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ABSTRACT Deep learning architectures have been extensively used in recent years for the classification
of biomedical images to assist clinicians for diagnosis and treatment management of patients with different
health conditions. These architectures have demonstrated expert level diagnosis, and in some cases, surpassed
human experts in diagnosing health conditions. The automation tools based on deep learning frameworks
have the potential to transform all stages of medical imaging pipeline from image acquisition to interpretation
and analysis. One of the most common areas where these techniques are applied is knee MR image
classification for different types of Anterior Cruciate Ligament (ACL) tears. If properly and timely managed,
the diagnosis and treatment of ACL tear can avoid further degradation of patients’ knee joints and can also
help slow the process of subsequent knee arthritis. In this work, we have implemented a novel classification
framework based on multilayered basis pursuit algorithms inspired from recent research work in the area of
the theoretical foundation of deep learning with the help of celebrated sparse coding theory. We implement
an optimal multi-layered Convolutional Sparse Coding (ML-CSC) framework for classification of a labelled
dataset of knee MR images with the coronal view and compare the results with traditional convolutional
neural network (CNN) based classifiers. Empirical results demonstrate the effectiveness of the ML-CSC
framework and show that the framework can successfully learn distinct features on a small dataset and
achieve a good efficiency of more than 92% without employing regularization techniques and extensive
training on large datasets. In addition to 95% average accuracy on the presence and absence of ACL tears,
the framework also performs well on the imbalanced and challenging classification of partial ACL tear with
85% accuracy.

INDEX TERMS Basis pursuit, iterative shrinkage algorithms, knee MR image classification, multi-layer
convolutional sparse coding.

I. INTRODUCTION
One of the most common sports injuries in young adults
is anterior cruciate ligament (ACL) tear. A study which
spanned over 21 years, discovered an incidence of 68.8 per
100,000 person-years in general population [1]. The diagno-
sis requires surgical intervention such as reconstruction or
enhanced primary repair to avoid further damage and degen-
eration of injury into osteoarthritis and subsequent chronic
instability [2]–[4]. The frequent occurrence of ACL tear
in sports community and general public requires accurate

The associate editor coordinating the review of this manuscript and

approving it for publication was Chintan Amrit .

diagnosis of complete and partial ACL tears. This is also
important for therapeutic decision making and avoidance of
further damage. In addition to examinations by experienced
sports medicine specialists for exams like pivot shift tests,
magnetic resonance (MR) imaging is routinely used to com-
plement and confirm clinical diagnosis and asses the status of
associated injuries. MR imaging plays a crucial part in diag-
nosing, treatment planning, treatment delivery and follow-
ups. Consensus is building among researchers for stronger
need of using automated tools in order to reduce costs,
increase efficiency and provide higher diagnostic and prog-
nostic accuracy for clinical decision making. Although for
an experienced musculoskeletal (MSK)-trained radiologist,
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MR imaging is specific and accurate in diagnosing ACL
tears [5], the diagnosis becomes challenging for non-MSK
radiologists and clinicians without access to sub-specialty
radiology. People who do not have access to specialists for
diagnosing ACL tear injuries remain at risk of further dete-
rioration of injuries without timely and proper diagnosis.
Deep learning (DL) has emerged as powerful tool for image
processing tasks in recent years complimented with the devel-
opment of graphical processing hardware. The subsequent
DL algorithms developed so far have been successfully used
in tasks like object detection [6], MR image reconstruction
[7], [8] and classification of biomedical images [9], [10]. The
primary advantage of learning representations through deep
neural networks is their ability to learn semanticallymeaning-
ful patterns and features in underlying data without explicit
human intervention. These models once trained successfully
on training datasets, can be effectively used for solution of
range of problems like image recognition and image classifi-
cation on (unseen) test data. With tremendous success of DL
architectures i.e. the Convolutional Neural Networks (CNNs)
until recent years, their working has largely remained heuris-
tic and a deeper understanding required to model their work-
ing and improve performance. Sparse coding theory [11]
developed over the last decade has been applied to range
of problems in image processing [12], [13]. The theory is
based on constructing models that represent signals as linear
combinations of few columns, called atoms from a given
redundant matrix termed as dictionary. This theory applied
successfully in array of image processing tasks over the last
decade has been recently extended to explain theoretical
foundation of DL. The convolutional sparse coding (CSC)
and its multilayered version ML-CSC have been introduced
to explain the theoretical foundation of DL and its association
with the sparse coding theory. Specifically, the CNNs are
interpreted as approximations of multi-layer basis pursuit
problem [14], [15].

