
reason why LIA and LBP perform worse in this application is
that there is more artifact in the images reconstructed by LIA
and LBP, and the sharpness of their images is far less than
CS-FFPC’s.

To evaluate the real-time performance of the proposed
measurement method, the total time consumed by the whole
water fraction calculating procedure is recorded, as shown
in Table 9.

The data in Table 9 show that the time consumption
for each time of water fraction measurement is slightly
larger than the sum of the image reconstruction time (listed
in Table 3) and the image binarization time (Table 6). This
is because 1) the calculation according to the binary images
needs additional time; 2) the run of the designed system’s

software needs additional hardware resources, which depends
on the programming method. But in general, Table 9 supports
that the measurement method of ‘‘CS-FFPC+FSA’’ is still
practicable to a real-time application.

The performance of the FSA-based binarization using CS-
FFPC images is more stable and more accurate than the
other two algorithms (LIA and LBP). The relative errors of
all medium distribution are lower than 15%, among which
the lowest is 3.68%. Table 8 proves the quality of CS-FFPC
imaging and FSA binarization. Also, it proves the feasibility
of water fraction calculation based on image reconstruction.

V. CONCLUSION
The accurate water fraction measurement for gas-water two-
phase flow based on ECT requires reliable and sharp-
ened images of medium distribution within an ECT sensor.
To obtain images that suitable for phase fraction calculation,
the CS-FFPC image reconstruction algorithm and the FSA-
based optimal threshold searching image binarization algo-
rithm are proposed in this paper.

In the simulation section, three image reconstruction algo-
rithms (LIA, LBP, and CS-FFPC) are firstly compared in
aspect of image correlation coefficient (ICC), and the CS-
FFPC is improved to be the best one among those accord-
ingly; then the three optimal threshold searching methods
based on PSO, GA, and FSA respectively are applied to the
reconstructed images for water fraction measurement test,
whose results validate the advantages of FSA-based image
binarization method.

The physical experiments are carried out to further test
the performance of the water fraction measurement method
that combing the CS-FFPC and FSA optimal threshold image
binarization algorithm. The results show that the relative error
of the proposed method is below 15%, where the lowest is
3.68%. In conclusion, the proposed method is practical.

In our future work, we plan to optimize the software of the
proposed measurement method, and expect to improve the
speed of the water fraction measurement.
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