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ABSTRACT Due to the complexity and similarity of plant leaves, it is very important to study an
effective leaf-feature extraction method to improve the recognition rate of plant leaves. We study five multi-
scale triangle representations: the triangle unsigned area representation (TUA), the triangle vertex angle
representation (TVA) and three new representations, which we define as the gray average (TGA), the gray
standard deviation (TGSD) and the side length integral (TSLI) on the triangle. In this method the curvature
features of the contour, the texture features and the shape area feature are extracted to provide a multiscale
leaf-feature description, and a new adaptive KNN for optimization method is proposed to improve the
retrieval rate of leaf datasets. Experiments show that compared with the state-of-the-art methods, our method
has higher accuracy on the Swedish and Flavia plant leaf datasets, which are respectively 99.35% and 99.43%
with 84.76% Mean Average Precision (MAP) value and has comparable results on MPEG-7, kimia99 and
kimia216 datasets. When our method is combined with KNN for optimization, the retrieval rate of the above
datasets has been significantly improved, especially MAP on the Flavia dataset increases to 94.48%.

INDEX TERMS Plant leaf recognition, multi-scale leaf-feature description, multi-scale triangle representa-
tion, adaptive KNN for optimization.

I. INTRODUCTION
The taxonomic investigation of plants is of great significance
to the protection of biodiversity, agricultural ecology, and
biotechnology safety, and is an important research topic in the
field of biology and environmental science. Fast and accurate
automatic plant identification not only has a great effect on
the classification and investigation of plants, but also has
important significance for maintaining biodiversity [3].

Traditional artificial plant identification methods require
operators to have a certain degree of professional knowledge
and need to know a variety of plants. In addition, traditional
plant identification methods often have problems such as
large workload, low work efficiency, the operators are easily
affected by subjective factors. Therefore, the introduction of
automatic plant recognition technology into plant classifi-
cation can greatly improve the efficiency of classification
investigation. More importantly, automatic plant recognition
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technology has the advantages of simple operation, and it
does not require operators to have deep plant professional
knowledge, and can also assist experienced botanists and
plant ecologists to a certain extent [11]. The recognition of
plant species [26] usually involves the observation of certain
morphological characteristics of plants, and leaves are impor-
tant vegetative organs of plants. The leaves of different plants
have certain differences, so it is a very common method to
use leaves to identify plants.

Automatic leaf recognition technology involves the
retrieval and classification of leaf images. Many researchers
are interested in extracting multi-scale contour features [1],
[5]–[8], [13] from leaf images, they believe that contour
features can universally describe the overall layout and local
details of the leaf; while there are many researchers interested
in shape area features [10], [14], which are calculated on the
shapes fitted by the contour points of the leaf images, and
a series of parameters such as aspect ratio, area, centroid
and eccentricity; leaf recognition and retrieval technology
based on texture features [9], [20] extracts the gray-level
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FIGURE 1. Plant samples of the same type.

co-occurrence matrix, Local Binary Patterns and Gabor fea-
tures of the leaf image. Whether above methods are based
on leaf contour features, leaf shape area features or leaf
texture features, they are all of great significance to leaf
retrieval and classification. Nowadays, combining the above
three features is considered a very effective leaf retrieval and
classification method [2], [12], among which [12] gets very
high accuracy by using the ELM classifiers. An effective leaf
image retrieval and classification algorithm usually has the
following characteristics:
1) Plant databases are getting larger and larger [6], and

searching for similar plants from large-scale databases
requires low computational cost.

2) The demand for mobile devices and microcomputers is
rising, and the leaf retrieval and classification program
needs more lightweight and low-consumption algo-
rithms (such as [6], [7]).

3) The leaves of the same type of plants are quite different
(see Fig. 1), which brings great difficulties to accurate
retrieval.

In order to solve the above difficulties, we propose a new
multi-scale leaf-feature description. The main contributions
of this paper are summarized as below:
1) Propose a multi-scale triangle representation, which

contains the curvature features of the contour, the texture
features and the shape area features of the leaf image.

2) Our method provides a multi-scale descriptor and an
outstanding ability to describe the overall layout and
local details of the leaf image, which conforms to the
multi-scale property of human to recognize objects.

3) Only a few pixels of the leaf image to participate in the
calculation, so our method has very low computational
cost and hardware consumption.

4) An adaptive KNN for optimization is applied to greatly
improve the retrieval rate of the flavia leaf dataset,
which combined the KNN classifier with the optimiza-
tion process.

The rest of this article is arranged as follows: we review the
related work of leaf recognition in section II. The preprocess-
ing work is shown in section III and the multi-scale triangle
representations are elaborated in section IV. In section V a
new adaptive KNN for optimization method is presented. The

performance of ourmethod and ourmethodwith optimization
are experimented in section VI. Finally, the paper ends with
concluding remarks in section VII.

II. RELATED WORKS
In this section, we review the current popular leaf recognition
methods. Generally speaking, leaf features contain leaf con-
tour features, leaf shape area features, and texture features.