The wider availability of datasets and the learning ability
of DL architectures demonstrate their capacity to become
part of biomedical imaging workflow and help revolutionize
the healthcare industry especially for communities with lim-
ited access to specialized facilities. The deep learning (DL)
frameworks currently applied have limited applicability
due to,
• The frameworks are mostly applied on general imaging
datasets for classification which require large number of
labeled images. In case of biomedical images, availabil-
ity of large datasets labeled from specialist radiologists
is a challenging issue.

• Due to limited availability of datasets, the problem of
imbalanced classification becomes even more challeng-
ing which is crucial for decision making for post diag-
nosis treatment of patients. Furthermore, recent works
mostly address the binary classification problem of pres-
ence or absence of ACL tears, wherein the classification
task of partial tear presents additional challenge for clas-
sification algorithms.

• The DL architectures are mainly trained with heuristic
techniques which require theoretical analysis in order
to improve feature learning for accurate classification,
especially in case of biomedical images where the error
margin should be as minimum as possible.

• Lastly medical imaging plays a crucial role in diagnosis,
treatment planning, treatment delivery and follow-ups.
To increase efficiency, there is an urgent need to inte-
grate DL based automation tools in the form of machine
learning, into all stages of the medical imaging pipeline
ranging from image acquisition and reconstruction to
analysis and interpretation.

In this work we address the above-mentioned gaps with the
implementation of a DL classification framework optimally
designed and tuned for gray scale MR images obtained at
Hospital Kuala Lumpur (HKL) and labeled by expert
radiologist for normal, complete and partial ACL tears.
Specifically, this work makes following contributions.

• The framework has been optimized successfully on
labelled knee MR dataset and an average test set accu-
racy of 92% has been achieved without adding regular-
ization techniques.

• The unrolling ML-CSC framework with multi-layered
iterative thresholding algorithm, its fast version FISTA
along with multilayered Basis Pursuit (ML-BP) is
demonstrated to perform better than the CNNbased clas-
sification framework taken as baseline, without increas-
ing network depth.

• The solution to challenging partial ACL tear classifi-
cation problem, where the classifiers generally do not
give good accuracies, is optimized with data augmenta-
tion techniques and accuracy of more than 85% on this
specific class is achieved for multilayer iterative thresh-
olding algorithm (ML-ISTA) framework, outperforming
traditional CNN with same number of parameters.

• Data augmentation technique especially suited for train-
ing a DL framework on biomedical images is applied,
which shows optimal performance as compared to other
transforms used in image classification algorithms.

• Lastly, a classification framework based on a recurrent
architecture with the same depth as the generative mod-
els described above is trained and analyzed for compar-
ison. The accuracies of all models are compared with
CNN, demonstrating the viability and effectiveness of
the MR image classification framework.

II. PRIOR AND RELATED WORK
With improvements in hardware for processing of large num-
ber of images, it became feasible to train large neural net-
works for classification tasks on datasets of different sizes.
The seminal work of [16] significantly improved state of
the art on classification of general images using graphi-
cal processing units. The work achieved an error rate of
more than 15% on ImageNet dataset. This error rate has
been improved significantly since then on general datasets
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available for research purpose. In addition to general datasets,
P.Rajpurkar et al. in [17] implemented a 121 layer deep
neural network for radiologist-level pneumonia detection on
chest X-rays. The algorithm was trained on large ChestX-
ray14 dataset [18]. P. Rajpurkar et al. in [19] developed a
33 layer CNN for detecting a wide range of heart arrhyth-
mias from single-lead ECG records. F.Liu et al. in [20] used
classification performance of DL networks as compared to
clinical reports for binary classification (tear or nor tear pres-
ence), and concluded that there is no significant difference
between the two. The study by P.D. Chang et al. in [21],
demonstrated the feasibility of a high-performing CNN tool
to detect complete ACL injury with over 96% test accuracy
for binary classification problem. The study, which excluded
cases with partial tear and mucoid pathologies demonstrated
the feasibility of high performing CNN tool, with customized
CNN architecture and dynamic patched based sampling with
five-sliced 3-D input. The results of study in [22] suggested
the usefulness of preoperative MRI-detected lateral meniscal
extrusion (LME) for estimating lateral meniscus posterior
root tear (LMPRT) in injured knees with ACL tear. Although,
there is a significant improvement in application to classifi-
cations and inverse problems in context of DL architectures,
the theoretical foundations of DL largely remain heuristic.
One such very useful heuristic technique which is widely
applied in DL architectures as regularization to avoid over
fitting the model on test data, is dropout. This technique ran-
domly discards activations to improve classification accuracy
on tests sets and avoid over-fitting by the learning model.
These regularization techniques have been improved recently
with proposal of stochastic techniques to further reduce over-
fitting by DL networks [23].

