
Received October 21, 2020, accepted November 5, 2020, date of publication November 16, 2020, date of current version November 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037798

Mone: Mutation Oriented Norm Evolution
XIANCHANG WANG1,2,3, RONGHAO FU 1,2, AND RUI ZHANG1,2
1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
3Chengdu Kestrel Artificial Intelligence Institute, Chengdu 610000, China

Corresponding author: Rui Zhang (rui@jlu.edu.cn)

This work was supported in part by the Natural Science Foundation of Jilin Province under Grant 20190201273JC.

ABSTRACT A norm regulates the run-time behavior of the agent with the action and condition to trigger the
action. Because of the incomplete understanding of the world, the result of the action may be different for the
same agent with the ‘same’ context, or unintended different context. To study this phenomenon, the classical
norm definition is extended from the condition-action pair to cover the expectation, in order to verify the
result of the action. The Norm evolution can be defined as a gradual process which makes a norm more
complete and effective. In the terminology of evolution, a norm is called mutated if the result contradicts
to the expectation, i.e. at least one of the expected conditions is invalid. At run-time, norms are executed
in series. A mutation brings new knowledge to the following states and might affect the later execution of
the norms. Such knowledge provides will help the norm designer to complete the definitions. A mutation
based norm evolution (Mone) method is proposed in this paper to detect the mutations, to propagate the
evidence and to crossover the norms for completeness. The method is formalized in the Description Logic,
and implemented with the algorithms for mutation detection and norm crossover. The case study illustrates
the Description Logic ALCI of the method and shows the potential to evolve the norms autonomously in
the Blackboard system, GBBopen.

INDEX TERMS Mutation, Norm Revision, Blackboard-system, Multi-Agent System.

I. INTRODUCTION
One of the most famous multi-agent system frameworks is
the blackboard based system (BBS) whose history goes back
to 1980’s [1]. Open source frameworks such as GBBopen,1

Repast [2] and Repast HPC [3] are used as the backbones
of advanced science, engineering, and policy analysis. The
BBS architecture provides a flexible framework to solve
complex problems with blackboard, knowledge source (KS)
and control shell. The blackboard serves as a space for com-
mon knowledge sharing from various KSs. Each KS can be
regarded as an agent that operates autonomously and changes
the shared knowledge on the blackboard in a controlled man-
ner with predefined functions and trigger events, which are
the action and the conditions of the norm.
The flexibility of BBS leads to complex interactions

between the KSs and blackboard, through the transition of
the states by the execution of the predefined norms (or the
norm’s actions). Norms are designed to be executed in series
such that the result of a norm triggers the next norm. But it is

The associate editor coordinating the review of this manuscript and

approving it for publication was Hiram Ponce .
1http://gbbopen.org/index.html

not always the case as the context can never be studied com-
pletely. Some executions may follow the expectation, some
may lead to exceptions. However, there may be a number of
exceptional results that are identified as significant for other
norms. Such an exceptional case is called a mutation i.e. the
action is successfully triggered but the result of the action
contradicts the expected outcome (negation of one of the
expected outcome conditions).Mutations often, if not always,
emerge in the real world applications because the predefined
norms are always an incomplete description of the regulatory
knowledge.

To reconcile this incompleteness of predefined knowledge,
the norms should and have to evolve. Then the questions arise
as what is the new knowledge for the evolution of the norms?
where does the new knowledge come from? and how does the
norm evolve with such knowledge?

To answer these questions, the BBS system is abstracted
into an agent-based scenario. The norms are extended to
incorporate expected results as expectation, in addition to the
action and the trigger conditions that fire the action. The KSs
are abstracted as norm executers that verify the knowledge
on the blackboard whether its norm is triggered and execute
the action and publish the result to the blackboard. The

205386 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0751-224X
https://orcid.org/0000-0002-6559-7501

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

blackboard is abstracted as a state transactor that a state is
denoted by all the knowledge on the blackboard and transits
to another state, denoted with all the knowledge provided by
all the KSs that executed the triggered norms. The system
operates with a series of actions, i.e. to execute several norms
sequentially in the transitions of states.

For example a robot that sweeps the room should follow a
norm like the following:

• Trigger: Time≥8:00AM
• Action: Sweep
• Expectation: Finish sweeping and Time≤8:30AM

The norm is executed autonomously if its trigger condi-
tions are satisfied. It should finish sweeping as the expecta-
tion prescribed, but not necessarily as the norm might mutate
because of power shortage, broken arms, obstacles, etc. which
can never be exhausted in an open world. The robot may
follow the same series of norms everyday according to the
designed norms. Such kind of routine executions do not
provide any ‘new’ knowledge to the designer therefore it is
hard to revise the norms in such routines. On the other side,
mutations may take place in some of the days, the unexpected
result may provide extra knowledge to the execution series
and affect the execution of later norms.

