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ABSTRACT Aviation security X-ray equipment currently searches objects through primary screening,
in which the screener has to re-search a baggage/person to detect the target object from overlapping
objects. The advancements of computer vision and deep learning technology can be applied to improve
the accuracy of identifying the most dangerous goods, guns and knives, from X-ray images of baggage.
Artificial intelligence-based aviation security X-rays can facilitate the high-speed detection of target objects
while reducing the overall security search duration and load on the screener. Moreover, the overlapping
phenomenon was improved by using raw RGB images from X-rays and simultaneously converting the
images into grayscale for input. An O-Net structure was designed through various learning rates and
dense/depth-wise experiments as an improvement based on U-Net. Two encoders and two decoders were
used to incorporate various types of images in processing and maximize the output performance of the neural
network, respectively. In addition, we proposed U-Net segmentation to detect target objects more clearly
than the You Only Look Once (YOLO) of Bounding-box (Bbox) type through the concept of a ‘‘confidence
score’’. Consequently, the comparative analysis of basic segmentation models such as Fully Convolutional
Networks (FCN), U-Net, and Segmentation-networks (SegNet) based on the major performance indicators
of segmentation-pixel accuracy and mean-intersection over union (m-IoU)-revealed that O-Net improved
the average pixel accuracy by 5.8%, 2.26%, and 5.01% and the m-IoU was improved by 43.1%, 9.84%, and
23.31%, respectively. Moreover, the accuracy of O-Net was 6.56% higher than that of U-Net, indicating the
superiority of the O-Net architecture.

INDEX TERMS Artificial intelligence security system, aviation security, detection algorithm, image
segmentation, U-Net, X-ray detection.

I. INTRODUCTION
The aviation industry is steadily growing owing to the
increasing number of passengers and the volume of air cargo
transportation trade; therefore, the global aviation industry
continues to profit [1]. To accommodate the growing demand
for a wide range of passengers, the number of air-ways
between cities has increased rapidly, and the airline has a
record occupancy rate of 81.9% in the passenger sector [2].
Airlines and airports are committed to providing safe services
for passengers from their point of departure to their desti-
nation along with the safe transportation of luggage. Thus,
aviation safety was mainly focused on operational safety.
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However, after the awareness of the enormous human
and economic losses caused by aircraft terrorism in the
September 11 attacks, countries around the world, began to
strengthen their aviation security against dangerous goods in
the plane or cargo transportation [3].

Since then, airports worldwide have put safety first and
are focusing on aviation security as preparation for emer-
gencies such as aircraft terrorism, aircraft hijackings, and
aircraft explosions. Among the preparations for countermea-
sures against aircraft terrorism, X-ray screening systems,
have been employed to reinforce transport security by lim-
iting dangerous goods in carry-on baggage and ensuring safe
air-cargo transportation. However, as the aviation security
process is a continuously operating 24×7 system, the screen-
ers’ fatigue level increases; moreover, the X-ray overlapping
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phenomenon exacerbates fatigue. In addition, an increase in
the fatigue level of the screener acts as a factor of increasing
false alarms of dangerous goods [4]. The results of thorough
baggage inspection have reduced overseas travel and the
key airline factors such as costs of changes in airport entry
and exit and losses led by changes in flight schedules have
increased the relevance of security in the aviation indus-
try [5], [6]. The aviation security screening personnel trained
in air-baggage sorting work closely monitor X-ray images to
classify dangerous goods; the deployedmachine can automat-
ically detect explosive images or dangerous goods [7], [8].
Although the security control system is said to have devel-
oped to a professional level, the real error rate of identifica-
tion, discrimination, and classification of dangerous goods
increases the work stress and fatigue of aviation security
personnel owing to numerous immigration and intelligent
terrorist approaches [9]–[11]. Artificial intelligence-based
X-ray scanning, which includes scientific system design, can
quickly and accurately identify dangerous goods in the bag-
gage beyond the limits of human abilities for ensuring the
safety of aviation security.

Aviation security image search demonstrates the following
technologies: biomedical image scanning technology, video
analytics technology, and real-time image processing tech-
nology. The technology using biometrics and images con-
stitutes a scanning technology that can be navigated to all
areas of the body while conducting simple security checks
for passengers [12]. Although this shows a high performance
of the object search method, it has the disadvantage of low-
ering passenger satisfaction through the invasion of personal
privacy [13], [14]. Furthermore, the introduction of an image
analysis technology utilizing OpenCV Library, several algo-
rithms such as image conversion, pattern recognition, and
noise control presents a general image processing technology
and supports real-time image processing that can be applied
on various platforms. Image search technology in the field
of computer vision plays a significant role in the aviation
security industry.