The recent research addressing the limitations of DL archi-
tectures has focused on the theoretical explanation of the
working of deep learning frameworks. In [14], [15], authors
elaborated the significance of theoretical understanding of
deep learning and proved connection between widely used
CNN architectures and celebrated sparse coding theory. The
sparse coding theory which has been successfully used in
inverse problem in imaging and classification tasks, was
shown in [14] to be tightly connected to CNNs. The work
established connection between CNN and sparse coding the-
ory and further gave insights to the multilayered version
of sparse coding. A further work by [24] pointed out the
suboptimal performance of model presented in [14]. The
work in [24] analyzed the proposed multilayered basis pur-
suit in context of combination of synthesis and analysis.
Further extending the work on multilayered basis pursuit
and its application to explain CNNs and performance on
applied problems of classification, J. Sulam et al. in [25]
introduced a multilayered basis pursuit framework where in
an l1 norm penalty was proposed on intermediate representa-
tions of multilayered framework. Reference [25] showed that
iterative thresholding algorithms can be used for multilayer
basis pursuit and demonstrated the framework effectiveness
on classification tasks of general datasets of MNIST, SVHN

and CIFAR-10 with improved performance of thresholding
algorithms as compared to the CNNs.

In this work we have implemented an optimal frame-
work for multi-layered basis pursuit algorithms and demon-
strate through experiments its applicability to classification
of biomedical images. The novel architecture, which is opti-
mized for classification of biomedical images, trained on
original dataset of knee MR images, achieves a good average
test accuracy of more than 92% and class wise test accu-
racy of 95%, outperforming traditional CNN without adding
regularization parameters and computational complexity. The
rest of the paper is organized as follows. Section III gives a
brief introduction to clinical background of ACL and its tears,
section IV gives brief overview of CNNs, the multilayered
sparse coding model and image classification in context of
CNN and ML-CSC. Section V gives overviews of iterative
thresholding algorithms for single layer basis pursuit and its
extended version in multilayer settings along multilayered
basis pursuit. Section VI gives the ML-CSCmodel, its imple-
mentations for classification of biomedical image dataset and
experimental results of image classification of knee ACL tear.

III. ANTERIOR CRUCIATE LIGAMENT TEAR -
BACKGROUND
An anterior cruciate ligament (ACL) is one of the key liga-
ments that help stabilize the knee joint. These ligaments con-
nect the thighbone (femur) to the shinbone (tibia) (Figure 1).
Injuries of ACL are most often a result of low-velocity,
noncontact, deceleration injuries and contact injuries with a
rotational component. A complete tear is characterized by
rupture of the ligaments and partial tear by stretching of the
ligaments becoming loose and damaged. The MR images
with a partial tear, normal knee, and complete ACL tears are
given from dataset used in this work (Figure 2)

FIGURE 1. Knee anatomy with normal and torn ACL tears (Coronal view).

The diagnosis process involves an emphasis on history
and physical examination of affected patients. The Lachman,
pivot shift, and anterior drawer tests are three types of physi-
cal examinations performed on ACL tear patients for assess-
ment of the injury. Out of these three tests, the anterior drawer
test has the highest sensitivity of 94% [26]. MRI examina-
tion coupled with physical examination helps clinicians in
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FIGURE 2. Labeled Knee MR images from Knee MR dataset.

identifying ACL tear types in addition to identifying bone
bruising, which is present in most of the patients with an
ACL tear. Once the ACL tear is diagnosed, the treatment plan
is devised by clinicians for rehabilitation or surgical inter-
vention according to patient condition and medical profile.
Studies have been reported that, in some cases, an average
radiologist must interpret one image every 3-4 seconds in an
8-hour workday to meet the workload demand. Under these
conditions, the errors are inevitable for radiology tasks where
visual perception and decision making are involved [27].
An integrated AI system in imaging pipeline, which enables
the trained radiologist to receive pre-screened images would
enable better decision making especially in heavy workloads
in addition to helping in the diagnosis of ACL tear of knee
injury patients in regions where trained MSK - radiologist
are difficult to access. Besides, the ability of machines to
scan large amounts of data enables them to generalize the
classification algorithms for better decision making.