This paper explores the evolutionary behaviors of norms,
i.e. inheritance, mutation and crossover. The result of the
executed action can be either coherent or contradictory to the
expectation of the norm. The norm is called mutated if any of
the expectation is violated by the result. In the different series
of norm executions, if a norm, say x mutates on one track
while performs normally on another, x is supposed to evolve
with some extra knowledge. We use the Layered Execution
Graph (LEG) defined in the modeling section to analyze
the different norm executions. It is found that other than
mutated, in the track that x does not mutate, there exist other
norms, say y, z . . .which mutate ahead of x. The mutations of
y, z . . . provide extra knowledge not prescribed in the norm
construction stage. It is also found that such extra knowledge
can be inherited to x through the tracks of the LEG. x can
evolve by crossoverwith themutated norms y, z . . .The paper
proposes a novel mutation oriented norm evolution method:
Mone. It enriches the trigger condition of the norm that
mutates, with the expectations of some other mutated norms.
The contributions of the paper lay in 3 aspects:

• To find the relationship between different executions of
the same norm, from a mutated one to a well-executed.

• To prove the existence and inheritance of the extra
knowledge from mutations.

• To provide algorithms to construct the Layered Execu-
tion Graph, to detect the mutations and to evolve the
norms.

II. STATE-OF-THE-ART
Knowledge based systems are always facing the incom-
pleteness of the knowledge. This is especially challeng-
ing in a multi-agent blackboard based system [1] where

common knowledge can be changed by different knowledge
sources [4]. One of the most influential aspects leads to the
‘abnormal’ executions of the norms, which regulate the run-
time behaviors of the agents. It demands the norm evolution
with the growth of knowledge.

Current norm evolution studies mostly fell into 3 cat-
egories, norm formalisation, norm conflict resolution and
norm failure localisation. Fisher et al. discussed the relation-
ship between computational logic and agents [5] in agent
specification, implementation and analysis. Many logical
frameworks are proposed to formalize the domain [6]–[8].
Besides, model checking [9] and belief-desire-intention
framework [10] are also applied for norm representation. But
this is not in our focus because we emphasize on the use of
mutation rather than its representation.

Vasconcelos et al. proposed the norm with constraints and
a framework to detect and resolute conflicts in [11]. Silvestre
and Da Silva developed a method to resolute conflicts among
multiple norms [12]. Santos et al. classified [13] the conflict
resolution approaches into direct and indirect detections and
surveyed the progresses. Kayal et al. proposed to resolve
conflicts in social commitment automatically through a con-
flict resolution model based on relevant user values such as
privacy and safety [14]. This thread focuses on the resolution
of a given norm set, which is not the problem we want to
solve.

Passos et al. found the error-prone nature of multi-agent
systems and focused on the behavior failures via spectrum-
based fault localisation [15]. It has been improved by the
accuracy graphmethod in 2017 [16]. Alechina et al. discussed
the imperfect monitor of runtime norm executions [6]. Huang
and Alexander explored the semantic mutation testing to
assess tests and program robustness [17]. The Silk frame-
work was proposed to monitor and resolve the conflicts of
norms [18]. The work in this thread focuses on the con-
flicts between different norms. The common solution is to
evaluate and place a priority on the conflicting norms. It is
different from the Mone method in that we focus on the
different behaviors of the same norm on multiple executions
and explore the possible reasons inherited from the execution
results of other norms that are mutated and generate expected
knowledge useful for the evolution.

III. MOTIVATING EXAMPLE
In an agent-based system, a sweeping robot cleans the room.
The robot automatically starts cleaning from 8:00 AM if
set in the Auto mode. It is expected to take the robot less
than 30 minutes to complete the job. Everyday, the robot
finishes sweeping before 8:30 AM; except one day, the robot
was stuck by an obstacle and did not manage to remove
it, which resulted in the failure of the task. To detect the
reason, the robot was set to the monitor mode, and tested
for exceptions. In this case, an obstacle was found and its
weight was beyond the ability of the robot, therefore removed
manually by the monitor. Then without the obstacle, the job
was finished in time. Yet another day, the job failed again.

VOLUME 8, 2020 205387

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

FIGURE 1. Execution graph of the motivating example. The dashed arrows represent mutations, the continuous arrows represent the normal
execution (vi represents the norm, si represents the state, v1: task starts; v2: sweep room; v3: monitor starts; v4: obstacle tests; v5: obstacle
removal; v6: power tests; v7: power charges; v8: task completes; v9: task fails).

In another run of themonitor mode, it was found that the robot
ran out of battery half way of the job. By manually charging,
the robot recovered and finished the job.

With the above findings, it’s rational to refine the norms
that regulate the robot with the evidences found in themonitor
mode, such that the conditions to start the sweeping job
should incorporate not only Time==8AM andMode==Auto,
but also Obstacle≤1kg and Battery≥80%.
To study the different behaviors of the agent in multiple

series of norm executions, we introduce the so-called layered
execution graph. To describe the execution path, let vi repre-
sent the name of norm, si represent the state. Figure 1 gives
an example of the graph.

The graph represents multiple series of executed norms.
In the first state s1, it starts from a root vertex as the common
head of the different execution series. Each state denotes a
set of conditions, such as Time==8AM and Mode==Auto.
States grow in a horizontal direction sequentially. Each ver-
tex denotes the (multiple) execution of a norm, triggered
in the conditions of the state. Directed edges represent the
order of the executions. The multiple outgoing edges from
a vertex denote the different execution results of the norm.
The solid edge denotes that the norm has been executed
as expected; the dashed one denotes the result has some
condition that is not prescribed by the norm. There are some
execution paths in Figure 1. One series of execution is (v2, v8)
that the task starts and completes normally, while another
is (v2, v9), which indicates the robot is stuck and the task
fails. Yet another series is (v1, v2, v3, v4, v5, v6, v2, v8) which
indicates that the obstacle detected by the test is removed
and the sweeping can be completed. Yet another series is
(v1, v2, v3, v4, v6, v7, v2, v8), which indicates the robot is start
sweeping in the monitor mode and the power shortage prob-
lem is settled by recharging, after the power test which is in
turn an internal system test.