There are many types of leaf contour features. On the
Swedish leaf dataset, Mouine et al. [1] used the triangles on
the contour points to calculate the side length, angle, area and
other parameters to describe the contour of the shape, and
achieved 96.53% accuracy; Hu et al. [4] proposed a multi-
scale distance matrix description method, in which the multi-
scale distance matrix is calculated on the contour points to
represent the contour spatial distribution, and they reported
93.60% accuracy; Wang et al. [6] extracted multiscale arch
height(MARCH) from each contour point to provide a con-
tour curvature description, and attained 97.33% accuracy;
Zhao et al. [7] combined multiscale Gaussian convolution
on the contour points and the shape mode dictionary which
proved to be better than matching extracted features and an
accuracy of 97.10% is achieved; Ling et al. [13] attempted
to apply inner distance to measure shapes similarity instead
of Euclidean distance, and obtained an accuracy of 94.13%;
Yu et al. [5] attained 95.67% accuracy by using combined
feature of contour and venation for leaf image identifica-
tion; Md.Ajij et al. [8] analyzed the shape similarity by
using the Pearson Correlation Coefficient calculated from
leaf boundary pixels; Compared with the original triangle
representation, Yang et al. [11] proposed a symbol matrix and
a triangle center distance matrix to represent the leaf contour
features, and obtained an accuracy of 97.27%; The results
of the above-mentioned method are not satisfactory. Using
only leaf contour feature information, lack of features such
as shape area features and leaf texture features, cannot fully
and effectively express leaf features.

In terms of the feature of the leaf shape area, Liu et al. [14]
converted the binary function of the leaf binary image into a
Fourier power spectrum to describe the leaf shape area fea-
tures, and obtained 92.27% accuracy on the public Swedish
leaf dataset; Kumar et al. [14] calculated the aspect ratio,
area concave-convex ratio, and minor axis length based on
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the contour of the leaf, and achieved 95.42% accuracy on
the Flavia leaf dataset by using the AdaBoost classifier.
Chaki and Parekh [42] combined Moment Invariants and
Centroid-Radii model for a classification accuracy of 97.9%.
ArunPriya et al. [32] presented a hybird method of represent-
ing the basic geometric features, morphological features, vein
features of leaf with SVM classifier and achieved 94.5%
accuracy on the flavia leaf dataset. Neto et al. [33] used
Elliptic Fourier to identify young soybean, sunflower, redroot
pigweed and velvetleaf plants and obtained 89.2% accu-
racy. Aptoula and Yanikoglu [34] presented morphological
covariance on the leaf contour profile and circular covariance
histogram and achieved 56.09% on ImageCLEF2012 datset.
Du. et al. [35] extracted Digital morphology features to clas-
sify 20 species of plant leaves and the result was good. The
above method based on the leaf shape area features has a
single description ability and a poor recognition effect.

There are many ways to extract leaf texture features,
including Local binary pattern (LBP) [31], Gray level
co-occurrence matrix (GLCM) [27]–[30] and Gabor fea-
tures, etc. In [31], Modified Local Binary Patterns (MLBP)
were put forward for the extraction of texture feature from
plant leaves. Chaki et al. [9] combined the Gabor filters
and the gray-level co-occurrence matrix to represent the tex-
ture features of leaves, and obtained 97.6% accuracy rate
on the Flavia leaf dataset with MLP and NFC classifiers.
Prasvita and Herdiyeni [37] applied Fuzzy Local Binary Pat-
tern (FLBP) and the Fuzzy Color Histogram (FCH) in order
to identify medicinal plants and achieved 74.51% accuracy.
Man et al. [38] extracted GLCM from the image after digital
wavelet transform and obtained 92.2% accuracy on 24 species
of plant leaves. Tang et al. [20] extracted the GLCM and LBP
of green tea leaves. The leaf image is often compressed by
the above methods due to the time complexity. Leaf texture
features are easily affected by external disturbances so that it
is difficult to use it as a means to identify the leaves alone.

Many researchers tried to extract multiple features to rec-
ognize leaves. El Massi et al. [29] combined color feature,
shape feature and texture feature and obtained 91.46% accu-
racy Leaf image of diseases and insect pests. Lee et al. [39]
combined leaf contour centroid distance, Geometric and
Digital and Morphological Features and achieved 95.44%
accuracy on the Flavia leaf dataset. Polar Fourier transform,
color moments, vein features are applied in leaf recogni-
tion and the authors [40] reported 93.13% accuracy on the
Flavia dataset. Shape features, FD and multiscale distance
matrix was shown in [41], and the authors attained 94.62%
accuracy on the Flavia dataset. Aakif et al. [2] extracted
various features such as the shape, texture, and color fea-
tures of the leaves, the optimal feature vector is calculated
by the ant colony algorithm, and 96.25% accuracy rate is
attained on the Flavia leaf dataset. Turkoglu et al. [12]
combined the Fourier descriptors, color features, and gray-
level co-occurrence matrix features of the leaves to achieve
99.10% accuracy on the Flavia leaf dataset by using the ELM
classifier. The above-mentioned methods based on multiple

features get higher accuracy, but they have the problem of
high time complexity and redundancy.

In short, only using one of contour feature, texture fea-
ture or shape feature, the recognition effect is not satisfactory.
Although some methods consider extracting multiple charac-
teristics of leaves, the texture features and shape features can
only describe the overall layout of the leaves and lack detail
descriptions. Moreover, these algorithms rely on the optimiz-
ers or neural networks to improve recognition accuracy. There
are still many problems including that the time complexity is
high, training does not converge or falls into local optimiza-
tion. In order to solve the above problems, a simple, effective,
efficient and robust leaf recognition algorithm is proposed in
this paper.