IV. REPRESENTATION LEARNING AND CLASSIFICATION
The ability of machines learning algorithms that can learn
and improve based on experience of the complexity of the
problem at hand and their adaptation to that specific problem
gives tremendous opportunities in array of applications. The
CNNs are fundamental part of representation learning and are
briefly explained below.

A. CONVOLUTIONAL NEURAL NETWORKS
The forward pass is the fundamental part of the CNNs, where
an input signal X, is convolved with set of learned filters of
chosen size giving output as featuremaps or kernels. Inmatrix
vector form, this can be written asW T

1 X , whereW1, is a con-
volutional matrix (transposed) with learned filters as columns
with all their shifts. After convolution, a bias term b1 is added
to resulting vector and a nonlinear operation (here Rectified
Linear Unit-ReLU) is applied. For a two layers forward pass
of CNN, the operation is given by,

f (X , [Wi]2i=1, [bi]
2
i=1) =

Z2 = ReLU (W T
2 ReLU (W T

1 .X + b1)+ b2), (1)

The output of first stage/layer is then treated as input to
another stage with convolutional matrix W T

2 and bias term
b2. The operation is extended up to desired number of layers
and feature maps are then used for classification or inverse
problems. For the problem of classification, the output of last
layer is fed to train a classifier which tries to predict the label
h(X ) associated with given image X. For given dataset of
images (Xj)j, the task of CNN including filters [Wi]Ki=1 and
biases [bi]Ki=1, parameter of the classifiersU can bewritten as,

min
[Wi]2i=1,[bi]

2
i=1,U )

∑
j

l(f (h(Xj),U , f (Xj), [W ]2i=1, [b]
2
i=1). (2)

The task of the optimization algorithm is to minimize the
mean of the loss function l.

B. CONVOLUTIONAL SPARSE CODING MODEL-THE
MULTILAYERED BASIS PURSUIT
Sparse coding theory works on premise of first learning fil-
ters (weights/dictionaries) from given data and then finding
their sparse representation from those dictionaries for rep-
resentation of given images. Once the underlying structure
is successfully modeled, the problems of reconstruction on
images from noisy measurements, retrieving/reconstructing
a signal in compressive sensing domain and classification of
test sets on already training dictionaries and sparse maps can
be done successfully with the help of different algorithms
developed over the years and applied successes fully in differ-
ent domains. In sparse coding theory, formally, a given signal
y admits a sparse representation in terms of a dictionary D,
if y = Dx, and x is sparse. Given dictionary D, the celebrated
basis pursuit problem with l1 norm penalty is formulated as,

min
x
||x|1 s.t. ||y− Dx||22. (3)

This modeling theory was extended [14] to multilayer set-
tings, providing connection between sparse coding theory
and state of the art DL architectures. The traditional sparse
coding model assumes the dictionaries without any struc-
ture. Whereas in CSC, which is a special form of sparse
coding [11], a special structure on learned dictionaries are
imposed with filters banded together and concatenated in
circulant form. In the multi-layered version of CSC, which
is an extended version of CSC, the sparse feature maps thus
obtained from one layer are then treated as input to the second
layer, and dictionary learning and sparse coding steps are
repeated for subsequent layers. The CSC model represents
a signal of interest as multiplication of dictionaries D and
sparse vectors x. The deep learning problem in context of
sparse coding theory, which is shown as theoretical explana-
tion of CNNs [14], can be formulated as follows. For a global
signal X , convolutional dictionaries D and sparse vectors x,
and k number of layers and cadianity s, the deep pursuit
problem is defined as [24]:

Find [xi]ki=1 s.t. ||y− D1x1||22 < ε,

xi−1 = Dixi ∀ 2 ≤ i ≤ k,
‖xi||0 ≤ si ∀ 1 ≤ i ≤ k. (4)
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A convex relaxation proposed in [25] for deep pursuit prob-
lem result in multilayered basis pursuit. For a two-layer
model, the problem can be formulated as:

min
x

1
2
‖y− D1D2x||22 + λ1||D2x||1 + λ2||x||1, (5)

In case λ1, λ1 = 0 and λ1 > 0, the above formulation is
equivalent to traditional basis pursuit with global dictionary.
With λ1, λ1 > 0, analysis priors are imposed on set of sought
after representations x with regularized solutions as a result.

