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ABSTRACT Human pose estimation has attracted enormous interest in the field of human action recognition.
When the human pose is complex (such as pose distortion, pose reversal, etc.) or there is background
interference (multi-target, shadow, etc.), the keypoints obtained by existing methods of human pose esti-
mation often have incorrect positioning, category, and connection. This paper proposes a novel human
pose estimation network KACNet via the keypoint association constraints. The Channel-1 of KACNet is
constrained by the distance loss function to obtain the position of keypoints, and the Channel-2 of KACNet
is constrained by the association loss function to obtain the relationship of keypoints. Then, the position
and relationship of keypoints are fused by the weighted loss function to obtain the keypoints with accurate
location, classification, and connection. Experiments on a large number of public datasets and Internet data
show that our method can effectively suppress background interference to improve the accuracy of complex
human pose estimation. Compared with state-of-the-art human pose estimation methods, the proposed
methods can accurately locate, classify, and connect the human body keypoints robustly.

INDEX TERMS Human pose estimation, KACNet, association loss function, weighted loss function.

I. INTRODUCTION
Human pose estimation is one of the important branches in
the field of computer vision and human action recognition
[1]–[4]. The human pose estimation technique is the task of
estimating keypoints of a person from an image or video,
such as the head, shoulder, knee, and so on. The accuracy
of estimation results has a great impact on these subsequent
high-level vision tasks such as pose classification, pose track-
ing, action understanding, and recognition, etc. Especially in
some complex scenes, pose detection is helpful to prevent the
fall of the elderly and young children and judgment the action
precision of athletes [5]–[8]. The difficulty of human pose
estimation lies in pose diversity, object occlusion, illumina-
tion changes, etc.

Human pose estimation methods are mainly classified into
two categories: traditional methods and deep learning meth-
ods [9]. Traditional methods include global feature-based
[10], [11] andmodel-based [12]–[15] human pose estimation.
These methods are difficult to build and have high a compu-
tational complexity. In recent years, deep learning methods
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have become a hot topic in human pose estimation and have
achieved certain success. According to the number of persons
in the image, deep learning methods can be divided into
two categories: single-person pose estimation [16]–[24] and
multi-person pose estimation. Shih-En Wei et al. propose a
cascaded network Convolutional Pose Machines (CPM) [25],
which can adjust the depth of the network flexibly according
to the training set or other factors. The Stacked Hourglass
Network (SHN) [26] proposed by Alejandro Newell is com-
posed of several hourglass modules in series. The keypoints
are predicted by cross reference between hourglass mod-
ules. There are many derived structures of SHN, such as
[18], [27]–[32]. In 2019, Sun et al. [9] and Wang et al. [33]
propose a High-Resolution Network (HRNet), which is one
of the state-of-the-art single-person pose estimation methods.
HRNet can learn information from the same image with
different scales, so the keypoints can be predicted more
accurately.

Recently, the two-step framework [34]–[36] or part-based
framework is used to solve the multi-person pose estima-
tion problem. The two-step framework first detects human
Bounding boxes (Bbox) and then estimates the pose within
each Bbox respectively. The Regional Multi-Person Pose
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Estimation (RMPE) [37] uses the Single Shot Multi-
Box Detector (SSD-512) [38] method to detect the Bbox and
then uses SHN to estimate human poses. The accuracy of
the two-step framework is highly dependent on the quality of
the detected Bbox. The part-based framework first estimates
all keypoints in the image and then judges, clusters and
connects keypoints to formmultiple human poses. DeeperCut
[39] estimates all keypoints by a CNN, and classify and
connect them by graph theory methods. PAF [40] combines
two-channel CPM and bipartite graph matching, which can
match both ends of the human limb rapidly. It obtains better
human pose estimation results with a less computational cost.
The part-based framework has the high efficiency of the
algorithm, but it is hard to determine who and what category
the keypoints belong to.