III. IMAGE PREPROCESSING
Before extracting features from leaf images, preprocessing
is first required. In this section we briefly introduce the
preprocessing of a leaf image, the steps are as follows:

1) Gray-level image.
To convert the RGB image into a gray-level image,
we obtain the grayscale matrix representation by the
following formula:

G = R ∗ 0.3+ G ∗ 0.59+ B ∗ 0.11 (1)

where R,G,B are integers between 0 and 255 and corre-
spond to the color of the pixel, 0.3, 0.59, 0.11 are weight
parameters.

2) Convert it into a binary matrix representation.
By using the threshold segmentation function, a binary
matrix representation is obtained:

B(xi, yi) =

{
1 G(xi, yi) < T
0 G(xi, yi) ≥ T

(2)

where T is the threshold, (xi, yi) is the coordinates of the
pixels.

3) Generate its leaf contour points.
By applying the classic outer contour tracking func-
tion, N contour points are uniformly sampled counter-
clockwise, and the contour points p is obtained: p =
{(xi, yi)|0 ≤ i ≤ N − 1}

The flow chart of leaf image preprocessing is shown
in Fig.2.

IV. MULTISCALE TRIANGLE REPRESENTATION
The multi-scale triangle representation mainly extracts the
contour curvature features, texture features and shape area
feature of each leaf image. In this section we elaborate on
the contour curvature features TUA and TVA, texture fea-
tures TGA and TGSD, and shape area feature TSLI (see in
section IV.A-IV.D).

The boundary of each shape is uniformly sampled into
contour points p0, p1, . . . , pN−1 (see Fig. 3(a)), each con-
tour point pi is related to K triangles of different sizes(see
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FIGURE 2. Leaf Image preprocessing.

FIGURE 3. Multiscale triangular representation. (a) Uniformly sampled leaf contour with N = 64 points. (b) pi is represented by
K = 4 triangles. (c) Four triangles with scale value x(0) = 16, x(1) = 8, x(2) = 4, x(3) = 2.

Fig. 3(b)).The function x(k) is defined as follows:

x(k) =
⌈
N/4
2k

⌉
, 0 ≤ k ≤ K − 1 (3)

where k is the valuable of scale, x(k) is the scale value which
represents the number of contour points between contour
point pi and contour point pi+x(k) or contour point pi−x(k)
in the triangle. The smaller the scale value x(k), the smaller
the triangle, which can capture the local feature of the leaf
image; conversely, the larger the scale value x(k), the larger
the triangle, which can capture the overall feature of the leaf
image(see Fig. 3(c)). Tik is defined as a triangle composed
of contour point pi, pi+x(k) and pi−x(k). Its scale value is x(k)
and its side lengths are aki = |pipi−k | , b

k
i = |pipi+k | , c

k
i =

|pi−kpi+k | (see Fig.4). T k is a set of triangles with contour
points p0, p1, . . . , pN−1 as the vertex and their scale value
are x(k).
Each sample is represented by five triangle representa-

tions: 0 = (TUA, TVA, TGA, TGSD, TSLI) where TUA
is represented by K representations: TUA = (TUA(T 0), . . . ,
TUA(TK−1)) where TUA(T k ) is represented by N variables:
TUA(T k ) = (TUA(T k0 ), . . . , TUA(T

k
N−1)).

Therefore TUA = (TUA(T 0
0 ), . . . , TUA(T 0

N−1), . . . ,
TUA(TK−10 ), . . . , TUA(TK−1N−1 )), the remaining TVA, TGA,
TGSD and TSLI are also defined in the same way.

A. TRIANGLE UNSIGNED AREA REPRESENTATION (TUA)
For each triangle, TUA(T) = AREA(T), TAR is the signed
area of the triangle in [1], but due to the sampling deviation
of the contour points, TUA represents the unsigned triangle

FIGURE 4. Ti
k representation.

area here, and its description ability is better than TAR [1].

TUA(T ki ) =
1
2
ABS(

∣∣∣∣∣∣
xi−x(k) yi−x(k) 1
xi yi 1

xi+x(k) yi+x(k) 1

∣∣∣∣∣∣) (4)

Because TUA(T ki ) changes with the size of the triangle T ki ,
we should normalize it as follows:

TUA(T ki ) =
TUA(Tik )

AVG(
N−1∑
i=0

aki × b
k
i )

(5)

where ak = {aki |0 ≤ i ≤ N − 1, aki ∈ R}, b
k
= {bki |0 ≤ i ≤

N − 1, bki ∈ R} are the side length set.
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FIGURE 5. TGSSL representation. (a) Grayscale distribution on two sides ak
i and bk

i of the triangle. (b) Pixels
sampled by the improved DDA algorithm on both sides ak

i and bk
i of the triangle with Scale H = 20. (The blue

pixels fall within the shape area, and the green pixels fall outside the shape area).