As mentioned above, with the development of computing
technology, aviation security systems are being transformed
into intelligent security systems. In this research, we applied
an artificial neural network to fit such trends attempted to
establish an algorithm for the automatic detection of danger-
ous goods from X-ray screening images.

II. LITERATURE REVIEW
A. TYPE OF AVIATION SECURITY SYSTEMS
An aviation security system uses technology to prevent illegal
activities that pose a danger to the safety of human life and
property, risk the maintenance of safety in civil aviation oper-
ations or have a serious influence on the performance of avi-
ation tasks. The types of security equipment used in aviation
security systems are classified based on scanning ‘‘people’’
or ‘‘objects’’. An aviation security equipment searches the
airport passengers, carry-on baggage, checked baggage, and

cargo to detect dangerous goods or dangerous substances.
These search equipment block any unwanted situation aris-
ing out of the malevolent use of such dangerous goods and
prevent occurrences of accidents in airports and aircrafts.
Human searches devices are classified into hand-held metal
detectors [15] and walk-through metal detectors [16]. Hand-
held metal detector is a search device that detects a metal
objects by using an electromagnetic field and is safe for
finding metal objects hidden on the body. Similarly, walk-
through metal detector is a search device that detects a metal
object by using an electromagnetic field to find such objects
hidden by passengers. Therefore, these machines will accu-
rately identify objects and inform the screener of what the
person is carrying.

Object search devices include X-ray screening sys-
tems [15], whole-body scanners [16], explosive detecting sys-
tems [17], and explosive trace detectors [18]. X-ray screening
equipment is a search device that uses an X-ray system to
search a target and display the contents of the search on a
monitor. A whole-body scanner detects dangerous objects
such as weapons and explosives that are difficult to detect
with a metal detector without touching the body and dis-
plays them on a monitor. The explosive detecting system is
a device that inhales the chemical substances hidden on the
investigation target and uses chemical-ion analysis to detect
explosives. Similarly, an explosive trace detector (ETD) is
a device that accurately detects and identifies particles of
explosives contained in carry-on or checked baggage and
air cargo and informs the screener of the objects contained
therein.

Therefore, the application of these devices for aviation
security systems depends on the type and purpose of the
search object. Although most of the equipment detects the
presence of dangerous goods, X-ray search equipment can
capture an image of the contents present inside baggage; the
screener can then directly check for the existence of dan-
gerous goods. As the process of human identification causes
mistakes, there is a high probability of false positives. There-
fore, in order to strengthen the aviation security process, we
intend to apply an image recognition algorithm that detects
dangerous objects via X-ray images.

B. IMAGE RECOGNITION AND DETECTION
An X-ray image is represented based on X-ray transmittance.
Areas without material or areas of very low density are dis-
played in white, and areas of high density are displayed in
saturated colors [19]. For overlapping objects, X-rays pass
through all the objects and are diagrammed based on the
degree of transmission, so all the information is expressed in
the X-ray image even in overlapping conditions. As a result,
X-ray video images have the problems of view difficulty,
complexity, and superposition [20]–[22], and the ‘‘overlap-
ping’’ phenomenon increases the screener’s stress. In severe
cases, dangerous goods go undetected and create a major
problem in aviation security [9]. To solve the abovementioned
problems, various algorithms are applied, such as detection
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TABLE 1. In the aviation security system, the types of aviation security equipment.

based on X-ray transmittance information [23], [24] and the
development of SIFT and SURF algorithms for extracting
image features [25], [26]. However, the problem pertaining
to the overlapping phenomenon is still not resolved. To over-
come it, we can apply artificial intelligence-based image
recognition technology to significantly increases the object
detection performance of such security systems [27].