C. ML-CSC FOR CLASSIFICATION
Given sparse vectors0∗ and dictionaries D, the classifications
problem can be formulated in deep sparse coding context as:

min
(D,U )

∑
j

l(f (h(Xj),U , 0∗(Xj),D), (6)

where sparse representations 0 are fed to the classifier after
dictionary learning, multilayer basis pursuit and training of
classifier.

V. ALGORITHMS
DL architectures and algorithms traditionally deal with high
dimensional settings where second order methods result in
prohibitive computational complexity and slow convergence
rates. The proximal gradient descent which uses first order
approximations for updating its optimization steps is there-
fore a suitable choice for multilayer basis pursuit due to its
dependence on sparse prior terms instead of the convex term
[28]. This algorithm only needs to calculate the sub gradients
of convex term, and proximalmapping associatedwith update
depends on sparse prior. The convergence analysis is done in
terms of number of iterations of algorithm.

A. LAYERED BASIS PURSUIT
The layered basis pursuit given in [14], addresses sequence
of pursuit of the form:

x̂i← argmin
xi
||x̂i−1 − Dxi||22 + λi‖|xi||1, (7)

where x0 = y and i = 1 to k .
These algorithms [29], [30], which present heuristic

approximation do not minimize Equation (5) and each layer
is required to explain next layer only so cannot be used
to generate signal according to multilayer sparse model.
Algorithm 1 for layered basis pursuit which seeks sparse

Algorithm 1 ML-BP
Input signal y, dictionaries Di
Init Set x̂o = y,

1: for i = 1 : k do

2: x̂i =

{
H(DTi x̂i−1)
P1(Di, x̂i−1, λi)

3: return[x̂i]ki=1 F Set of representations
4: end for

maps x, subject to constraints given in of Equation(4) for P1
term and thresholding operator H at each layer of the neural
network.

B. ITERATIVE THRESHOLDING ALGORITHMS (ISTA)
Iterative Shrinkage Thresholding Algorithm (ISTA) is a first
order method for optimizing functions comprising composite
terms originally proposed in [31]. A faster version of this
algorithm FISTA, proposed in [32], introduced a momen-
tum term, resulting in improved convergence rates. These
algorithms require matrix vector multiplications, therefore
are appealing due to low complexity. The ISTA provides
convergence in function value in the order of O(1/k) and
its fast version FISTA provides better convergence rate in
the order of O(1/k2). The proximal gradient method ISTA
works by iterating the updates given by the proximal oper-
ator. As g(.) in equation (5) is sum of l1 composite terms
so, application of ISTA algorithm is not feasible. Another
feasible alternative the generalized LASSO [33] can also be
computationally expensive due to requirement of inversions
of linear operators during optimization. The iterative algo-
rithm employing re-weighted l2 norm approaches proposed
in [34], for compressive sensing also require iterative matrix
inversions and thus is computationally expensive.

Algorithm 2 ISTA

Init x0 ∈ f (x)
1: for any k = 0,1,2. do
2: xk+1 = prox 1

L
g(x − 1

Lk
∇f (x))

3: end for

C. MULTI-LAYER ISTA AND FISTA
For a composite model comprising a smooth and convex
term f (x) and convex and not necessarily smooth term g(x),
the objective function is given by,

F(x) = f (x)+ g(x),

The gradient mapping is the operator given by:

Gf ,gL (x) = L(x − prox 1
L
g(x −

1
Lk
∇f (x))), (8)

where L is Lipschitz constant.
The ISTA update step for Equation(8) is given by,

xk+1 = xk +
1
L
Gf ,gL (x), (9)

The optimization problem of multilayer basis pursuit is given
by,

min
x
F(x) = f (D2x)+ g1(D2x)+ g2(x),

The sparse representations for second layer are given as,

F(x2) = f (D2 x2)+ g1(D2 x2)+ g2(x2),

The update for the gradient mapping method is given by:

xk+12 = proxtg2(x
k
2 − t.G

f (.),g1(D2.)
1/c xk2 ), (10)
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FIGURE 3. Multilayered basis pursuit based framework for MR image classification.

Here c and t are constants with specific bounds for conver-
gence of the subject algorithms. As g1(D2.) is composite term
in Equation (10), in order to avoid calculating its proximal
mapping, the term D2 x2 is approximated with x1 that is
x1 = D2x2. The approximation results in calculation of
proximal mapping of x1 in in Equation (10). The update for
Equation (10) becomes:

xk+12 = proxtg2(x
k
2 − t.G

f (.),g1(D2.)
1/c xk2 ), (11)

Consequently, the proximal mapping of composite term after
approximation becomes soft thresholding of x1 which is equal
to x2 = Ttλ1x1. The update step for ML-ISTA after above
approximation becomes:

xk+12 ← Ttλ2 [x
k
2 −

t
µ
DT2 (x

k
1 − µD

T
1 (D2xk1 − y))]. (12)

Algorithms for ISTA and FISTA in multilayer settings are
described in Algorithm 3 and Algorithm 4 respectively.

