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ABSTRACT Ground-penetrating radar (GPR) is widely used in the detection and positioning of underground
facilities. Through the inversion analysis of echo signals of GPR, information such as pipe material, burial
depth and location of pipelines can be obtained. Unfortunately, underground pipelines are cylindrical,
the ladder approximation method used in traditional forward models produces certain errors. In this study,
an accurate and efficient numerical model of GPR forward model in underground pipelines is established
using symplectic Euler algorithm, graphics processing unit (GPU) acceleration technology and surface
conformal technology. With a Ricker wavelet pulse as the GPR source, the convolution perfectly matched
layer (CPML) is incorporated in the symplectic Euler algorithm and shown to be effective to truncate the
symplectic Euler computational domain. Through the simulation study of different underground pipeline
models, GPR image characteristics of the metal pipeline, plastic pipeline and concrete pipeline filled with
air and water are obtained. According to the numerical simulation results, parallel conformal symplectic
Euler algorithm effectively reduces the false diffracted waves caused by ladder approximation and improves
the computational efficiency of the model in metallic and non-metallic media.

INDEX TERMS GPR, underground pipeline, numerical simulation, symplectic Euler algorithm, surface
conformal technology, parallel computing.

I. INTRODUCTION
With the developing and utilizing of underground space,
the scale of the underground pipeline network has been con-
tinuously expanded, and various pipeline networks, such as
those for water, drainage, gas, heat, electricity, and commu-
nications, are as dense as nets [1]. However, because the
pipelines are constructed and managed by multiple entities
and construction management is inadequate, the distribution
information of underground pipeline networks is scant. Acci-
dents from excavating existing pipeline networks often occur
in the construction of municipal infrastructure and building
foundation pits, which leads to large economic losses and has
seriously affected the life of residents. The quick and accurate
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determination of the location and material of underground
pipelines has become an urgent problem to be solved in urban
construction projects [2].

Pipeline detectors are currently the most commonly used
equipment for urban underground pipeline detection, but such
equipment can only detect metal pipelines. GPR tomog-
raphy is an effective method to detect underground strata
and buried objects. Featuring high resolution, real-time dis-
play and flexible use, GPR tomography can be applied
to detect both metal and non-metallic pipelines. As an
effective detection method, GPR technology has broad
application prospects in the nondestructive detection of
underground pipeline structures [3]–[6]. Through inversion
analysis of the signals measured by GPR, information such
as the position, material and burial depth of pipelines can
be obtained [7]–[10]. An efficient and accurate numerical
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model of electromagnetic wave propagation in underground
pipeline GPR is the premise of inversion of measured
signals [4], [11]–[16].

In order to accurately interpret the measured GPR images
of underground pipes, it is necessary to study the GPR data
numerical simulation of underground pipes, and evaluate
what useful information can be reasonably extracted from
the field data under various conditions [17]–[21]. In the
previous study, we established an accurate and efficient
forward model based on the symplectic Euler algorithm,
surface conformal technology and GPU acceleration tech-
nology to simulate the circular cavity disease in pavement
structure [22], [23]. However, the CPML boundary was
not used in the previous simulation, and the absorption at
the boundary was poor. In this paper, the CPML boundary
suitable for symplectic algorithm was derived and applied to
the underground pipeline simulation. In the previous simu-
lation study [24], surface conformal technology was only
applied to the simulation of non-metallic media. In this paper,
the surface conformal technique in metal and non-metal
media was applied to metal pipe and concrete pipe model
simulation.

An accurate and efficient GPR forward model of under-
ground pipeline structures is established based on the sym-
plectic Euler algorithm, GPU acceleration technology, and
surface conformal technology. Firstly, the calculation results
of serial non-conformal and parallel conformal symplectic
Euler algorithm are compared by a circular void model to
verify the efficiency and accuracy of the proposed algorithm.
Then, through the simulation study of different underground
pipeline models, the significant characteristics of GPR data
of the metal pipeline, plastic pipeline and concrete pipeline
filled with air and water are reproduced. This paper is orga-
nized as follows. Section II is devoted to a description of the
symplectic Euler algorithm and CPML boundary conditions.
Section III presents the surface conformal technology of
metal and nonmetal media and the GPU acceleration tech-
nology, while in Section IV, the results of the different under-
ground pipeline numerical simulations results are discussed
and analyzed. Conclusions are drawn in Section V.