B. TRIANGLE REPRESENTED BY A VERTEX ANGLE (TVA)
TVA representation is the vertex angle of the triangle Tik (see
Fig. 4), and it also describes the curvature features of leaf
contour. Let the vertex angle between aki and b

k
i is θ

k
i and its

calculation formula is as follows:

θki = arccos(
(aki )

2
+ (bki )

2
− (cki )

2

2× aki × b
k
i

) (6)

In order to improve the fault tolerance of TVA, the calculation
formula is:

TVA(Tik ) = θ̃ki = arccos((
(aki )

2
+ (bki )

2
− (cki )

2

2× aki × b
k
i

)2) (7)

C. TRIANGLE REPRESENTED BY THE GRAYSCALE
STATISTICS OF TWO SIDE LENGTHS (TGSSL)
TGSSL representation describes the texture feature of the
leaf, including two new representations which are represented
by the gray average on triangle(TGA) and the gray standard
deviation on triangle(TGSD).The above two representations
together describe the gray distribution on the two sides aki and
bki of the triangle(see Fig. 5(a)).In order to obtain the gray
distribution on the triangle, the Digital Differential Analyzer
(DDA) algorithm is applied to sample the coordinate points
on the two sides aki and b

k
i . The coordinate points on the tri-

angle set T k are sampled in parallel, and the DDA algorithm
makes the following improvements:
1) Calculate cnt(aki ) =

⌊
AVG(ak0, a

k
1, . . . , a

k
N−1)

⌋
,

cnt(bki ) =
⌊
AVG(bk0, b

k
1, . . . , b

k
N−1)

⌋
,

and we define a scale H to reduce the number of
sampling points:

cnt(aki ) = cnt(aki )/H , cnt(bki ) = cnt(bki )/H (8)

2) Calculate the increment on the x-axis:

dx(aki ) =
xi − xi−k
cnt(aki )

, dx(bki ) =
xi+k − xi
cnt(bki )

(9)

Calculate the increment on the y-axis:

dy(aki ) =
yi − yi−k
cnt(aki )

, dy(bki ) =
yi+k − yi
cnt(bki )

(10)

3) Calculate the sampling coordinates (̃xaiq , ỹ
ai
q ) on one side

aki of the triangle:

x̃aiq =
⌊
xi−k + q× dx(aki )

⌋
, 0 ≤ q ≤ cnt(aki )

ỹaiq =
⌊
yi−k + q× dy(aki )

⌋
, 0 ≤ q ≤ cnt(aki ) (11)

Sampling coordinates (̃xbir , ỹ
bi
r ) on the other side bki :

x̃bir =
⌊
xi + r × dx(bki )

⌋
, 1 ≤ r ≤ cnt(bki )

ỹbir =
⌊
yi + r × dy(bki )

⌋
, 1 ≤ r ≤ cnt(bki ) (12)

More importantly, there is a contour point (xi, yi)
on side aki , but not on side bki . Therefore, the num-
ber of points sampled on side aki is cnt(aki )+1, and
the number of points sampled on side bki is cnt(bki ).
The set of coordinate points < sampled on the triangle
Tik is: < = {(̃xai0 , ỹ

ai
0 ), . . . , (̃x

ai
cnt(aki )

, ỹai
cnt(aki )

), (̃xbi1 , ỹ
bi
1 ), . . . ,

(̃xbi
cnt(bki )

, ỹbi
cnt(bki )

)} (see Fig. 5(b)).
After simplification, the set is expressed as: < =

{(̃xt , ỹt )|0 ≤ t ≤ cnt(aki )+ cnt(b
k
i )}

It is obvious that the time cost of mapping the set < to
the gray value subset G̃ and the binary subset B̃ is very low.
It only needs the grayscale matrix representation G(given
in formula (1)), the binary matrix representation B(given in
formula (2)) and the set < to obtain the gray value subset
G̃ = {G[<̃t ])|0 ≤ t ≤ cnt(aki ) + cnt(bki )} and the binary
subset B̃ = {B[<̃t ]|0 ≤ t ≤ cnt(aki ) + cnt(bki )}. When
B̃t = 0, the coordinate point (̃xt , ỹt ) is outside the leaf image,
and when B̃t = 1, the coordinate point (̃xt , ỹt ) is inside the
leaf image.

However, there are noises in the binary subsets B̃ corre-
sponding to the triangle set T k , and they are blur filtered to
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FIGURE 6. The binary subset B̃ corresponding to each triangle Ti
k in the triangle set T k . (a) Before blur filtering. (b) After blur

filtering. Pixels are blue when B̃t = 1, pixels are green when B̃t = 0 in triangle T k .

eliminate noise, here the window size is 3 × 3. The formula
for rounding after filtering is as follows(see Fig. 6(b)):

B̃t =

{
0 0 < B̃t < 1
1 otherwise.

According to the binary subset B̃ and the gray value subset
G̃, TGA(Tik ) and TGSD(Tik ) are calculated as follows (cnt =
cnt(aki )+ cnt(b

k
i )):

TGA(Tik ) =

cnt∑
t=0

Gt × B̃t

cnt∑
t=0

B̃t

(13)

TGSD(Tik ) =

√√√√√√√√
cnt∑
t=0

((Gt − TGA(T ki ))× B̃t )
2

cnt∑
t=0

B̃t

(14)

It can be seen that TGA representation represent the
average level of gray distribution, and TGSD representa-
tion describes the fluctuation of the gray distribution on the
triangle.