The performance of artificial intelligence has dramatically
improved with the advancement of computing speed and
technology. In the image classification of the convolutional
neural network (CNN) structure, a traditional LeNet model
that recognizes hand-written numbers was proposed that
compensated for the weak points of a topology change or
noise immunity in the existing fully-connected neural net-
work (FCNN) to perform a more accurate image recogni-
tion [28]. Thereafter, as the computer environment developed,
a GPU specialized in parallel computation was able to per-
form a large amounts of computation at high speed, and
AlexNet was developed [29]. In the LeNet and AlexNet
structures, the ZFNet method, which adjusted the kernel layer
size and the initial part of the layer in the Stride, showed
higher classification accuracy [30], and then VGGNet, which
has good performance for recognizing large-scale image data,
was then developed by deepening the network and increas-
ing the number of layers [31]. GoogleLeNet was developed
using an inception module, which merged the results from
the convolution and pooling layers executed in parallel [32].
Similarly, ResNet was developed by minimizing the residual
as the network became deeper to reduce the learning error
rate [33]. In addition, Inception-ResNet and Inception-v4,
which added ResNet to GoogleLeNet, were developed to
present a model structure with high speed and better perfor-
mance [34]. As shown in image classification, the upgraded
algorithm model achieves continuous performance improve-
ment with an increase in the number of CNN-based convolu-
tion layers.

The simultaneous execution of classification and localiza-
tion of various objects is essential for target object detection.
First, R-CNN [35] uses ‘‘Selective Search’’ to find numer-
ous objects in an image by region proposal or bounding-
box (Bbox) and finally classifies the image with a support
vector machine (SVM). Fast R-CNN [36] solved the three
main disadvantages of R-CNN, i.e., the linear regression
for Bbox, SVM for classification, and execution of CNN
for every Bbox. Subsequently, Faster R-CNN [37], which
improved the slow computation speed by including the region
proposal network (RPN) method in Fast R-CNN, was devel-
oped from the R-CNN model series showing the basics of
target detection in a two-stage detector method. Furthermore,
Mask R-CNN [38], a type of instance segmentation, extracts
more accurate pixel positions and speeds by adding a binary
mask network that masks each pixel corresponding to an
object. However, as this has a weak point in real-time object
detection, a one-stage detector method of the YOLO model
series was developed to compensate for Mask R-CNN. The
YOLO model consists of three types—YOLOv1 [39] divides
the image to be predicted into grid cells and predicts it as an
object for each cell to display as an anchor box and simul-
taneously classify as a Bbox; YOLOv2 [40] was developed
through a change in neural network model structure and
stabilization of boundary boxes; subsequently, YOLOv3 [41]
was presented by developing a more extensive dataset and
a deeper network structure. As a technique for recognizing
an image, an object detection method for locating an object
using a Bbox as a target object and a segmentation method
for recognizing the appearance of the target object in unit of
pixels.

In particular, the image segmentation method can be
divided into semantic and instance segmentations. Repre-
sentatively, there are fully convolutional networks (FCN),
SegNet, DeepLab, and U-Net models. First, semantic seg-
mentation treats multiple objects of the same class as a single
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TABLE 2. Classification of Image recognition and detection in artificial intelligence.

entity and aims to perform a dense prediction to classify
every pixel in the image. FCNwas developed through transfer
learning from VGG16 to preserve the locational information
in an image by changing the fully connected layer—the last
layer—to a 1× 1 convolution layer [42]. SegNet remembers
the process of max-pooling in an encoder process without a
skip connection process and is used in the up-sampling at the
decoder to increase the location information [43]. DeepLab
uses atrous convolution with various expansion ratios in par-
allel to capture more features, and high-performance V1,
V2, V3, and V3+ have been developed by adding pooling
techniques such as atrous spatial pyramid pooling, ResNet,
and depth-wise separable convolution [43], [44], [44]–[46].
The basic U-Net was developed by constructing a neural
network that can easily find a specific cell to be searched for
in a transmitted light microscopy image [47]. The contents
are summarized in Table 2.

C. BASELINE U-NET FOR SEMANTIC SEGMENTATION
A detection model delivers high accuracy in detecting an
object from a general image, but the performance of the detec-
tion model is degraded when an object is detected in pixel
units in an X-ray image. On the contrary, the segmentation
model detects objects in pixel units, and U-Net is an artifi-
cial neural network that is typically used in medical X-ray
images. U-Net describes a relationship between neighboring
pixels, and it is possible to capture a context that identifies
an image by viewing one of its parts as a contracting path
and to perform a more accurate localization by combining
the feature map and context through the expansive path.
As it is a logically designed structure, various baseline U-Net
architectures were developed based on the structure. W-Net
of two-stage U-Net [48], Ladder-Net [49], and X-Net of one-
stage U-Net [50] improved performance by repeatedly using
the U-Net structure. V-Net [51] utilized the concepts of U-Net
where 2-D image data was available, but the structure can be
expanded to incorporate 3-D image data as well. Similarly,
X-Net [52] and RAU-Net [53] improved the performance of