II. METHODOLOGY
A. CONTROL EQUATIONS
In an isotropically lossy medium, the Maxwell equations are
expressed as

∂E
∂t
=

1
ε
∇ ×H −

σ

ε
E

∂H
∂t
= −

1
µ
∇ × E (1)

whereH and E represent the magnetic field and electric field
vector, respectively, σ , ε, and µ are the electrical conductiv-
ity, dielectric constant, and magnetic conductivity.

Introducing the vector magnetic potential H = ∇ × A and
letting E = − U [25], [26], the Maxwell equations in the

lossy system can be written as

∂A
∂t
=
∂H
∂U
=

1
µ
U

∂U
∂t
=
∂H
∂A
=

1
ε
∇ × ∇ × A−

σ

ε
U (2)

For the two-dimensional Transverse Magnetic (TM) wave,
(2) can be reduced to

∂Az
∂t
=

1
µ
Uz

∂Uz

∂t
=

1
ε
∇

2Az −
σ

ε
Uz (3)

where Uz and Az are the components of the field components
U and A along the z direction, and ∇2 is the Laplacian opera-
tors. The second order central difference is used to discretize
the Laplacian operator.

FIGURE 1. Spatial distribution of two-dimensional TM wave field
components. (a) Spatial distribution of wave field components gained by
FDTD method. (b) Spatial distribution of wave field components obtained
by symplectic Euler algorithm.

The FDTD method uses the Yee grid to discretize the
partial differential operator in the Maxwell degree equations.
The electric and magnetic fields are separated in time and
space by half time and spatial steps, i.e., the electric field
is located in the center of the unit, which is surrounded by
themagnetic field (Fig. 1(a)). The symplectic Euler algorithm
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is discretely defined by the electric field and magnetic field
in the same spatial grid node and time step (Fig. 1(b)). This
discrete grid method is more suitable for processing complex
problems regarding boundaries [27]. Using symplectic Euler
algorithm to discrete (3), the iterative equation is obtained as

An+1i,j = Ani,j +
dt
µ
Un
i,j

Un+1
i,j =

ε − dtσ
ε

Un
i,j +

dt
ε
∇

2An+1i,j (4)

Here, Ani,j and U
n
i,j represent the discrete values of the field

components Az and Uz at spatial grid node at time ndt.

B. ABSORBING BOUNDARY CONDITION
GPR electromagnetic wave propagation in underground
structures is an open-domain problem, so reasonable absorp-
tion boundary conditions must be set at the cutoff boundary
of the calculation area. The convolutional perfectly matched
layer (CPML) boundary [28], [29] with good absorption
effect is used in this study. In the lossymedium 2D symplectic
Euler algorithm, the CPML equation can be expressed as

Un+1
z (i, j, k) =

1t
εsz

(
∂2An+1z

∂x2
+
∂2An+1z

∂y2

)
+
ε −1tσ

ε
Un
z (i, j, k)

An+1z (i, j, k) = Anz (i, j, k)+
1t
µ
Un
z (i, j, k) (5)

Here, si are the stretched-coordinate metrics, which are
defined as

si = κi +
σi

αi + jωµ0
, (i = x, y, z) (6)

where κi is the effective extension factor, αi is the degree
of freedom of the coordinate contraction–expansion factor
whose field value is in the i direction, and σi is the electrical
conductivity in the CPML boundary region.

The first formula of (5) can be expressed as

Un+1
x (i, j, k) =

ε −1tσ
ε

Un
x (i, j, k)

+
1t
ε
s̄x ·

(
∂2An+1x

∂y2
+
∂2An+1x

∂z2

)
(7)

where sx is the inverse Laplace transforms of 1
/
sx , and the

convolution on the right side of the equation is computed
using recursion convolution.

According to Laplace transform theory, the impulse
response of si is as follows

si (t) =
δ (t)
κi
−

σi

ε0κ
2
i

e
−

(
σi
ε0κi
+
αi
ε0

)
t
u(t) =

δ(t)
κi
+ ζi(t) (8)

where u (t) and δ (t) are respectively the unit step function
and unit impulse function.