IV. MODEL
For better formalize the scenario, the Description Logic
ALCI (attributive concept description language) is used
with a real world interpretation I of the TBox (Termino-
logical Box) and ABox (Assertional Box). The Description
Logic is divided into a TBox part and an ABox part. The

FIGURE 2. ER Diagram of Mone.

TBox defines the structure of the domain and includes some
axioms, the ABox describes examples of the domain and
including some axioms asserting.

The major entities such as norm, condition, state, action
are defined as DL classes and the auxiliary entities such
as time, location, weight, etc. are left as predefined domain
attributes for data properties. In a general agent-based con-
text, a state describes the environment with the features as
conditions; a norm regulates the way an agent functions given
a certain state. Traditional norms describe the regulation in a
pair (request, action), where request ⊆ state describes the
necessary conditions to trigger the action.

But it is not good enough to study the outcome of the action
in such a definition. In our findings, a norm should clarify two
states:

• The state satisfies the norm’s request in order to trigger
the action;

• The state of the agent after the action, as the expected
result prescribed in the norm’s expectation.

Figure 2 gives the conceptual model of the Mone method.
The Condition and State are first class entities, with Trigger,
Effect and Expectation as the sub-class of state. A state may
have multiple conditions, while a condition can be inState of

205388 VOLUME 8, 2020

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

multiple states. An Action connects the Trigger state to the
Effect. A Norm regulates the agent that given the trigger state,
the execution result of the action should be the Expectation.

If the outcome of the norm execution is not as expected,
a exceptional situation occurs. From a norm definition point
of view, it is called a mutation that the prescription of the
norm is not complete and effective. To clarify the scenario,
we have the following definitions and theorems.
Definition 1 (Condition): A condition describes the state in

one dimension/perspective. It is formalized as an individual
c of the prime class Condition with the ABox assertion as

Condition(c)

In certain context, a condition can be either satisfied or unsat-
isfied. Therefore, we define the class Satisfied as the subclass
of Condition for those interpreted true in the context, and
Unsatisfied ≡ Condition u ¬Satisfied . Then if a condition c
w.l.o.g. is satisfied, there exists a pair-wise counter condition
not c that is unsatisfied in the same context. Here in the syntax
of DL, negation is not applicable on an individual, therefore
c̃ is used for the counter condition of c.
The condition class can be further classified into subclasses

as time-related condition, space-related condition and other
facilitated set of domain individuals.

For example, there are two individual conditions p1, p2
where p1 indicates that the mode of the robot is set as auto
and p2 indicates the current time is NOT 8 AM. If the cur-
rent context interprets that the robot is in auto mode and
the time is 8 AM, then the following ABox assertions hold:
Satisfied(p1), Satisfied(p̃2).
Definition 2 (State): A state describes the features of the

context, as a set of conditions, formalized as a DL class

State ≡ ∃hasCond .Condition

where hasCond is the object property from the class State to
Condition.

A state s is called the sub-state of another state s′ iff the
conditions in s are also in s′, i.e.

subState(s, s′)↔ inState : s v inState : s′

where inState ≡ hasCond−, and a : b is the syntax sugar of
∃a.{b} for simplicity.
A state s is called before another state s′ iff there exists

strictly sequential time related conditions between the states.

before(s, s′)↔ hasCond(s, t), hasCond(s′, t ′), t < t ′

where < is the strict order in the time domain.
Suppose that p3 stands for the condition that the robot

finishes sweeping in half an hour. The condition p4 stands for
the robot changes its mode into Finish. If one day at 8:30 AM,
it is observed that the sweeping task has not finished, then the
state is modeled as the ABox assertion ¬hasCond(s1, p3).
To describe the behavior of the agent, the prime concept

Action is defined.

Definition 3 (Action): An action describes the behavior of
the agent as the mapping from the Trigger state to the Result
state. Formally, it is a functional object property

act v Action

that projects a state to, if not the same, another state.
To detect the abnormal behaviors of the norm system,

we extend the classical norm definition to incorporate the
expected outcome of the execution.
Definition 4 (Norm): A norm is a named pair act(tri,

exp), that denotes the action, the trigger conditions and
the expected resulting conditions after the execution of the
action. Formally, a norm is an ABox assertion

act(tri, exp)

where act v Action, State(tri) and State(exp) holds.
A norm n defined as act(tri, exp) is called applicable in

the state s iff subState(tri, s) holds; the action act is called
executable in s, iff n is applicable in s.
Definition 5 (Execution): The execution e of a norm act(tri,

exp) is a named pair act(pre, res), that denotes the executed
action, the prestate that triggers the execution and the res
state after the execution. Formally, e is an ABox assertion

act(pre, res)

where subState(tri, pre) and State(res) holds.
In most of the cases the agent executes the norm and the

result state is coherent with the expectation of the norm.
But this is not always the case because in the real world,
a norm is hardly perfect defined for the partial understanding
of the constantly changing context. The execution is called
exceptional if its res is not coherent with the exp of the norm.
Such exceptions provide extra information not expected in the
definition of the norm system. In the exceptional execution,
the norm is calledmutated because it behaves differently from
expectation.
Definition 6 (Mutation): A norm n=act(tri, exp) is in muta-

tion iff there exists an execution e=act(pre, res) such that
there exists at least one condition in res which is conflict from
a condition in exp. Formally Mutation(n,e) iff the following
class is satisfiable (has individual in any interpretation).