the U-Net model for applications in medical data of various
sizes by using a feature similarity module (FSM) block and
an augmented attention module (AAM) block of an incep-
tion structure. Moreover, U-Net++ [54], R2U-Net [55], and
MultiRes U-Net [56] applied skip connection and a recur-
rent/residual structure to improve the utilization of informa-
tion and performance. Correspondingly, in order to improve
the performance of the resulting image, U-Net for Pan-
sharpening [57] and Feature-level U-Net [58] used the Pan-
sharpening algorithm to enhance the quality of input data.
In addition, information loss can be minimized through BRU-
Net by applying input image data to every down-sampling
process [59]. TPUAR-Net [60], which used a single-input
image data by merging four different images among MRI
data, improved the performance by using residual U-Net
in parallel. Multispectral U-Net [61], modified U-Net [62],
and dense multi-path U-Net [63] design multiple encoder
structures utilize multiple input image data, and provide fea-
tures of various input data. In contrast, dual U-Net [64] and
W-Net of reinforced U-Net [65] used two decoder structures
to improve their output performance, and 3-D MRI image of
U-Net [66] also modified the decoder structure. However, the
results based on the type of uncertainty were schematically
illustrated together. Therefore, there have been studies based
on changing the structure of U-Net in various ways, such
as the modification or addition of an input image-process
step.

In this study, we aimed to develop an algorithm that can
detect dangerous goods, guns and knives, even if there were
overlapping phenomena in the X-ray images. Alternatively,
we studied the characteristics of X-ray images by design-
ing two U-Nets with a parallel structure using two input
images.

III. METHODOLOGY
This section elucidates the performance index to evaluate
the O-Net architecture and network, which were developed
based on a dangerous goods detection algorithm using X-ray
screening images.
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FIGURE 1. O-Net Structure: U-Net-based structure using an original X-ray image and a converted grayscale image as inputs.

The detection of dangerous goods from aviation security
X-ray images becomes difficult when multiple objects are
overlapping inside the baggage. Therefore, we used two input
images to resolve this problem. One image was used as
an input in the existing U-Net, whereas the image feature
extraction was maximized by using two images as the input in
the O-Net with the addition of a grayscale image. Moreover,
as the extent of learning a target object through verification
increased, the O-Net showed a higher pixel accuracy even for
overlapping objects owing to the construction of an additional
neural network.

A. O-NET ARCHITECTURE
The O-Net network is generally composed of a FCN based
on the U-Net network of semantic segmentation; an encoder–
decoder structure of image segmentation is depicted in Fig. 1.
The existing U-Net has a structure in which a single-channel
image format with a maximum input image size of 572×572
is fed to the network structure and delivered as a single image
through image segmentation. In contrast, the structure of the
O-Net uses an n×m size of random images, where three-
channel and single-channel format images are processed to
the network fixed to an input image size of 256×256, and the
output is obtained as an image through image segmentation.
As there are two input images, two encoders and two decoders
form the contracting and expanding paths, respectively. The
encoder extracts the feature map through 3 × 3 convolu-
tion kernel filter operations twice on the input image, and

then repeatedly passes through the max-pooling type of sub-
sampling process to lower the pixel unit of the feature map.
Only the robust features representing the entire image are
left. In addition, the computational redundancy was reduced
when max-pooling by using a feature channel and two
strides for each convolution. In the decoder, two iterations of
3 × 3 convolution kernel filters per convolution (10 opera-
tions in total) and four iterations of an encoder convolution
that has undergone max-pooling were copied and cropped
to the convolution per decoder. In this method, by repeated
processing of the up-pixel unit is again raised in the previous
encoder, so the input and the output images can be restored
in the same dimension. This process maintains the purpose of
semantic segmentation through class prediction for all pixels
by restoring the size of coarse feature maps to the size of the
original image. Twenty-three convolution layers each from
input images 1 and 2 (19 Conv 3 × 3 ReLu + 4 Up-Conv
2×2) along with the addition of 1×1 Conv—47 convolution
layers in total—were used to improve the pixel accuracy.

Fig. 2 depicts the numerous layers present in the O-block,
which are multi-channel feature maps within the block, and
is represented as a convolution performed by depth-wise
individual convolutions where the number of parameters can
be greatly reduced. The most important step in the network
was to copy and crop the box-computed 3 × 3 convolution
kernel on the multi-channel feature map in the encoder part to
prevent the loss of border pixels in each convolution process,
thereby concatenating it in the up-convolution decoder part.
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FIGURE 2. The detail in O-block.