By substituting (8) in (7), we obtain

Un+1
x (i, j, k) =

1t
ε

1
κx
·

(
∂2An+1x

∂y2
+
∂2An+1x

∂z2

)
+
ε −1tσ

ε
Un
x (i, j, k)++

1t
ε
ζx (t)

·

(
∂2An+1x

∂y2
+
∂2An+1x

∂z2

)
(9)

To improve the efficiency of convolution computation,
the discrete impulse response is defined as

Zi (m) =
∫ (m+1)1t

m1t
ζx (t)dτ

= −
σi

ε0κ
2
i

∫ (m+1)1t

m1t
e
−

(
σi
ε0κi
+
αi
ε0

)
τ
dτ

= aie
−

(
σi
κi
+αi

)
m1t
ε0
τ

(10)

where

ai =
σi(

σiκi + κ
2
i αi
) (e−( σiκi +αi)1tε0 − 1.0) (11)

The iterative equation of the first-order symplectic Euler
algorithm can be obtained after simplifying (9)

Un+1
x (i, j, k) =

1t
ε

N−1∑
m=0

Zx (m) ·
(
∂2An+1x

∂y2
+
∂2An+1x

∂z2

)
+
ε −1tσ

ε
Un
x (i, j, k)+

1t
ε

1
κx

·

(
∂2An+1x

∂y2
+
∂2An+1x

∂z2

)
(12)

This equation involves a relatively complicated discrete con-
volution computation. Because has a simple exponential
form, their sum can be obtained by recursive convolution.
By introducing a new set of auxiliary expressions, (12) is
rewritten as

Un+1
x (i, j, k) =

1t
ε

1
κx
·

(
∂2An+1x

∂y2
+
∂2An+1x

∂z2

)
+
1t
ε

(
ψn+1
x1 (i, j, k)+ ψn+1

x2 (i, j, k)
)

+
ε −1tσ

ε
Un
x (i, j, k) (13)

Here ψn+1
x1 (i, j, k) and ψn+1

x2 (i, j, k) can be calculated based
on the following equations

ψn+1
x1 (i, j, k)

= bxψn
x1 (i, j, k)

+ ax
An+1x (i, j+1y, k)−2An+1x (i, j, k)+An+1x (i, j−1y, k)

1y2

(14)

ψn+1
x2 (i, j, k)

= bxψn
x2 (i, j, k)

+ ax
An+1x (i, j, k+1z)−2An+1x (i, j, k)+An+1x (i, j, k−1z)

1z2
(15)
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where bi is defined as

bi = e
−

(
σi
κi
+αi

)
1t
ε0 , (i = x, y) (16)

It can be seen from the above formula that the public
form of the front part is similar to that of the conventional
symplectic algorithm except for item κ and the following ψ .
The remaining field quantities can be derived in the sameway.
The parameters κ ,α, and σ in the PML layer of CPML change
monotonously. In the case of the x direction, the following
equation is often adopted

σ (x) =
σmax |x − x0|m

dm

κ (x) = 1+ (κmax − 1)
|x − x0|m

dm

α (x) =
αmax |x − x0|

d
(17)

Here, d is the thickness of the PML layer, and x0 is the
number of grids at the boundary between the PML layer and
the simulated region. In the simulation, d = 10, m = 4,
αmax = 0.008, κmax = 5, and σmax =

m+1
√
εr150πδ

, where δ
simulates the size of the grid.

FIGURE 2. Subdivided grids of circular pipeline. (a) Actual subdivided
grids of circular pipeline. (b) Subdivided grids of circular pipeline’s actual
simulation computation obtained through ladder approximation.
(c) Subdivided grids of circular pipeline obtained based on conformal grid
method.