D. TRIANGLE REPRESENTED BY SIDE
LENGTH INTEGRAL (TSLI)
TSLI representation is the distribution of pixels on the two
sides aki and b

k
i of the triangle Ti

k , which describes the shape
area feature of the leaf image. According to the binary subset
B̃ = {B[<̃t ]|0 ≤ t ≤ cnt(aki ) + cnt(bki )} in section IV.C,
TSLI(Tik ) is calculated as follows:

TSLI (Tik ) =

cnt(aki )+cnt(b
k
i )∑

t=0
B̃t

cnt(aki )+ cnt(b
k
i )+ 1

(15)

The result of TSLI(Tik ) is actually the proportion of blue
pixels in the row(see Fig. 6(b)). All five representations are
RST invariant(shown in VI.E).

E. FEATURE NORMALIZATION
We introduced five triangle representations in
section IV.A-IV.D. But the results of TUA(T k ), TVA(T k ),
TGA(T k ), TGSD(T k ) and TSLI(T k ) are all related to the
starting position of the contour point. Perform Fast Fourier
Transform(FFT) on the above five representations to obtain a
Fourier coefficient sequence TUA(T k ), TVA(T k ), TGA(T k ),
TGSD(T k ) and TSLI(T k ) with length N and they’re rotation
invariant, because the change of the starting point of the
contour does not change the Fourier coefficient. In order to
reduce the influence of noise, we only take the firstM (M �
N ) coefficients, and the representations are as follows:

TUA(T k ) = (TUA(T k0 ), . . . ,TUA(T
k
M−1))

TVA(T k ) = (TVA(T k0 ), . . . ,TVA(T
k
M−1))

TGA(T k ) = (TGA(T k0 ), . . . ,TGA(T
k
M−1))

TGSD(T k ) = (TGSD(T k0 ), . . . ,TGSD(T
k
M−1))

TSLI(T k ) = (TSLI(T k0 ), . . . ,TSLI(T
k
M−1))

The calculation formula of TUA representations is updated
as follows:

TUA = (TUA(T 0), . . . ,TUA(TK−1))

The remaining TVA, TGA, TGSD and TSLI represen-
tations are calculated in the same way. Finally, each leaf
image is represented by a triangular representation 0 with a
length of 5×K×M: 0 = (TUA(T 0), . . . , TUA(TK−1), . . . ,
TSLI(T 0), . . . , TSLI(TK−1)).

Because TUA, TVA, TGA, TGSD and TSLI have different
orders of magnitude, it is necessary to normalize the repre-
sentation 0 to prevent the weight of a certain triangle repre-
sentation from becoming too large. The steps for normalizing
the TUA representation are as follows:
1) Calculate minimum and maximum values of TUA of

the training set: Vminj = min(TUAj),Vmaxj =
max(TUAj), 0 ≤ j ≤ s − 1, j is the index number of
the training set, s is the size of training set.

2) Calculate V min and V max:

V min = (Vmin0,Vmin1, . . . ,Vmins−1)

V max = (Vmax0,Vmax1, . . . ,Vmaxs−1)
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FIGURE 7. Schematic diagram of dividing the dataset. s is the number of samples in the dataset,
1 ≤ v ≤ s− 1.

3) Replace TUA with TUA−V min
V max−V min , including training set

and test set.
The normalization of the remaining TVA, TGA, TGSD and

TSLI is the same, and finally each representation is given a
different weight as follows: 0 = (2× TUA, 2 × TVA, TGA,
TGSD, TSLI), the weight setting is related to the experiment
in Section VI.

F. MATCHING METHOD
Any two leaf images are represented as 0α = (TUAα,TVAα,
TGAα,TGSDα,TSLIα) and 0β = (TUAβ ,TVAβ ,TGAβ ,
TGSDβ ,TSLIβ ), α, β are the index number in the dataset,
their distance metric is based on Bray-curtis Distance:

dis(α, β) =
|0α − 0β |

0α + 0β
(16)

where |.| represents the L1 distance, the smaller the result of
this function, the more similar the two leaf images.

V. KNN FOR OPTIMIZATION
The retrieval rate of dataset is often related to the distance
between different samples. In order to improve the retrieval
rate, we propose a new adaptive KNN for optimization. This
method uses KNN classifier to divide the dataset, and then
optimize the samples representation. The process of KNN
classifier to divide the dataset is shown in Fig.7. Each sample
and vth match are classified into the same sets, and finally the
dataset is divided into U sets. 1 ≤ v ≤ s− 1, 0 < U < s.

KNN for optimization can be described by Algorithm 1 in
detail, which consists of two steps. The first step is the

division of the dataset, and the second step is the optimization
of the samples representation matrix 0.

It is important to note that the vth match of the method
changes dynamically based on the number of samples per
class in the dataset. Therefore, we define the formula as
follows:

v =
⌊
χ
s
C

⌋
(17)

where C is the number of classes in the dataset, and s is the
number of samples in the dataset, χ is the ratio variable.