inState : res u ¬inState : exp

Here the complex class is satisfiable in DL semantics iff in
any interpretation I there exists an individual c such that
cI ∈ (inState : res u ¬inState : exp)I , which says there
exists a condition that is the result of the norm execution,
but not expected in the norm. According to the Open-world
Assumption of the DL semantics, negation as failure is not
assumed. The satisfiability of the class is validated with all
the named entities only.

The motivating example is shown in Figure 1. A norm
n1 = act1(tri1, exp1) is applicable in any state s1 such
that subState(tri1, s1), where exp1 is the expectation with
hasCond(exp1, p3) and hasCond(exp1, p4). If the state s2 is

VOLUME 8, 2020 205389

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

observed to have the condition ¬p3 after the a1 executes
the norm r , then r is mutated in s2 as ¬hasCond(s2, p3)
contradicts the expectation e1. With a general purpose DL
reasoner, it is easy to detect which norm has been mutated
at runtime.

A mutated norm provides extra evidences not expected in
the design phase of the norms. Such evidences may affect the
execution of the norms afterwards. Therefore, it is rational to
track the path of the norm executions.
Definition 7 (Path): A path describes a sequence of norm

executions. It is formalized as a list ē, with element ek =
actk (prek , resk) that for each k, 1 ≤ k < |ē|, the following
TBox holds

inState : resk v inState : trik+1

where trik+1 is the trigger state of the norm ek+1 executes.
In path, the norms are executed in a series of states that
triggers the corresponding norms. For a certain state, it is
not restricted that only one norm can be executed, i.e. the
state will trigger all the applicable norms. Given a sequence
of state transitions, if each state triggers only one norm, and
the execution results are not conflict to the following state,
then a path is constructed; if in some state, multiple norms
are triggered, the path will split to multiple successors elk+1
while 1 ≤ l ≤ Ntri, where Ntri denotes the number of norm
that triggered by some conditions. As norms are executed in
the time domain, a path will grow into a tree and even an
acyclic directed graph.

The agent should complete the task according to the
designed norms. However, although the paths are predicted
to be the same, mutations do exist because of the incomplete
understanding of the constantly changing world. A mutation
may terminate the path, while it may trigger other norms
and continue the path as well. No matter in which position
the norm is mutated, it marks the unexpected behavior in
the trigger context, and indicates the necessity of evolution
for the mutated norm. Therefore, the mutations in the paths
should be the anchors for the norm evolution.

In the real world, agents are usually designed to com-
plete a predefined task, repeatedly if necessary. For exam-
ple the sweeping robot will sweep the floor everyday. The
paths will be high-probably the same if the robot works
normally. To find the mutation (i.e. to position which norm to
evolve), it is rational to take as a whole such ‘repeated’ paths.
By merging all the paths for the same agent on the same state
transitions, a directed acyclic graph is constructed.
Definition 8 (Layered Execution Graph, LEG): A LEG is a

triple G = (V ,D,L) that records multiple paths in the same
series of state transitions, in which the vertex v ∈ V denotes
the norm execution; the directed edge d = (ei, ej) ∈ D
denotes the order of executions in the recorded path; the layer
l ∈ L denotes the state and the time domain in which the norm
execution takes place.

LEG is constructed to position the mutation of norm
execution, therefore it records the paths of the same agent
in the ‘same’ state transitions. To differentiate the mutated

execution from the normal ones, the former connects to the
next vertex with a dashed edge in contrast to the common
solid edges.

The agent can execute a series of norms multiple times
in the ‘same’ context, such as in the motivating example,
the robot sweeps the floor everyday. But the context may
vary in an unexpected fashion that the action may have
different result from the ‘same’ trigger state. In the real
world semantics, the result state of the action may either
obey the norm or mutate it. For example, the state of layer
s8 in Figure 1 incorporates the trigger state of the norm
a2(hasCond : p2, hasCond : p3). But the execution result
is a2(hasCond : p2,¬hasCond : p3) that the agent did not
finish the sweeping task by 8:30 AM.
Theorem 1 (Condition Inheritance): A condition in a state

will be inherited to the state after, if not explicitly changed.
Formally, given a condition c w.l.o.g. that

before(s, s′), hasCond(s, c)

→

{
hasCond(s′, c̃) if Satisfied u inState : s′(c̃),
hasCond(s′, c) else

Recall the example that the condition p1 : mode == auto
and p2 : Time == 8AM in Figure 1. The state s1 satis-
fies that hasCond(s1, p1) and hasCond(s1, p2). Afterwards,
the state s2 still satisfies hasCond(s1, p1), as there is no
explicit change of themode of the robot. But p2 is changed for
the time elapses then hasCond(s2, p2) is not valid anymore.
Theorem 1 shows that in a track of a LEG, the afterwards state
tends to inherit the conditions if not explicit objected. In the
Open-World Assumption, such resistance is of great value for
inference with incomplete knowledge.
Theorem 2 (Evidence Existence): A norm is triggered in

a state, and mutated in the state after, then there exists some
condition in the former state which is not the trigger condition
of the norm, that has been inherited to the state after and
contradicts to the expectation of the norm. Formally, given
before(S, S ′), a norm R = A(T ,E) and its execution A(T , S ′),
there exists a condition C that