III. CUDA-IMPLEMENTED CONFORMAL SYMPLECTIC
EULER ALGORITHM
A. SURFACE CONFORMAL TECHNOLOGY
In this study, a conformal grid method based on effective
medium parameters is adopted to simulate the circular bound-
aries of underground pipelines [30], [31]. The actual sub-
divided grids of the circular pipeline are shown in Fig. 2(a),
where the white grids are the normal grid points and the green
grids are the actual subdivided grids of the pipeline. Fig. 2(b)
shows the subdivided grids of the circular pipeline’s actual
simulation computation obtained through ladder approxima-
tion, while the orange grids of the pipeline are gained through
conventional ladder approximation. The subdivided grids of
the circular pipeline based on the conformal grid method are
shown in Fig. 2(c), where the purple grids are conformal, and
the other grids are non-conformal.

The conformal grid units are extracted from Fig. 2(c),
which indicates the equivalent medium parameter relation-
ship of the conformal grid points of the non-ideal conductor

FIGURE 3. Equivalent medium parameters of conformal grid points.
(a) Actual subdivided grids. (b) Conformal grids.

medium in the two-dimensional TM wave. In the symplectic
Euler algorithm, the U and A are defined at the same space
grid node and the same time step. The computation of the
conformal grid points is shown in Fig. 3, where F is the
sampling point of the U and A,1y and1x are the height and
width of the grid, and Sxy1 and Sxy2 are the areas of medi-
ums 1 and 2, respectively. The electromagnetic parameters
of mediums 1 and 2 are assumed to be σ1, ε1, µ1 and σ2,
ε2, µ2. The A and U are located at the center of the grid
units. The effective values of the dielectric constant, electrical
conductivity, and magnetic conductivity are obtained based
on the weighted average of the area of the grids occupied by
different mediums.

As shown in Fig. 3(b), the electrical conductivity, equiv-
alent dielectric constant and magnetic conductivity at the
sampling point F of field components are

εeffz (F) =
[
Sxy1ε1 + Sxy2ε2

]
/1x1y

σ effz (F) =
[
Sxy1σ1 + Sxy2σ2

]
/1x1y

µeffz (F) =
[
Sxy1µ1 + Sxy2µ2

]
/1x1y (18)

where eff represents the equivalent of a parameter.
By substituting (18) in (4), the iterative differential

equation of the conformal symplectic Euler algorithm is
obtained as

An+1i,j = Ani,j +
dt
µeff

Un
i,j

Un+1
i,j =

εeff − dtσ eff

εeff
Un
i,j +

dt
εeff
∇

2An+1i,j (19)

The conformal grid points of the ideal conductor in the
two-dimensional TM wave are different from those of the
non-ideal conductor. The computation of the conformal grid
points of the ideal conductor is shown in Fig. 4.
where F is the sampling point of the U and A, 1y and 1x
are the height and width of the grid, and Sxy1 and Sxy2 are the
areas of mediums 1 and 2, respectively. The mediums 1 is an
additional layer of PEC material created essentially in metal-
lic objects.The A and U are located at the center of the grid
units. The effective values of the dielectric constant, electrical
conductivity, and magnetic conductivity are obtained based
on the weighted average of the area of the grids occupied by
different mediums except the ideal conductor.
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FIGURE 4. Equivalent medium parameters of conformal grid points of the
ideal conductor. (a) Actual subdivided grids. (b) Conformal grids.

As shown in Fig. 4(b), the electrical conductivity, equiv-
alent dielectric constant and magnetic conductivity at the
sampling point F of field components are

εeffz (F) =
[
Sxy1ε1 + Sxy2ε2

]
/
(
Sxy1 + Sxy2

)
σ eff (F) =

[
Sxy1σ1 + Sxy2σ2

]
/
(
Sxy1 + Sxy2

)
µeff (F) =

[
Sxy1µ1 + Sxy2µ2

]
/
(
Sxy1 + Sxy2

)
(20)

where eff represents the equivalent of a parameter.