TABLE 3. Confusion matrix.

This skip connection between the encoder and decoder not
only provided accurate localization of spatial information
but also compensated for the disappearance of detailed pixel
information by reducing the image size and then increasing it
again.

The color and gray-scale images were used as the first
and second images of the input value, respectively. The two
images were trained on the neural network, respectively, and
the segmentationmap representing the predicted class of each
pixel was represented as the output image.

B. PERFORMANCE MEASURE
Segmentation typically proceeds performance evaluation
through the performance indices of pixel accuracy and
m-IoU. The performance indices are defined based on the
confusion matrix, which is comprised of true positive (TP),
false positive (FP), false negative (FN), and true negative
(TN). Each indicator has been explained and expressed in
Table 3 and Fig. 3 for clarity. TP predicts the true answer to be
true, and FP predicts the false answer to be true, FN predicts
a correct answer as false, and TN predicts a false answer as
false.

1) PIXEL ACCURACY
The pixel accuracy represents the number of successful pixels
of prediction among all the classes of pixels, i.e., it indicates
how close the system output is to the truth. This is expressed
as (1):

Pixel Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

2) INTERSECTION OVER UNION (IOU)
The evaluation index of the model evaluates the pre-
dicted value by pixel-wise Intersection-over-Union (IoU).

FIGURE 3. A visualization of the confusion matrix described in Table 3,
where FN, TP, FP, and TN stand for false negative, true positive, false
positive, and true negative, respectively.

FIGURE 4. Between original ground truth and the 0–1 mask selection
color. (a) Original ground truth in labeled knife and (b) output using
one-hot encoding (0: Background/Unknown, 1: Knife).

The formula for IoU is expressed by (2):

IoU i =
TPi

TPi + FPi + FN i
(2)

TP is defined as the number of accurately predicted guns
and knives, i.e., the target detection objects. FP is defined
as the number of pixels that were incorrectly predicted as a
target detection object. FN is defined as the number of target
detection object pixels that were incorrectly predicted as other
pixels. The IoU, also known as the Jaccard index definition,
can define (2) as TP+FP+FN = Ground truth∪Prediction
and TP = Ground truth ∩ Prediction. The m-IoU expresses
IoU as an arithmetic mean of a number of test images, and it
is expressed as (3):

mIoU =
1
n

∑n

i=1
IoU i (3)

The following Fig. 4 shows the visual image characteristics
of the IoU. A segmentation map of the output was created
by forming an output channel for each class with one-hot
encoding based on the target detection object set to 1 and the
background image and unidentifiable area outside the target
detection object set to 0.
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3) PRECISION AND RECALL
Precision and recall are measured independently of other
classes because they are evaluation scales measured for a
particular class. First, precision is the ratio of what the model
classifies as true to what is actually true, indicating the con-
sistency of the system outputs; it is expressed by (4).

The recall is the ratio of what is predicted to be true by the
model among the true values, indicating how well it detects
objects without missing them; it is expressed by (5).

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

4) CONFIDENCE SCORE
Although there is a difference between the accuracy index
of detection-based YOLOv3 and segmentation-based U-Net
respectively based on object detection and pixel units, the
performances of object detection of the two neural networks
were compared based on confidence comparative analysis.

The probability that the corresponding model has an object
in the corresponding image (or box) and the probability that
the object is the predicted object can be expressed as the
confidence score. The confidence score is obtained by multi-
plying the object of probability and IoU as (6). The object of
probability is precision in the segmentation algorithm.

Therefore, the confidence score was computed using
U-Net and O-Net, which are based on image segmentation.
Moreover, the detection was judged with a threshold of 0.7,
the same as that of YOLOv3.

Confidence Score = Pr(object)× IoU truth
pred (6)

IV. EXPERIMENTAL RESULTS
A. DATASET
The experiment of this study was conducted on an image
dataset jointly produced by a large hub airport in North-
east Asia and an international hub airport in Asia. In addi-
tion, we verified Realize, Comprehensive, and Randomize to
ensure the correctness of the data. The collected dataset con-
tained image information for not only the dangerous goods of
concern (guns and knives) but also for the baggage of ordinary
passengers. The images in the dataset were captured using
HI-SCAN 6040i X-ray equipment and HI-SCAN 6040-2is
HR X-ray equipment using Heimann X-ray technology from
Smiths Detection GmbH (Germany). In addition, learning
and experiments were conducted with as few as 20 images
and as many as 1,500 images. The aviation security process
dataset of our study used 2,000 RGB image data, which is
Comprehensive with a relatively high amount of data as com-
pared to other studies. Based on the datasets, the experiment
was conducted by composing a training set of 700 images and
a validation set of 300 images, a total of 1,000 images for each
of the ‘‘gun’’ and ‘‘knife’’ datasets.