¬inState : E v inState : S ′ ↔

{C} v ¬inState : T u inState : S,¬hasCond(E,C)

Proof: Assume that ¬inState : T u inState :

S v ⊥, then for each condition C , hasCond(S,C) →
hasCond(T ,C); S triggers R ⇔ subState(T , S) ⇔ for each
C, hasCond(T ,C) → hasCond(S,C); Then T ≡ S. As
the action A is functional, S ′ ≡ E , which contradicts to the
assumption.

Theorem 2 assumes the actions are executed functionally,
i.e., for the same state, the action result should be the same.
Although an action may be not functional in the real world,
non-functional actions are not in the scope of this paper.
Besides, there exist unexpected outer forces in the real world
to change the conditions, which are not considered in our

205390 VOLUME 8, 2020

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

FIGURE 3. Norm mutation resistance, the dashed arrows represent mutations, while the continuous arrows represent the normal execution.

scenario either. Then mutations are the main cause of the
norm evolution. �
Theorem 3 (Pairwise Mutation): Given two tracks of norm

execution sequences of the same agent, a norm is obeyed
in one but mutated in another, there should be some extra
evidence lead by another mutation ahead in the obeyed track,
that is inherited to but not specified in the trigger state of the
norm. Formally, given two tracks α and β that w.o.l.g. a norm
R = (T ,E) is mutated in α and obeyed in β. There exists
some condition C as the result of the execution of the norm
R′ = (T ′,E ′) in β ahead of R, such that ¬hasCond(E ′,C)
mutates R′, and C is inherited to the norm R that the state
∃hasCond .({C} t ∃inState.T) triggers R and prevents R from
mutation.

Proof: It is assumed that no outer force is detected to
change the conditions in the states on the tracks, therefore the
conditions may change only because of the action execution.
All the actions are functional, then the norms on each vertex
are either obeyed or mutated. As the norm R is applicable on
both α and β, there exits some evidence inherited to the norm
R through α that leads to the different performance from R
on β. If no norm is mutated on α ahead of R, the inherited
conditions should be the same as those on β, then the action
on both tracks will produce the same result. This is against
the fact that R is obeyed, so there exists some norm mutated
on α before R. �

In Figure 3, the left path illustrates α and the right pictures
β. The dashed arrows illustrate the mutations of the norms.
From Theorem 2, the reason R is mutated on Q′ but obeyed
on Q is because there exists another norm mutated on R′ and
the conditions are inherited to Q by Theorem 3.
With the open world assumption, there is always some

condition(s) not considered at the time of norm construction.
Moreover, there might exist some unnecessary conditions
that were added to the trigger of the norm not on purpose.
Intuitively, the expectation of the norm is regarded as the
precise result from the norm action.

V. ALGORITHMS
Norms execution process based on BBS is mainly imple-
mented by Algorithm 1.

The Algorithm 1 shows how the norms execute on the
blackboard system. The Control Shell (Line 1 and Line 16)
is one of the three major components of a blackboard system

Algorithm 1 Norm Execution Process Based on Black-
board System
Input: Initial State: Initial information of Blackboard
Output: Execute Path: Executed norms

1 Control Shell Start;
2 Que← TriggerEvent(NormList);
3 while NotEmpty(Que) do
4 Q← Que;
5 while NotEmpty(Q) do
6 N = DeQueue(Q);
7 CreateSignal(N);
8 res = Action(N);
9 if PostCon(N) ∈ res then

10 ExecutePath.Add(N1);

11 else
12 ExecutePath.Add(N0);

13 ResCache.Add(res);

14 UpdateBB(ResCache);
15 Que← TriggerEvent(NormList);

16 Control Shell Exit;

along with KSs and the blackboard. The control shell directs
the problem-solving process by managing how KSs respond
to contributions that are placed on the blackboard by an
executing KS and to other events that may be triggered by
the application or received from external sources. The Trig-
gerEvent method (Line 2, Line 15) is proposed to detect
norms which can be triggered by the information of black-
board. The CreateSignal method (Line 7) generates a signal
to trigger the corresponding KS. The Action method (Line 8)
returns the results of KS. We can get the expected results of a
norm using PostCon method (Line 9). If the results of norm
N are consistent with the expected results, it will add N1 to
the execution path. In contrast, N0 represents its results are
not coherent with the expectation of norm N . The updateBB
method (Line 14) updates the information on the blackboard
according to ResCache.