VI. EXPERIMENTAL RESULT
In section VI.A, we set the parameters of our method.
In section VI.B Our method and Our method with optimiza-
tion (using KNN for optimization in section V) are compared
with the state-of-the-art methods on five datasets, including
Swedish [22], Flavia [23], MPEG-7 [24], Kimia99 [25] and
Kimia216 [25]. In Section VI.C, our method is proved to be
robust by adding the salt-and-pepper noises. In Section VI.D,
our method and our method with optimization are compared
with others on computational cost. At the end, our method is
proved to be invariant to scaling, translation and rotation.

A. SETTINGS
Our method is implemented under python3.0 and runs on
i5-6300HQCPUwith 2.3GHz and 8GBmemory. The param-
eters are set as: the number of contour points N= 256,
the number of scales K= 7, the scaling factor of the num-
ber of triangle Tik acquisition points H= 5, take the first
M= 7 Fourier coefficient of the Fourier transform sequence.
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Algorithm 1: Generation Process of KNN for Optimiza-
tion
Input: the samples representation matrix 0

(row : s, col : 5×M × K )
Output: the samples representation matrix after

optimization 0̃ (row : s, col : C − 1)
begin
·Divide the dataset according to the samples
representation matrix 0
·Initialization
Parent [0, s− 1] := 0, 1, . . . , s− 1,where s is the
size of dataset.
·Using KNN classifier to divide data set.
for index j ∈ [0, s− 1] do

Union(j,Similar set φj[v]),where φj is a similar
set retrieved by sample 0j with KNN classifier
of s− 1 length, v is an index of similar set φj,
0 ≤ v ≤ s− 1;

for index j ∈ [0, s− 1] do
Find(j);

·Combine the samples representation matrix 0 and
Parent to perform optimization.

meani = 1
Ui

Ui−1∑
u=0

0iu, where Ui is the number of the

ith category in the divided dataset(see Fig.7), 0iu is
the uth sample of the ith category, 0 ≤ i ≤ U − 1.

mean = 1
s

s∑
j=0
0j

·Calculate between-class scatter matrix:

Sb =
U−1∑
i=0

Ui (meani − mean) (meani − mean)T ,

where U is the number of categories in the divided
dataset in Fig.7.
·Calculate within-class scatter matrix

Sw =
U−1∑
i=0

Ui−1∑
u=0

(meani − 0iu)(meani − 0iu)T

·Calculate feature values and feature vectors
S = S−1w Sb
·λ1, λ2, · · ·, λC−1 and ε1, ε2, . . . , εC−1 are feature
values and feature vectors of S sorted by λ (largest
to smallest), C is the number of categories in the
dataset.
·Redistribute the weight of matrix coefficients,
remove redundant parts, and calculate the optimal
matrix 0̃
0̃ = 0 × [ε1, ε2, . . . , εC−1]T

Fuctions:
• function Find(x) • function Union(x, y)
if Parent(x) != x: xRoot := Find(x)
Parent(x) = Find(Parent[x]) yRoot := Find(y)
return Parent[x] Parent[xRoot] := yRoot

Different data sets have different vth match in Our method
with optimization, in addition to the Swedish dataset, the val-
ues are shown in Table 1.

TABLE 1. Different v th in our method with optimization in different
dataset.

TABLE 2. Accuracy of different approaches on the Swedish leaf dataset.

B. EXPERIMENTS
1) THE SWEDISH LEAF DATASET
This public dataset has a total of 1125 leaves, including
15 classes, and each class has 75 leaves (see Fig. 8(a)). It is
the same as [1], [5]–[8], [12], [15], [16], [18], each class on
the Swedish is randomly divided into training samples and
test samples at a ratio of 1:2, so there are 375 samples in
the training set, and 750 samples in the test set. The nearest
neighbor (1-NN) classifier is used for classification, that is,
in the returned most similar samples, if the first sample is
in the same class as the classificated sample, the sample
is correctly classified. Since the division method is random
selection, there is a lot of contingency. Therefore, this exper-
iment will be repeated 100 times, and the average result
of 100 experiments is used as the final result.

Table 2 shows the accuracy of different methods on
the Swedish dataset. The accuracy of our method reaches
99.35%. Comparedwith the CSR, ourmethodmisjudges only
one more leaf image on average. But the computational cost
of ours is quite low, requiring only 153.97ms to identify each
image, and while CSR requires 2130ms (See VI.D), which is
ten times of ours. Therefore, this experiment proves that our
method has high accuracy and is very suitable for real-time
tasks.

2) THE FLAVIA LEAF DATASET
This public dataset has 32 classes, each class has about
50-77 leaf images, and a total of 1907 leaf images. The
leaf images were photographed in the Yangtze River Delta
region of China. The leaf categories include Phyllostachys
pubescens, Luan Shu, Holly Daguo, Pittosporum vulgare and
Wintergreen (see Fig. 8(b)). We conduct two experiments,
one is retrieval experiment and the other is classification
experiment.
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FIGURE 8. Examples of different leaf Dataset. (a) From the Swedish Leaf Dataset. (b) From the Flavia Leaf
dataset. (c) From the MPEG-7 dataset (d) From the kimia99 dataset (e) From the kimia216 dataset.