Last, it was necessary to prevent over-learning only cer-
tain patterns and ensure correct learning by demonstrating

FIGURE 5. Comparison of (1) X-ray RGB image, (2) grayscale image,
and (3) labeled image.

Randomize. Therefore, we included various perspectives and
random positions in the process to construct an image dataset
that is difficult for the X-ray to identify.

In this way, the collected dataset demonstrated all the fac-
tors of Realize, Comprehensive, and Randomize and can be
termed as a reliable dataset. In addition, it can be regarded as
a standard data set with high reliability because the standard
data set was secured under national research costs and man-
power. Based on the aviation security data set, this study uses
a grayscale image that maximizes the image feature extrac-
tion to clearly detect the target object by grasping the degree
of overlap of each product material and color according to
the raw RGB image data from X-ray transmission [67]. Each
of the guns and knives in the baggage was collected as the
image dataset shown in Fig. 5, and their dataset labeling was
performed as follows.

1) GUN
An image dataset for ‘‘gun’’ was collected for three samples
in a portable bag, and the dataset labeling was performed as
follows. The target guns were in the form of air pistols that
can easily fit inside a carrying bag and have the same size
and structure as that of actual pistols. Actually, the air pistols
had the standardized structure of a gun except for its trigger
portion. There were three types of guns: Beretta M9A1,
Colt 1911A1, and Beretta M92.
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2) KNIFE
For knives, the image dataset was collected from three sam-
ples in a portable bag, and the ‘‘knife’’ dataset labeling was
performed as follows. The knives were targeted in the form of
real miniature knives that can be put inside an actual carrying
bag. Theywere classified into types according to their use and
were divided into general kitchen knives, Chinese cleavers,
and butter knives. The handle portion was also labeled to
maintain the shape’s uniformity.

B. EARLY-STOPPING POINT
The experiment was performed under the conditions of
epoch= 100 and batch size= 8. In the experiment, too many
epochs can cause overfitting and too few epochs can cause
under-fitting. The timely determination of threshold is the
key to early-stopping and learning is generally terminated
when the performance in the hold-out validation set no longer
increases. In addition, the learning is stopped if the error
continues to increase compared to the previous epoch. There-
fore, the number of epochs needs to be determined to set
the standard of error as patience. Early-stopping can reduce
unnecessary learning due to errors and significantly reduce
the total learning time of large image datasets.

The early-stopping algorithm was applied in two stages
to select an early-stopping point, as described in Table 4.
Algorithm 1 identified an epoch candidate group that became
an early-stopping point. The early-stopping patience was
increased from 1 for comparisons with the previous accuracy
and loss values to construct the epoch candidate set, Nj.
Algorithm 2 locates an early-stopping point in the epoch
candidate set Nj, and it derives the largest epoch with the
early-stopping patience. In case of two or more epochs of the
same patience, the smaller epoch was selected to set an early-
stopping point and prevent overfitting.

In this experiment, the early-stopping point was derived
by applying a total epoch = 10 and an early-stopping
patience = 30.

C. DESIGN OF EXPERIMENTS
The design of the experiments comprised the following four
components for the application of O-Net on aviation security,
specifically for guns and knives:
• Comparison between detection-based YOLOv3 and
segmentation-based U-Net

• Design of O-Net structure
• Comparison of other segmentation models
• Comparative analysis of dangerous goods detection
The suitability of image segmentation and superiority of

O-Net was attested to through the experiments.

1) COMPARISON BETWEEN DETECTION-BASED
YOLOv3 AND SEGMENTATION-BASED U-NET
YOLOv3 is a representative target object detection model
that shows excellent performance with breakneck speed in
the real-time region for multi-object detection. In contrast,
U-Net is best known as a high-performance image

TABLE 4. Algorithm for implementation of optimization early-stopping to
solve O-Net.

FIGURE 6. Five depths composed of 5 O-blocks in O-Net.

segmentation model. Thus, the YOLOv3 and U-Net models
were adopted to run the comparative analysis based on the
confidence score performance indicators to assess the suit-
ability of these models for aviation security processes.