The MONE method is designed in three steps:

• To construct the LEG of the multiple norm execution
tracks of the same agent;

VOLUME 8, 2020 205391

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

Algorithm 2 Graph Construction
Input: N : a norm set, s0: a starting state.
Output: G← (V ,E,L): a LEG

1 l0← createLayer(s0) //entrance;
2 V ← ∅,E ← ∅,L ← {l0};
3 for each l ∈ L do
4 s← getState(l);
5 S ← ∅ as a temporary state set;
6 for each r ∈ N that r = a(t, e) do
7 if ∃inState.t v ∃inState.s then
8 v← createVertex(r);
9 for each v′ ∈ V do
10 r ′← getNorm(v′) as a′(t ′, e′);
11 if ∃inState.e′ v ∃inState.t then
12 if isMutated(v′) then
13 d ← createDashedE(v′, v);

14 else
15 d ← createSolidE(v′, v);

16 E ← E ∪ {d};

17 V ← V ∪ {v};
18 e′′← getResult(a, s);
19 if e 6= e′′ then
20 isMutated(v)← true;

21 else
22 isMutated(v)← false;

23 t = getTime();
24 s′← updateState(s, e′′, t);
25 S ← S ∪ {s′};

26 mergeState(S);
27 for each s ∈ S do
28 L ← L ∪ createLayer(s);

• To detect the pairwise mutations in the LEG;
• To evolve the norms related to the mutations.
We propose Algorithm 2 to construct the LEG for the

different behaviors of the same agent on the norm tracks.
It starts with a special state s0 that triggers at least a norm.

A layer of conditions is constructed with the result of the
action starts. The built-in methods are called to create a layer
(Line 1), a vertex (Line 8), a dashed edge (Line 13) and a solid
edge (Line 15). As a layer represents a state, and a vertex
represents an executed norm, the get method returns a state
(Line 4) and a norm (Line 10). The getResult method returns
the effect of action a in the state s. If it contradicts to the
expectation e of the norm r , the vertex v is marked asmutated.
The getTime method (Line 23) returns the current time when
the algorithm runs. It is added with the updateState function
(Line 24) to the inherited conditions in s together with the
effect e′′ of the action, following Theorem 1.
Algorithm 2 creates the LEG for one time series as the

layers are built sequentially with time elapses. In a scenario

Algorithm 3 Mutation Detection
Input: G← (V ,E,L): a LEG
Output: M : a set of candidate track αs

1 M ← ∅, S ← ∅;
2 for each v ∈ V do
3 Signm← false, Signo← false.;
4 for each edge d that v == getHead(d) do
5 if d is dashed then
6 Signm← true;

7 else
8 Signo← true;

9 if Signm and Signo then
10 S ← S ∪ {v)};

11 for each v ∈ S do
12 for each v′ ∈ (S − {v}) do
13 p← createPath(v, v′);
14 if p 6= null then
15 M ← M ∪ {p};

with multiple agents of the same type simultaneously, multi-
ple such LEGs can be constructed. It is expected that all the
norms are executed as expected, and all such LEGs are the
same. But as is explained above, mutations may happen and
there exist different edges even for the same type of agents
with the same set of predefined norms. The expectations of
the norms are compact and precise when defined to prescribe
the result of the execution. The mutated result offers more
information to evolve the norm definitions.

Then Algorithm 3 is proposed to detect the mutations in
the LEG.

As the vertices are merged representing the same norm,
Algorithm 3 detects such vertices that have different results
in execution processes. It queries for the vertices that have
both a dashed edge (mutated) and a solid edge (obeyed) which
represent the different effects of the same action. Then it tries
to create a track between two such vertices (Line 13). Such
tracks are used to evolve the norms as in Algorithm 4.

It takes a track that follows Theorem 2 as the input. The
norm r on the tail of the track is the destination norm of the
evolution. The algorithm takes the norm on the head (Line 2),
verifies the norm execution through the track (Line 3) and
crossovers the mutated norm with the destination one by one.
The ⊕ operator (Line 7) takes all the conditions ∃inState.ei,
verifies if its negation can be deduced from t . The condition
is added to t ′ if not contradictory to t .
There could be other kinds of evolution strategies but this

simple version is exploited to illustrate the applicability of
Mone in this paper.

Although the reasoning complexity of the DL language
is high, Mone does not rely on a common sense reasoning
service. The complexity on Algorithm 3 is O(NVNE) where

205392 VOLUME 8, 2020

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

Algorithm 4 Norm Evolution
Input: p: a track
Output: r : the refined norm

1 r ← getNorm(getTail(p)) as a(t, e);
2 v0← getHead(p);
3 for i← 0; i < getLength(p)− 1; i++ do
4 d ← getEdge(vi, vi+1);
5 if isDashed(d) then
6 ri← getNorm(vi) as ai(ti, ei);
7 t ′← t ⊕ ei;
8 r ← a(t ′, e);

FIGURE 4. Execution graph of the experiment.

NV is the number of vertices and NE is the number of edges
in the LEG.

As far as we known from the state-of-the-art, there is no
publications focusing on this kind of mutation detection and
usage so we do not have a comparative experiment with other
methods.

VI. VERIFICATION
We have designed a case study to validate the algorithms
and simulate a scenario in sweeping robot system. Alice is
a sweeping robot, and the interior of Alice is an agent-based
system. Alice starts cleaning from 8 : 00AM every day if
set in the Auto mode. But one day Alice was stuck by an
obstacle, which resulted in the failure of the task. The agent-
based system triggered a series of rules to detect problems.
Figure 4a gives an example of the horizontal layered exe-
cution graph and the initial set of norms in our scenario are
shown in Table 1.