Algorithm 3 ML-ISTA
Input signal y, dictionaries Di and λi;
Init Set xk0 = y, ∀ k and x1L = 0

1: for k = 1:K do
2: x̂i← D(i,L)xkL ∀i [0, L − 1]
3: for for i = 1:L do
4: xk+1i ← Tµiλi (x̂i − µiDTi (Dix̂i − x

k+1
i−1 ))

F Set of representations
5: end for
6: end for

Algorithm 4 ML-FISTA
Input signal y, dictionaries Di and λi;
Init: Set xk0 = y,∀ k and z = 0;

1: for k = 1:K do
2: x̂i← D(i,L)z ∀i [0, L − 1]
3: for i = 1:L do
4: xk+1i ← Tµiλi (x̂i − µiDTi (Dix̂i − x

k+1
i−1 ))

5: tk+1←
1+

√
1+4t2k
2

6: z← xk+1L +
tk−1
tk+1

(xk+1L − xkL)
F Set of representations

7: end for
8: end for

The FISTA algorithms incorporates the momentum term
which improves the convergence rate. The framework for
classification with iterative thresholding algorithms is given
in Figure 3 and pseudocode is presented in Appendix-A. The
ISTAmodule described in Figure 3 computes representations
according to Algorithm 3. First the encoded feature maps
are backward computed for the three layers framework and
the iterations and unfoldings progress according to ML-ISTA
algorithm. The (-) sign given in Figure 3 depicts subtraction
of resulting representations after convolution and transposed
convolution operation are carried out with dictionariesD. The
number of unfoldings inside the ISTA module enables the
shallow network to increase depth without having any impact
on number of parameters.

D. UNFOLDED ITERATIVE ALGORITHMS AS NEURAL
NETWORKS
Unfolded iterative algorithms are successfully used in recent
research works [35]–[38], for solving sparse recovery prob-
lems. To speed up the computational cost associated with
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FIGURE 4. A two layer ISTA model as illustrated in [25].

approximation algorithms, the work in [36] showed a com-
bination of optimization and neural networks to produce
deterministic functions to successfully approximate parsi-
monious/sparse models resulting in significant reduction in
computational time for applications requiring real-time per-
formance such as image modeling, robust face modeling,
audio sources separation and robust speaker recognition. The
work in [37], proposed a partial weight coupling structure to
learned iterative thresholding algorithms (LISTA) and sup-
port selection for improved convergence rate with experimen-
tal demonstrations. A two layer ISTA network is given in
Figure 4. The classification framework implements a multi-
layer ISTA and FISTA framework with two unfoldings.

VI. EXPERIMENTS AND RESULTS ON KNEE MR DATASET
We use dataset of 623 MR images comprising 205 (complete
tear), 205 (normal), and 213 (partial tear) images with coronal
view. Data collected in the study include adult patients, aged
between 18 to 40 years (Male and Female), with Proton
density (PD)-weighted images and fat saturation. The images
were labeled by certified MSK-radiologist at Hospital Kuala
Lumpur (HKL) and have been used in [39], for classification
of MR images with CNN. An 80-20 split is applied for train
and test. This work does not employ regularization techniques
of dropout and batch normalization in order to provide clear
experimental setup and demonstrate its effectiveness on a
framework with application to biomedical image classifi-
cation. All algorithms use three convolutional layers, with
filter size of 5 in each layer, and number of feature maps
of 16,32 and 32 size for layer one, two and three respectively.
These parameters have been empirically experimented for
optimal performance on this dataset. Similarly, all algorithms
use learning rate of 0.001 and batch size of 3. The optimizer
parameters of weight decay (an l2 weight regularization) and
learning rate scheduler values have also been kept same for
all algorithms. All models have been trained with stochas-
tic gradient descent. Table-1 gives precision, recall, average
accuracies and F-1 scores for baseline CNN, and All-Free
learning framework and proposed ML-ISTA,ML-FISTA and
ML-BP with network unfoldings. The classification metrics
of framework with highest average accuracy has been high-
lighted to emphasize the effectiveness and better accuracy of
proposed frameworks as compared to baseline. Class-wise
accuracies, average accuracies and test losses of CNN and
proposed algorithms are given in Table-2, with emphasis on

FIGURE 5. Confusion matrices of CNN and All-Free framework.

framework with better classification accuracies on complete
ACL tear and partial ACL tear.