2) DESIGN OF O-NET STRUCTURE
The accurate learning rates and network structure that maxi-
mized the accuracy were derived from the implementation of
and numerical experiments conducted on O-Net. The reasons
for this experiment are as follows. The proper learning with
optimal weight does not occur owing to overshooting and
divergence of the weight value when the rate value is high
in the learning rate optimization for the hyper parameter.
Contrastingly, the weight values may converge for low rate
values, but too many iterations need to be performed; thus,
it takes too long to learn correctly. To find the optimum
learning rate, the independent integer value was set within the
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FIGURE 7. Comparison of images of non-overlapped (A, a / B, b) and overlapped(C, c / D, d) objects using YOLOv3 and U-Net. Upper case:
YOLOv3 output image, lower case: U-Net output image.

experimental range. The network structure can be designed
in various structures, as shown in Fig. 6, through changes in
dense and depth. As can be expected, the learning speed and
accuracy are affected by the depth and number of parame-
ters in the structure. Therefore, the optimal O-Net structure
was developed through experiments with learning rates and
dense/depth changes.

3) COMPARISON TO OTHER SEGMENTATION MODELS
In contrast to the earlier experiments that established a supe-
rior model to U-Net, this experiment shows how the images of
other semantic segmentation architectures, such as FCN and
SegNet, were added to and compared with the ground truth
to verify whether each image is classifiable with m-IoU and
IoU values. This shall further prove the superiority of O-Net.

4) COMPARATIVE ANALYSIS OF DANGEROUS
GOODS DETECTION
The detection of dangerous goods in aviation security is an
important issue, and this study determines the detection of
dangerous goods using image segmentation models, such as
U-Net and O-Net, through the previously defined confidence
score. The threshold of detection for detecting dangerous
goods based on the confidence score was set at 0.7 or higher.

This experiment consisted of 300 test datasets and
200 datasets without dangerous substances. The validation
dataset consisted of 500 gun and 500 knife datasets to derive
a confusion matrix for results.

Thus, the FCN, SegNet, U-Net, and O-Net (the developed
model) models were used to detect dangerous goods and

transform the detection into binaries based on the confidence
score and run comparative analyses on performance indices
such as accuracy, precision, and recall.

D. RESULTS AND ANALYSIS
The experimental environment settings are as shown
in Table 5, and the results are as follows.

TABLE 5. Description of the computer specifications and parameter
settings.

1) COMPARISON BETWEEN DETECTION-BASED
YOLOv3 AND SEGMENTATION-BASED U-NET
The detection-based YOLOv3 and segmentation-based
U-Net are compared in Fig. 7. In YOLOv3, when the tar-
get object did not overlap with other objects, the detection
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FIGURE 8. O-Net learning rate value; left: Gun, right: Knife.

FIGURE 9. Performance measurement according to the changes in depth of O-Net; left: Gun, right: knife.

probability for the gun was 0.91 and 0.94, and for the knife
was 0.81 and 0.79. On the contrary, when the target object
overlapped with other objects, the detection probability was
reduced to 0.81 and 0.84 for the gun, and 0.76 and 0.74 for
the knife, indicating an error range of 5 to 10%.

Thus, the object detection accuracy of YOLOv3 was
reducedwhen the target object to be searched overlappedwith
another object, as signified by the confidence score criteria.
This limitation on single-object detection accuracy can be
resolved by employing U-Net in the primary object-search
process.

Table 6 presents the comparative results of YOLOv3 and
U-Net based on the confidence score of the two classes used
in this study: guns and knives. Here, it can be seen that the
confidence score differed by 20 to 23%.

Referring to Fig. 7, the segmentation U-Net method sug-
gests that security personnel or X-ray baggage detectors can

visually transmit the target object detection more clearly
during the object-search process. The development of O-Net
satisfied a relatively greater number of learning volumes and
parameter conditions to verify its excellence.

2) DESIGN OF THE O-NET STRUCTURE
O-Net is a structure consisting of a combination of
U-Net-based encoder–decoder parts and performs a compar-
ative analysis of two classes, guns and knives, by comparing
the learning rates.

As a result of the experiment depicted in Fig. 8, the
U-Net and O-Net structures were the most globally optimal
in terms of accuracy, val_accuracy, loss, val_loss, and val_iou
at a learning rate of e−4. val_loss was the most optimal at a
learning rate of e−5 when using the O-Net structure for knives
because he_normal, which is the initial value of the weight of
the ReLu activation function, was set at random.