There are two execution paths in Figure 4a. One series of
execution is (v1, v2, v3, v4, v2,T), note that there is a dashed
edge between v2 and v3, which means Alice didn’t finish its
work within limited time. So this series of execution indicates
the robot is stuck in state s2, the agent system changes to
the monitor mode. After a series of detections, the sweeping
robot executes r2 normally and completes the cleaning task
in state s6. Another series of execution is (v1, v2,T) which

TABLE 1. The Information of norms in Figure 4.

TABLE 2. Information of execution nodes in Figure 4a.

TABLE 3. Information of execution nodes in Figure 4b.

indicates the robot completes the work normally. There are
four different types of nodes (including N1, N2, N3 and N1
in Table 1) shown in Figure 4a, the result of node v2 in state s2
and node v4 in state s4 is Exception; the result of other nodes
is Satisfaction. The information of execution nodes is shown
in Table 2. Preliminary test shows that mutations can be
detected from the LEG as the two edges shown in Figure 4a.
• e(v2, v3) mutates the norm that the task should complete
but failed.

• e(v4, v2) mutates the norm that the obstacle should be
found and removed, but no obstacle is found.

In the execution track mentioned above, the norm r2 in
s2 is finally executed correctly in another execution path,
the sweeping robot successfully completes the task, therefore
we can find some information that contribute to the evolution
of the destination norm r2. The norm r4 mutated in state s4,
which means the system has not found the obstacle. As we
mentioned in the earlier section, the mutated norm r4 enriches
the trigger of r2 with no obstacle to be moved. In the part of
norm evolution, the condition obstacle = false is added to
the trigger of norm r2.

Mone enriches the trigger condition of the norm r2 that
mutates. The trigger of norm r2 changed from Mode =
AutoClean to Mode = AutoClean ∧ Obstacle = False. One
day, sweeping robot removed the obstacle which was found
during cleaning work and therefore the robot will not stop
working because of obstacles. The correct execution process
of norms is shown in Figure 4b. The information for each
norm is shown in Table 3.

The paper presents the example to revise norms based on
the Mone framework. The crossover of the mutated norms
with the norm on vertex 2 enriches the norm’s trigger with

VOLUME 8, 2020 205393

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

no obstacle to be moved. The experiments show that the
mutations will be inherited by the well-executed norm and
contribute to the evolution of the norm’s trigger. The simu-
lation experiment ensure our approach is able to detect all
mutations and ensure that norms can be improved by some
mutations.

VII. DISCUSSION
A. LOW-LEVEL NORM
In this paper, a description logic is used to represent the
scenario of low level norms without considerations of tempo-
ral constraint, permission/obligation/prohibition, event, and
many other features of modern BBS based applications. This
is because the purpose of the paper is to illustrate the find-
ings of mutations and its usage in the evolution of norms.
Norms can be extended with more complicated formalisms
to support practical context constraints in practical industrial
applications. However, the mutations in complex norms still
focus on the unexpected behaviors of the agent, which is
contradictory to the expectation.

B. OUTER EVIDENCES
The layer in the LEG is used to incorporate the conditions
for norm execution. In practice, there are outer evidences
in the state of the layer that may lead to the mutations.
But in Theorem 3 we assume no such outer evidences in a
closed-world manner. This does not ruin the assumption of an
open-world fundamental to the incompleteness of the norm
predefinitions. The theorem works in the cases that the outer
evidences do not contribute to the mutations.

C. CROSSOVER
The crossover is one of the key operators in the evolution
theory. It is not studied thoroughly in this paper, only as
a few lines of code in Algorithm 4. This is because the
crossover function may be as simple as adding some con-
ditions to the triggers of the norm, and may be as complex
as to verify the relationships between the norms and locate
the features of the norms to be fixed. The complex version
of the crossover operator could be in the scope of the next
paper.

VIII. CONCLUSION
In the flexible and open BBS, norms are defined on incom-
plete knowledge so the runtime executions of the norms
may produce unexpected results. Researchers and engineers
are always willing to fix such incompleteness with ‘new’
knowledge. However in the practical industry applications,
various of features exist simultaneously and it is challenging
to identify which is useful and how to use it in the norm
evolution.

From our experiences of the BBS applications, the results
of mutations are not always un-welcomed in the real world.
With the detailed study of the different behaviors of the
norms, it is found that mutations can be used as a source

of the ‘new’ knowledge, to evolve the incomplete norm
definitions. The Mone method has been proposed to record
the execution tracks of the norms into a LEG, detect the
mutations of the norms through the tracks, and crossover the
mutated norm(s) with the norm to be fixed. Such evolution
steps can enhance the completeness of the norms in a novel
perspective.

REFERENCES
[1] D. D. Corkill, K. Q. Gallagher, and K. Murray, ‘‘GBB: A generic black-

board development system,’’ in Proc. AAAI Nat. Conf. Artif. Intell., 1986,
pp. 1008–1014.

[2] M. J. North, E. Tatara, N. T. Collier, J. Ozik, and P. R. Corp, ‘‘Visual agent-
based model development with repast simphony,’’ in Proc. Agent Conf.
Complex Interact. Social Emergence, Nov. 2007, pp. 173–192.

[3] N. Collier and M. North, ‘‘Parallel agent-based simulation with repast for
high performance computing,’’ Simulation, vol. 89, no. 10, pp. 1215–1235,
Oct. 2013.