B. GPU PARALLEL COMPUTING OF CONFORMAL
SYMPLECTIC EULER ALGORITHM
Compute unified device architecture (CUDA) can efficiently
execute many complex computing tasks through the parallel
computing realized by the NVIDIA GPU [32]–[35], which is
suitable for solving parallel computing problems. The paral-
lel conformal symplectic Euler algorithm implemented on a
GPU differs from the traditional serial symplectic Euler algo-
rithm implemented on a CPU in that the former is executed on
different devices with a similar execution process. The two-
dimensional symplectic algorithm problem is initially divided
into rough sub-problems, e.g., system initialization and mod-
eling, magnetic and electric field updates, and data output.
The field value is set to zero in system initialization and
modeling. The system parameters are assigned by reading the
input files, e.g., the forward numerical model and excitation
source. As a serial part of the program, data output is executed
on the CPU. On the GPU, the updates of field components A
andU are independent, and A is updated beforeU. These two
computationally intensive sub-problems (kernel functions)
are executed on the GPU. Fig. 5 shows the flowchart of the
two-dimensional parallel conformal symplectic algorithm on
the GPU.

Field components Az and Uz are computed in the
two-dimensional x-y square domain in the parallel symplec-
tic algorithm. The number of threads is determined by the
computational domain, i.e., the number of symplectic parti-
tioned units. Two CUDA kernel functions are required to deal
with the two-dimensional conformal symplectic algorithm
problem. The first kernel function is to compute Az, and the
second is to update Uz. As shown in Fig. 6, each thread is

FIGURE 5. Flowchart of parallel conformal symplectic algorithm.

FIGURE 6. Threads of two-dimensional parallel conformal symplectic
algorithm.

responsible for computing a symplectic partitioned unit, each
thread block is supposed to compute a set of consecutive
symplectic partitioned units, and parallel computation is per-
formed on the entire computational domain according to the
above strategy.

The two-dimensional line source propagation model is
used to verify the accuracy of the proposed algorithm and the
absorption effect of the CPML boundary conditions. Visual
Studio 2010 and CUDA Toolkit 7.5 are used as the develop-
ment tools, and the Intel Core i7-6700K equipped with the
NVIDIA GeForce GTX 1070 serves as the central processor.
The simulation area is a 200 cm× 200 cm rectangle, with air
as the internal medium, and a Ricker wavelet with a center
frequency of 1 GHz is added to the center of the simulation
area (Fig. 7). The time step and spatial step are 0.01 ns and
0.5 cm, respectively. Fig. 8 shows snapshots of the wave
field at different time points. It can be seen from the figure
that the CPML absorption boundary conditions are quite
favorable.
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FIGURE 7. Waveform of Ricker wavelet with center frequency of 1 GHz.

FIGURE 8. Distribution of component Ez at different times: (a) The
distribution of component Ez at 2ns. (b) The distribution of component Ez
at 3ns. (c) The distribution of component Ez at 4ns. (d) The distribution of
component Ez at 5ns.

IV. NUMERICAL SIMULATIONS
A. TWO-LAYER MEDIUM MODEL WITH CIRCULAR VOIDS
The accuracy and efficiency of the algorithm were verified
by the two-layer medium model with circular voids shown
in Fig. 9. On the ground, the GPR launched in the air moved
along the B-scanning line and continuously transmitted to the
ground or received waves from the ground so as to gain the
B-scanning data. The B-scanning line horizontally moved by
2m in this model. The underground part of the model consists
of two layers, the upper being an air layer 0.2 m thick, and
the lower one a clay layer 0.8 m thick. In the clay layer,
there is a circular void with a diameter of 0.1 m at a depth

FIGURE 9. Schematic diagram of two-layer medium model containing
circular voids.

TABLE 1. Dielectric constant and conductivity of different media.

of 0.25 m, which has a conductivity σ = 0 mS/m, and a
relative dielectric constant εr = 30. In this model, the time
step and spatial increment were set as1t = 0.01 ns and1x =
1y = 0.005 m, and the relative magnetic conductivity µ of
all materials was assumed to be 1. The Ricker wavelet with
a center frequency of 1 GHz was selected as the excitation
source, the interval s between the transmitter Tx and the
receiver Rx was 0.1 m, and the distance l from the transmitter
Tx to the clay layer was 0.05 m. The CPML absorption
boundary conditions were adopted outside the computational
domain, and the thickness of CPML was set as d = 0.08 m.
Table 1 shows the relative dielectric constant ε and electrical
conductivity σ of different mediums in the model.
To verify the efficiency and accuracy of the proposed