A. MULTI-LAYERED ITERATIVE THRESHOLDING
ALGORITHMS WITH UNFOLDINGS
The results of classifier based on features extracted by
multi-layered iterative thresholding algorithms are given
in Figure 6 and Figure 7. The classifier performance is given
for two unfoldings (1 and 2) and further increase in unfold-
ing value results in divergence of algorithms. The training
accuracy of implemented frameworks is given in Figure 9
for unfoldings 1 and 2. Train losses and validation losses
for number of unfoldings are depicted in Figure 10 and
Figure 11 respectively. The empirical results show improve-
ment in learning performance of proposed classification
framework, sharp decrease in loss curves and better classifi-
cation accuracy as unfoldings are increased. The ML-ISTA
framework with two unfoldings outperforms CNN and
ML-FISTA with reasonable margins as shown in Table-1.
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TABLE 1. Precision, Recall, Accuracy and F-1 scores of iterative thresholding algorithms with unfoldings.

TABLE 2. Class wise accuracies and test loss.

B. LAYERED BASIS PURSUIT
The layered basis pursuit algorithm is incorporated with
same architecture and hyper parameters of baseline CNN
and results are added for comparison. The algorithm as pro-
posed in [14], is implemented with each iterative shrinkage
iteration unrolling at each individual layer. Whereas in case
of ML-ISTA and ML-FISTA, unrolling of iterations is done
for entire multi-layer basis pursuit problem. The experimen-
tal framework uses two iterations and results are given for
comparison with CNN in Figure 8. The ML-BP framework
with single unfolding has comparable results with ML-ISTA
framework and outperforms baseline with reasonable mar-
gins in terms of average accuracy.

C. AN ADAPTIVE LEARNING FRAMEWORK
In addition to three generative models described above, an all
free learning framework consisting three layers with same
number of feature maps as CNN is also implemented. In this
framework, the dictionaries and corresponding representa-
tions are adaptively learned for subject dataset. The all free
model is trained on same number of layers and relevant
parameters for a recurrent architecture. Framework for ML-
ISTA, ML-FISTA and layered BP have same number of
parameters as of CNN, whereas all free framework has
O(LK ) parameters. L is number of layers (here 3 layers are
used) and K is the number of unfoldings. The results for clas-
sification accuracies for baseline CNN and all-free recurrent
architecture are given in Figure 5, Table-1 and Table-2. The
number of iterations of the framework slightly improves the
accuracies on given classes as observed in ISTA and FISTA
architectures.

D. DATA AUGMENTATION
MR data used in the architecture is first center cropped for
image size of 320 × 320 and then normalized with mean

and standard deviation of the dataset. Of many transforms
available in Pytorch, the center crop proves very effective
in this architecture and learning curve for training dataset
follows steady pattern of decrease with increase in number
of epochs.

E. CLASS IMBALANCE
When there is an imbalance in classes, DL frameworks give
poor classification accuracy for certain classes. For the knee
ACL tear classification problem, the classifiers give poor
accuracy for the challenging problem of partial ACL tear clas-
sification as compared to the other two classes. To circumvent
this issue, the oversampling of the partial tear category is
done during the training phase. This technique significantly
increases test accuracy for partial ACL tear class, when
equally applied for CNN as well as the proposed framework,
resulting in improved results of the proposed framework with
two unfoldings in comparison to other classification algo-
rithms. The accuracies and effectiveness of biomedical classi-
fication algorithms can be further improved by incorporating
the learning framework with different datasets comprising
different age profiles (young and aged population) and gender
profiles for a more specific and accurate diagnosis.

F. DEEPER LEARNING ARCHITECTURE AND THE
CHALLENGE OF OVER FITTING
The DL architecture chosen for this problem of classifica-
tion, the size of filters and number of feature maps were
observed to be optimal for this dataset of knee MR images.
Deeper architectures for CNN, with higher number of feature
maps, resulted in under fitting of the learning model. The
effect of performance of classifier is given to demonstrate the
effectiveness of ISTA, FISTA and layered basis pursuit with
unfoldings, which uses the algorithms iterations to extend the
depth of network without increasing number of parameters.
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FIGURE 6. Confusion matrices of ML-ISTA with unfoldings.