TABLE 3. MAP values of different methods on the Flavia leaf dataset.

a: RETRIEVAL EXPERIMENT
Like other methods in Table 3, MAP based on leave-one-
out method is used for the evaluation of experimental.
Table 3 shows the comparison between our method and
the state-of-the-art methods on the Flavia. Except for the
CSR, our method attains the highest MAP value of 84.76%.
While our method with optimization attains 94.48% of MAP
value which is better than the CSR. CSR is extremely time-
consuming. It takes 2.13s to recognize each picture, while
our method with optimization only takes 110.80ms (see in
Section VI.D) to recognize. Therefore, our method attains
a high retrieval rate, which is very suitable for real-time
tasks and large-scale image retrieval tasks. Also, KNN for
optimization can be proved to greatly improve the retrieval
rate of the Flavia dataset.

The multi-scale triangle representation 0 proposed in this
paper include TUA, TVA, TGA, TGSD and TSLI represen-
tations. To find out the contribution of each representation,
we do the following experiments. Table 4 shows the compar-
ison of the MAP values of each representation on the Flavia.
TUA obtains the highest MAP value, and TGA obtains the
worst result. The MAP value of TVA and TUA is above 70%
and others below 70%, take 70% MAP value as base level,
the weights of TVA and TUA are set to 2, and the weights of
others are 1.

The KNN for optimization is related to ‘‘vth match’’,
so that we do the following experiments. Fig. 10(a) shows
the European distribution of 10 similar samples.

TABLE 4. MAP of various feature on the Flavia leaf dataset (MAP* is a
version of our method with optimization).

FIGURE 9. Influence of ‘‘v th match’’ on MAP on the Flavia leaf dataset.

v varies from 1 to 12. when v = 1, the distance between the
similar sample and the retrieved sample(red star) is reduced
compared to Fig. 10(a), but the MAP value is still rela-
tively low (see Fig. 9). As v grows, the distance between
the retrieved sample and the similar samples (for example,
the black hexagon) gradually decreases (see Fig. 10(c)).
When v = 8, the MAP value reaches the maximum value
of 94.48% (see Fig. 9). When v > 8, the retrieved sample and
the similar samples gradually increases (see Fig. 10(d)), and
theMAP value begin to decrease (see Fig. 9). When v is equal
to the number of samples in the dataset, the distribution of the
10 samples become chaotic and random, and the MAP value
will tend to 0.
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FIGURE 10. The impact of different ‘‘v th match’’ on 10 similar samples in the same class. (a) Our
method. (b) Our method with optimization (v = 1). (c) Our method with optimization (v = 8). (d)
Our method with optimization (v = 19) (Here the center of the circle is the retrieved sample and
the interval of each circle is 0.02 in L2 Distance.)

It can be seen from experiments that vth match is a balance
point which is related to the number of samples in the each

class because it requires
←−
vth(←−v < v) match in the same class

as vth match, and
−→
vth(−→v > v) match in a different class with

vth match. Therefore, the scaling factor χ in formula (17) can
be calculated as: χ = 8

s/C , where C is the number of classes
in the dataset, and s is the number of samples in the dataset.
Taking the Flavia dataset as a benchmark to get χ= 0.13. (see
in Table 1).

b: CLASSIFICATION EXPERIMENT
In this part, we divide the training set and test set on the
Flavia as experimental evaluation. Because many methods
have different size of training set and test set, in order to
have a better comparison, we apply different division ratios
according to these methods. Table 5 shows the comparison
between our method and the state-of-the-art methods in the
accuracy on the Flavia. No matter which division ratio, our
method has the highest accuracy. When the division ratio
is 9:1, the accuracy of ours is the highest value of 99.43%,
which is 0.33%higher than theGLCM+ FD+Color features
method [12].

Because the multi-scale triangle representation is related to
K (the number of triangles), we do the following experiment
(see Fig. 11).K varies from 1 to 11.WhenK = 1, the triangle
representation only describes the overall layout of the leaf
image, and its ability to describe details is weak. As the value

TABLE 5. Accuracy of different approaches on the Flavia leaf dataset.

of K increases, the ability of describing details increases.
When K = 7, the accuracy and the MAP value achieve the
highest. When K > 7 and 6 ≤ k ≤ K − 1, 0(T k ) = 0(T 6),
the weight of the triangle representation 0(T 6) is getting
higher and higher, the ability of 0 to describe the overall
layout is relatively weak, and the accuracy is declining.When
the weight of the triangle representation 0(T k ), 0 ≤ k ≤ 5 is
relatively lower and lower until it is negligible, the accuracy
will not drop anymore. Therefore, we use K = 7.

3) BINARY SHAPE DATASET
In order to further evaluate the impact of KNN for opti-
mization on the retrieval rate, we select three datasets,
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FIGURE 11. The impact of the number of different scales K on the proposed approach. (a) Our method tested
on the Swedish Leaf Dataset. (b) Our method and Our method with optimization on the Flavia Leaf Dataset.

TABLE 6. Retrieval results (%) on Kimia99 shape dataset.