algorithm, we simulated this model using the parallel confor-
mal symplectic Euler algorithm and the serial non-conformal
symplectic Euler algorithm, and solved this model numeri-
cally. Fig. 10 shows the GPR B-scan images obtained by the
simulation conducted by the serial non-conformal symplectic
Euler algorithm and the parallel conformal symplectic Euler
algorithm. The parallel conformal symplectic Euler algorithm
requires 110.998 s, and the serial non-conformal symplectic
Euler algorithm requires 1118.796 s. The parallel confor-
mal symplectic Euler algorithm realized on the GPU saves
90.08% of the computation time of the serial non-conformal
symplectic Euler algorithm. According to Fig. 10, in the
circular cavity simulation, the parallel conformal symplectic
Euler algorithm can significantly reduce the error caused
by the conventional ladder approximation and improve the
computational efficiency, thereby increasing the simulation
accuracy.
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FIGURE 10. Simulation results of GPR B-scan images. (a) Simulation
results obtained by serial non-conformal symplectic Euler algorithm.
(b) Simulation results obtained by parallel conformal symplectic Euler
algorithm.

B. CONCRETE PIPELINE MODEL
The numerical model is a 1:1 underground concrete pipeline
model. The pipeline is assumed to be uniform, infinitely long,
and perpendicular to the two-dimensional plane defining the
pipeline (Fig. 11). The pipeline is made of concrete, the
pipeline wall is 0.1 m thick, the diameter is 1 m, and the top
of the pipeline is 1.3 m below the ground surface. The time
step and spatial increment are set as 1t = 0.01 ns, 1x =
1y = 0.005 m, and the simulation consists of 5,000 time
steps. Table 1 shows the relative dielectric constant ε and
electrical conductivity σ of different mediums in the model.

FIGURE 11. Schematic diagram of underground concrete pipeline model.

The relative magnetic conductivity µ of all materials is
assumed to be 1. The same excitation source as in Model 1 is
selected, and the GPR system is set the same as well. The
electromagnetic responses of the GPR are simulated when air
and water are inside the pipeline.

Fig. 12 shows the GPR B-scan images obtained by parallel
conformal symplectic Euler algorithm of the underground
concrete pipeline models filled with air and water. As shown
in Fig. 12(a), A and B are the reflections at the top and
bottom of the concrete pipeline, and C is the multiple reflec-
tion waveform inside the pipeline. According to the figure,
the reflection at the top and bottom of the pipeline is more
obvious, and the multiple reflections inside the pipeline are
closer to the actual situation. It can be seen from Fig. 12(b)
that A and B are the reflections of the top and bottom of the
concrete pipeline. Because of water absorbs electromagnetic
waves relatively strongly, the reflection at the bottom of
the pipe is not obvious and there are no multiple reflection
waveforms in the pipeline.

According to Fig. 12(a) and Fig. 12(b), the characteris-
tics of the GPR B-scan images of the underground concrete
pipeline model differ greatly in different situations, i.e., when
the pipeline is empty, and filled with water. Particularly
obvious diffraction hyperbola features are found in the GPR
B-scan image of the model of the underground concrete
pipeline filled with air, and the multiple reflections at the
bottom of the pipeline and inside it are comparatively appar-
ent. Regarding the model of the pipeline filled with water,
the diffraction hyperbola features are only obvious at the
top of the pipeline, while due to the absorptivity of water,
multiple reflections at the bottom and inside the pipeline have
hardly any hyperbola features. By analyzing the diffraction
hyperbola features and time of the GPR data, the position
of the pipeline and the condition inside it can be accurately
determined.

C. METAL AND PVC PIPELINE MODEL
This model is a 1:1 actual undergroundmetal and PVC plastic
pipe model, as shown in Fig.13. In this model, the pipeline
materials are metal and PVC, respectively. The pipeline wall
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FIGURE 12. Simulation results of GPR B-scan images. (a) Simulation
results of concrete pipeline model filled with air. (b) Simulation results of
concrete pipeline model filled with water.

is 0.02 cm thick, the diameter is 0.3 cm, and the top of the
pipeline is 0.7 cm below the ground surface. The spatial
increment and time step are set as 1x = 1y = 0.0025 m
and 1t = 0.005 ns, respectively, and the simulation has
5,000 time steps. Table 1 shows the relative dielectric constant
ε and electrical conductivity σ of different mediums in the
model. The relative magnetic conductivity µ of all materials
is assumed to be 1. The same excitation source as in Model 1
is selected, and the GPR system is set as in Model 1. The
electromagnetic responses of the GPR are simulated when
there are air and water inside the PVC pipeline and there is
air inside metal pipeline.