With improved results in terms of accuracy of classifiers as
shown in confusion matrices given in Figure 6, 7 and 8,
the unfolding increases the classification performance of the
implemented framework especially on imbalanced class of
partial ACL tear. Unlike the CNN,where the increase in depth
of neural network results in under fitting of learning model,
this framework successfully can be implemented with two
unfolding for ISTA (Figure-6), FISTA (Figure 7) and L-BP
(Figure 8).

G. DISCUSSION
The challenging problem of identification of partial ACL
tear, which is characterized by stretching and weakening of
the knee ligaments is diagnosed by clinicians with clinical
tests along with MR imaging and arthroscopic examinations.
In our work, the MR images with coronal PD were used for
training and testing the framework, as the coronal imaging
plane is mainly used by radiologists to trace ACL fibers from
origin to insertion. In the proposed framework, the partial

FIGURE 7. Confusion matrices of ML-FISTA with unfoldings.

tear class is successfully identified with 85% accuracy by
ML-ISTA and 82% accuracy by ML-BP. The cases of com-
plete ACL tear class which are characterized by the rupture
of the knee ligaments are identified with 98% accuracy by
ML-FISTA followed by ML-BP framework which has an
accuracy of 97%. Overall, the ML-BP algorithm results in
the highest average classification accuracy on all classes as
shown in Table 1 and Table 2.

Generally, the presence of notch origin tears makes the
diagnosis of a complete ACL tear difficult for radiologists
to detect in clinical settings. Another possible reason for
misclassification of complete ACL tear class is the mild focal
intrasubstance degeneration rather than a complete tear.

As MRI based pathology is localized to small regions of
interest, the image crop operation applied in our work signif-
icantly improves the learning network training accuracy. This
insight can be used to further improve the framework with the
incorporation of training images comprising of sagittal and
axial planes, which are part of standard knee imaging protocol
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FIGURE 8. Confusion matrices of ML-BP with unfoldings.

FIGURE 9. Training accuracy for unfolding = 1 (left), and unfolding = 2
(right).

used in clinical applications. The evaluation and interpreta-
tion of three-dimensional (3D) data is another unique feature
associated with cross-sectional imaging. For musculoskeletal
injuries, the combination of 3D contextual information of
ligaments in the imaging pipeline is especially useful for

FIGURE 10. Training loss for unfolding = 1 (left), and unfolding = 2 (right).

FIGURE 11. Validation loss for unfolding = 1 (left), and unfolding = 2
(right).

diagnosing ACL tears. Furthermore, the performance and
generalizability of the framework may be improved with the
incorporation of different magnetic field strengths, scanning
protocols, and vendors of MRI scanners.

VII. CONCLUSION
We implemented a multi-layered convolutional sparse cod-
ing (ML-CSC) framework employing iterative thresholding
pursuit algorithms and demonstrated their effectiveness in
terms of classification accuracy in comparison to traditional
CNN based frameworks. Algorithms of gradient mapping
schemes like iterative thresholding algorithm (ISTA), fast
iterative thresholding algorithm (FISTA) along with multi-
layered basis pursuit were implemented for feature extraction
and training of the classifier. The framework was applied
to a labeled dataset of knee MR images for classification
and accuracies were given for different types of ACL tears.
In absence of larger labeled datasets, this work demonstrated
the effectiveness of the classification framework’s learning
capability with the same number of features as the baseline
CNN, and without adding regularization hyperparameters
and computational complexity to the neural network archi-
tecture. The framework also demonstrated the effectiveness
of unfolding on neural networks’ performance, improving
classification accuracies on imbalanced classification prob-
lem of partial ACL tear. In future work, the research can be
extended to design more generalized classifiers using transfer
learning, which can adapt to different datasets without requir-
ing training from scratch and use them for improvement in
performance of classifiers of biomedical images.
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APPENDIX A

Pseodocode for Classification Framework
• Training the Framework with Train Data:.

Input: Labeled MR images
Output: Model containing parameters of neural network

for classification
Data augmentation-Centercrop andNormalize dataset
for Unfolding = 1,2 do

Find set of representations with CNN,
ML-ISTA,ML-FISTA and ML-BP
end for

• Classify Test set with trained model:.
Input: Labeled MR test images, Trained model
Output: Classification results

for i = 1:n do F n is the size of test set
Calculate Confusion matrix, Test loss, accuracy,

Precision, Recall and F-1 Score
Results

end for
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