[4] X. Wang, H. Chen, Q. Zhao, and W. Li, ‘‘W—A logic system based on the
shared common knowledge views,’’ in Proc. Int. Joint Conf. Artif. Intell.,
2008, pp. 410–415.

[5] M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni, ‘‘Computational
logics and agents: A road map of current technologies and future trends,’’
Comput. Intell., vol. 23, no. 1, pp. 61–91, Feb. 2007.

[6] N. Alechina, M. Dastani, and B. Logan, ‘‘Reasoning about normative
update,’’ in Int. Joint Conf. Artif. Intell., 2013, pp. 1–5.

[7] E. Argente, G. Beydoun, R. Fuentes-Fernández, B. Henderson-Sellers, and
G. Low, ‘‘Modelling with agents,’’ in Agent-Oriented Software Engineer-
ing, M.-P. Gleizes and J. J. Gomez-Sanz, Eds. Berlin, Germany: Springer,
2011, pp. 157–168.

[8] M. El-Menshawy, J. Bentahar, W. E. Kholy, and R. Dssouli, ‘‘Verify-
ing conformance of multi-agent commitment-based protocols,’’ Expert
Syst. Appl., vol. 40, no. 1, pp. 122–138, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417412008858

[9] L. Gasparini, T. J. Norman,M. J. Kollingbaum, L. Chen, and J.-J. C.Meyer,
‘‘Còir: Verifying normative specifications of complex systems,’’ in Coor-
dination, Organizations, Institutions, Norms Agent System, V. Dignum,
P. Noriega, M. Sensoy, and J. S. Sichman, Eds. Cham, Switzerland:
Springer, 2016, pp. 134–153.

[10] F. Meneguzzi, O. Rodrigues, N. Oren, W. W. Vasconcelos, and M. Luck,
‘‘BDI reasoning with normative considerations,’’ Eng. Appl. Artif. Intell.,
vol. 43, pp. 127–146, Aug. 2015.

[11] W. W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman, ‘‘Normative
conflict resolution inmulti-agent systems,’’Auto. AgentsMulti-Agent Syst.,
vol. 19, no. 2, pp. 124–152, Oct. 2009.

[12] E. A. Silvestre and V. T. da Silva, ‘‘Verifying conflicts between multiple
norms in multi-agent systems,’’ in Proc. Int. Conf. Auto. Agents Multia-
gent Syst., Richland, SC, USA, 2015, pp. 2013–2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2772879.2773552

[13] J. S. Santos, J. O. Zahn, E. A. Silvestre, V. T. Silva, andW.W. Vasconcelos,
‘‘Detection and resolution of normative conflicts in multi-agent systems:
A literature survey,’’ Auto. Agents Multi-Agent Syst., vol. 31, nos. 2–3,
pp. 1–47, 2017.

[14] A. Kayal, W.-P. Brinkman, M. A. Neerincx, and M. B. V. Riemsdijk,
‘‘Automatic resolution of normative conflicts in supportive technology
based on user values,’’ ACM Trans. Internet Technol., vol. 18, no. 4,
pp. 1–21, Nov. 2018.

[15] L. S. Passos, R. Abreu, and R. J. F. Rossetti, ‘‘Spectrum-based
fault localisation for multi-agent systems,’’ in Proc. 24th Int. Conf.
Artif. Intell., 2015, pp. 1134–1140. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2832249.2832406

[16] C. M. Tang, W. K. Chan, Y. T. Yu, and Z. Zhang, ‘‘Accuracy graphs of
spectrum-based fault localization formulas,’’ IEEE Trans. Rel., vol. 66,
no. 2, pp. 403–424, Jun. 2017.

[17] Z. Huang and R. Alexander, ‘‘Semantic mutation testing for multi-agent
systems,’’ inEng.Multi-Agent Syst., M. Baldoni, L. Baresi, andM.Dastani,
Eds. Cham, Switzerland: Springer, 2015, pp. 131–152.

[18] M. Mashayekhi, H. Du, G. F. List, and M. P. Singh, ‘‘Silk: A simulation
study of regulating open normative multiagent systems,’’ in Proc. Int. Joint
Conf. Artif. Intell., 2016, pp. 373–379.

205394 VOLUME 8, 2020

X. Wang et al.: Mone: Mutation Oriented Norm Evolution

XIANCHANG WANG received the Ph.D. degree
in computer science and engineering from the
National University of Defense Technology,
China, in 1991. He is currently a Professor with
the College of Computer Science and Technology,
Jilin University, China. He has published inno-
vative articles in journals and conferences, such
as ICLP, IJCAI, Journal of Artificial Intelligence,
and the IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING (TKDE). His research interests
include artificial intelligence and multi-agent systems.

RONGHAO FU received the B.S. degree from
the College of Computer Science and Technology,
Northeast Petroleum University, in 2018, where
he is currently pursuing the Ph.D. degree with the
Department of Computer Science and Technology,
Jilin University, China. His current research inter-
ests include artificial intelligence and multi-agent
systems.

RUI ZHANG received the Ph.D. degree. He is cur-
rently an Associate Professor with Jilin University,
China. He has published a book Relation-Based
Access Control (Springer aka Verlag, Germany),
and 15 articles including two CCF B and five SCI
indexed journals. His research interests include
knowledge representation and data integration.

VOLUME 8, 2020 205395