206298 VOLUME 8, 2020



W. Kim et al.: O-Net: Dangerous Goods Detection in Aviation Security Based on U-Net

FIGURE 10. Comparison of other segmentation model images. (A): Original image, (B): Ground Truth, (C): U-Net, (D): FCN, (E): SegNet, and
(F): O-Net.

TABLE 6. Comparative analysis of YOLOv3 and U-Net’s confidence scores.

The stability experiment based on depth degree of learning
was similar to Fig. 6 and is shown in Fig. 9. The results are

indicative of the fixing of the local optimal learning rate at
e−4 in the previous experiment.

Owing to the specificity of copy and crop in the O-Net
neural network, the depth needs to start with aminimumvalue
of 2; as density increases, experiments with a density of up
to 5 are possible with the existing complexity of parameters
and computations. For depths exceeding 6, the number of
parameters turned too large to be computed. In other words,
the increase in the performance index with the increase in
dense/depth of the neural network was confirmed. Upon con-
sidering the m-IoU over accuracy of the experimental results,
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TABLE 7. Segmentation model experiment results on gun and knife.

TABLE 8. Comparative analysis of gun and knife detection.

the gun detection accuracy was improved by 0.0316 between
a minimum of 0.9207 at depth 2 and a maximum of 0.9523 at
depth 5. Similarly, knife detection accuracy was improved
by 0.0583 between a minimum of 0.8503 at depth 2 and a
maximum of 0.9086 at depth 5.

3) COMPARISON TO OTHER SEGMENTATION MODELS
Table 7 compares four segmentation models based on the
two classes of gun and knife. For the proposed O-Net model,
the experiments on guns showed the best figures among the
four models with 98.60% pixel accuracy, 95.23% m-IoU;
the results for the knife showed 97.92% pixel accuracy and
90.86% m-IoU. In comparison to FCN, O-Net exhibited a
4.71% higher pixel accuracy and a 45.18% higher m-IoU for
the gun, and 6.90% higher pixel accuracy and 41.02% higher
m-IoU for the knife. The figures representing the output
results of the models are shown in Fig. 10.

4) COMPARATIVE ANALYSIS OF DANGEROUS GOODS
DETECTION
However, since them-IoUs of FCN and SegNet were less than
0.7 in the previous experiment, the confidence score could
not exceed 0.7, even if the precision value were multiplied.
Thus, the experiment was limited to U-Net and O-Net, and
the comparative analysis has been presented in Table 8.

The analysis of the detection results for guns show that all
the O-Net performance indices were improved compared to
the U-Net. In summary, the accuracy was increased by about
6%, and the recall, which confirms the degree of dangerous
goods detection, was also improved by roughly 8%.

Moreover, O-Net delivered higher performance than U-Net
in terms of knife detection. The accuracy was improved by
approximately 7%, and the recall was improved by roughly
10%. Therefore, the proposedO-Net architecturewas verified
to have a very high detection rate of guns and knives with
good accuracy.

V. CONCLUSION
In this study, we developed a segmentation model that can
identify guns and knives as dangerous baggage items in
the aviation security process. The existing detection model
focused on the general image, but dangerous goods detection
in the aviation security process has to look beyond the over-
lapping objects detected under X-ray screening. To overcome
these limitations, a new suitable model for the aviation secu-
rity process was developed using the segmentation model.

The proposed model, O-Net, was developed based on the
U-Net structure of segmentation by simultaneously using two
inputs—a general X-ray RGB image and an image converted
to grayscale—to solve the overlapping-objects problem in
X-ray images. In addition, semantic segmentation removes
all unnecessary background areas other than the target area
to increase the detection accuracy of the target object that is
relevant for aviation security processes, thus reducing human
error. The optimal structure for the O-Net network design
was derived through various learning rates and dense- and
depth-wise experiments to improve the performance. Three
basic semantic segmentation algorithms—FCN, U-Net, and
SegNet—were comparatively analyzed in terms of perfor-
mance indicators of segmentation such as pixel accuracy and
m-IoU. On average, pixel accuracy and m-IoU using O-Net
was improved by 5.8%, 2.26%, and 5.01%, respectively, and
the m-IoU was improved by 43.1%, 9.84%, and 23.31%,
respectively. Moreover, the accuracy of O-Net was 6.56%
higher than U-Net, indicating the superiority of O-Net.
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