FIGURE 13. Schematic diagram of underground PVC and metal pipeline
model.

Fig.14 shows the GPR B-scan images of the model of the
underground PVC pipeline filled with air and water andmetal
pipe filled with air obtained by parallel conformal symplectic
Euler algorithm. As shown in Fig. 14(a), A and B are the
reflections at the top and bottom of the PVC pipeline, and
C is the reflection waveform inside the pipeline. According
to the figure, the reflection from the bottom and top of the
pipe is superimposed, and the reflection from the inside of
the pipe is almost none, because the pipe radius is small and
the dielectric property of PVC material is close to clay. It can
be seen from Fig. 14(b) that A and B are the reflections at
the top and bottom of the PVC pipe, and C is the multiple
reflection waveform inside the pipe. Due to the small diam-
eter of the pipe and the dielectric properties of PVC close
to that of clay, the water-filled PVC pipe shows only the
basic characteristics of water in the GPR B scan. As shown
in Fig. 14(c), A is the reflection at the top of the metal
pipeline, C is the reflection waveform inside the pipe. It can
be seen from Fig. 14(c) that obvious diffraction hyperbola
features can be found in the GPR B-scan image of the model
of the underground metal pipeline filled with air. Due to the
absorptivity of metal, multiple reflections at the bottom of the
pipeline and inside the pipeline have hardly any hyperbola
features.

According to Fig. 14(a) and Fig. 14(b), the characteristics
of the GPR B-scan images of the model of the underground
PVC pipeline filled with air and water differ greatly. Because
of the smaller diameter of the pipe and the similar dielec-
tric properties of PVC with clay, the GPR B-scan image of
the underground PVC pipe filled with air model only has
particularly obvious diffraction hyperbola features on the
top of the pipe. For the model of the PVC pipeline filled
with water, the diffraction hyperbola feature is obvious in
pipe top and bottom, and the hyperbola feature of multiple
reflections is also present inside of the pipe. Because of the
high reflectivity and attenuation of the metal, the GPR B scan
image of Fig. 14(c) only has obvious hyperbolic character-
istics on the top of the pipe. By analyzing the diffraction
hyperbola features and time of the GPR data, the material of
pipeline and the condition inside the pipeline can be accu-
rately determined.
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FIGURE 14. Simulation results of GPR B-scan images. (a) Simulation
results of underground PVC pipeline filled with air. (b) Simulation results
of underground PVC pipeline filled with water. (c) Simulation results of
underground metal pipeline filled with air.

V. CONCLUSION
In this study, an accurate and efficient numerical model
of GPR in different underground pipeline structures was

established based on the symplectic Euler algorithm, surface
conformal technology and GPU acceleration method, real-
izing accurate and efficient computation of electromagnetic
responses of different underground pipelines. The simulation
results show that surface conformal technology can greatly
reduce the error caused by the conventional ladder approxi-
mation of circular boundaries and GPU acceleration method
can save greater than 90% of the computation time compared
with the serial non-conformal symplectic Euler algorithm in
forward numerical computation. This accurate and efficient
GPR forward model can better interpret the measured GPR
data and present the distinctive features of the measured GPR
data of a metal pipeline, plastic pipeline filled with air and
water, and concrete pipeline. By analyzing the diffraction
hyperbola features and time of the GPR data, the material
of pipeline and position of the pipeline and the condition
inside it can be accurately determined. In the next step,
we will extend the algorithm to three-dimensional simulation
research and improve the processing efficiency and interpre-
tation accuracy of 3D GPR detection data in non-destructive
testing (NDT) of underground pipes, and provide an efficient
forward model for the GPR 3D inversion imaging.
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