TABLE 7. Retrieval results (%) on Kimia216 shape dataset.

including Kimia99, Kimia216 and MPEG-7. The MPEG-7
has 70 classes, each with 20 shapes (see Fig. 8(c)).
Kimia99 has 9 classes, each with 11 shapes (see Fig. 8(d)).
Kimia216 has 18 classes, each with 12 shapes (see Fig. 8(e)).
Same as the experimental evaluation method [13], for the
Kimia99 and the Kimia216, the retrieval results come from
the total number of correct matches for top 10 (in Kimia99)
and top 11 (in Kimia216). Their maximum number of correct
matches are 99 (in Kimia99) and 216 (in Kimia216).

The experimental evaluation of MPEG-7 is different.
As same as [16], we choose ‘‘Bull’s eye score’’, that is, each
shape is queried. The percentage of correct matches in the top
40 is used as the retrieval rate for each shape and the average
retrieval rate of all shapes is taken as the Bull’s eye score.

Because the above three datasets are binary shape datasets
and no texture information here, so we only use TUA, TVA
and TSLI representations. Table 6 and Table 7 show the
retrieval results of different methods on the kimia99 and
kimia216. The retrieval results of our method with optimiza-
tion is better than the retrieval results of our method. It shows

that even if we do not use texture features, compared with
the current popular methods, our method has comparable
results.

We also do a comparative experiment onMPEG-7. ‘‘Bull’s
eye score’’ of our method is 78.9%, while CSR with uni-
form sampling [16] is 68.02%. ‘‘Bull’s eye score’’ of our
method with optimization is 86.1%, while CSR with optimal
sampling is 84.17%. It demonstrates that our method has a
higher accuracy than CSR. This experiment further confirms
that KNN for optimization has a significant improvement in
retrieval rate.

C. ROBUSTNESS
In this section, we explore robustness of our method, in which
the anti-interference ability is shown in Table 8. The noise
intensity S is changed from 0% to 20% (see Fig. 12). The
accuracy of IDSC [13] dropped by 50.5%, and MARCH [6]
dropped by 10.9 %, while our method only dropped by 5.35%
in Table 7. The above experiments prove that our method has
a stronger anti-interference ability.
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FIGURE 12. From left to right, images with 0%, 10%, 15% and 20% salt-and-pepper noise is added
respectively.

FIGURE 13. The impact of image zoom (a) and image rotation (b) on our method.

TABLE 8. Accuracy (%) on the Swedish leaf dataset with salt-and-pepper
noise.

D. COMPUTATIONAL COST
Sections VI.B and VI.C prove the effectiveness and robust-
ness of our method, and its efficiency will be verified in this
section. The experiment calculate the feature extraction time
and recognition time in five datasets. To avoid contingency,
the experiment was repeated for 10 times and the average of
the results was taken. It is worth noting that the leaf images
on the Flavia are all 1K resolution, most of the leaf images
on the Swedish Leaf Dataset are 1K resolution, a small part
is 2K resolution, and the resolutions of the other three binary
shape datasets are 128×128. Table 9 shows how long it takes
on different datasets, where Flavia*, Kimia99*, Kimia216*
andMPEG-7* is a version of Our Method with Optimization.
Despite the high resolution of the leaf images, ourmethod still
cost less time to calculate. Meanwhile, although our method
with optimization applies KNN for optimization, it cost little

TABLE 9. Running time on different datasets.

time in optimization process. Therefore, our method or our
method with optimization can be applied to the real-time
image recognition system.

Table 10 shows the average time consumed by different
methods. Our method includes leaf contour features, texture
features and shape area features. But its time is much lower
than that of the method based on contour curvature fea-
ture [1], [4], [6] and the method based on mixed features [12].
Furthermore, its time consumption is 5% of the CSR and 2%
of the IDSC. It is worth noting thatMARCH [6] has been used
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TABLE 10. Time cost of methods on the Flavia leaf dataset.

in smart phones, so our method can undoubtedly be applied
to the real-time leaf recognition program of smart phones.

E. THREE RST INVARIANT
In this section, our method is proved to have three RST
invariant (image rotation, scale and translation are invariant).
Obviously, image translation cannot change the relative posi-
tion of pixels, however, image rotation and image scale cannot
maintain the relative position of pixels due to the loss of
numeric precision caused by the process of converting integer
coordinate points. Fortunately, the influence of image rotation
and image scale on our method is controllable. Fig. 13 shows
how the distance between images with different scales and
angles. In this experiment, the size of the image was changed
from 1 to 10 times, and the angle was changed from 0◦ to
359◦. Although the images are scaled or rotated, compared
with the original image, the Euclidean distance between them
is almost within 1. This error is almost caused by the loss of
numeric precision. Therefore, we believe that our method is
invariant to rotation, scaling and translation.

VII. CONCLUSION AND FUTURE SCOPE
In this paper, a multi-scale triangle representation is pro-
posed, of which five representations extract contour curvature
features TVA and TUA, texture features TGA and TGSD, and
shape area feature TSLI from each leaf image. The multi-
scale triangle representation can well describe the overall
layout and local details of the leaf images, and it is also
invariant to scaling, translation and rotation. Experiments
show that our method and our method with optimization
surpass other state-of-the-art methods in terms of recognition
accuracy, retrieval rate, anti-interference ability and computa-
tional cost.We also show that KNN for optimization proposed
can effectively improve the retrieval rate of the datasets. In the
future, ourmodel can be applied inmobile devices, andwe are
committed to researching lighter and faster leaf recognition
algorithms.
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