Almost all human pose estimation methods based on deep
learning have the following three characteristics: (i) The MS
COCO [41] or MPII datasets are used as the training set, such
as [9], [26], [37], [40]. These two datasets mainly include
regular upright pose data, such as playing football, playing
badminton, walking, and so on. Due to the insufficient diver-
sity of pose categories, the human pose estimation methods
using these two datasets are only suitable for estimating the
regular upright pose. (ii) The existing network can usually
detect keypoints, but the ability to accurately judge the type of
keypoints and correctly connect the corresponding keypoints
is poor. (iii) There is no general evaluation index for human
pose estimation. Different datasets have different evaluation
indexes (e.g., MS COCO using OKS, MPII using PCKh) [9],
[26], [37], [40].

It is more important to identify complex poses existing in
daily life widely, e.g. falling, tilting, and twisting, which is of
great significance for guardianship, judgment, and prevention
of hazards. Further, it is also very meaningful to seek a robust
evaluation index for human pose estimation.

To improve the quality of complex human pose estimation,
a novel keypoints association constraint network KACNet
and evaluation index are proposed. (i) KACNet consists of
two channels, which learn the location and connection rela-
tionship of keypoints respectively, and fuse the information to
improve the location, classification, and connection accuracy
of keypoints. (ii) Propose the association loss function and
the weighted loss function. The association loss function is to
identify whether there is a physiological connection between
different types of keypoints. The physiological connection
relationship of keypoints can guide the predicted keypoints
tend to the groundtruth keypoints. The weighted loss function
is to fuse the information of the two channels in KACNet,
so as to improve the location and classification accuracy of
the predicted keypoints. (iii) Put forward improvement eval-
uation index OKSm, based on Objects Keypoints Similarity
OKS with Mask-RCNN [34], [41]. The index can evaluate
human pose estimation networks trained by different datasets.
The extensive experimental results show that the proposed
method can accurately estimate keypoints and reasonably
evaluate results.

The main contribution of this paper is to propose a novel
keypoints association constraint network KACNet. It is not
affected by the complexity of the human pose and back-
ground, and can accurately locate the keypoints of the com-
plex human pose. Moreover, the OKSm index is suitable
for evaluating human pose estimation networks trained by
different datasets.

The paper is organized as follows: Section 2 proposes
KACNet, the association loss function, and the weighted loss
function. Section 3 describes the OKSm index. Experimental
results and evaluations are given in Section 4. Section 5 gives
a brief conclusion.

II. KACNET
The target of human pose estimation is to detect the position
of K -type (K = 14) human keypoints in images. The state-
of-the-art method is to transform detecting K -type keypoints
into estimating K heatmaps. Each heatmap represents the
position and confidence of the k-th (k = 1 · · ·K ) type
keypoint. We design a Keypoints Association Constraint Net-
work KACNet and used it to estimate complex human pose.

A. KACNET STRUCTURE
The framework of KACNet is shown in Fig. 1, which has two
channels and one fusion module. The keypoints prediction
channel Channel-1 obtains K feature maps by learning. The
position and confidence of keypoints are represented in these
feature maps. The Channel-2 is the keypoints association
prediction channel and it obtains K − 1 feature maps by
learning. Each feature map shows two connected keypoints
in line with physiological characteristics. The information of
the Channel-1 and Channel-2 are fused in the fusion module,
and the position of the final keypoints can be gained. The
structures of the Channel-1 and Channel-2 are illustrated
in Table 1.

The data processing of KACNet is as following: (i) An
input image I ∈ Rw′×h′×3 is sent to VGG-16 (first 10 layers)
to obtain the feature maps Ifm ∈ Rw×h×C ; (ii) Send Ifm to the

TABLE 1. The KACNet configuration. The parameters of the convolutional
layers are denoted as ‘‘Conv<convolution kernel size>-<number of
channels>’’.
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FIGURE 1. The architecture of KACNet.

Channel-1, and K feature maps F1 ∈ Rw×h×K are obtained
after convolution operation; (iii) Send Ifm to the Channel-2,
and K − 1 feature maps F2 ∈ Rw×h×(K−1) are obtained after
convolution operation; (iv) Extract the keypoints in both F1
and F2, and compare it with the groundtruth keypoints to
calculate the final keypoints.

B. LOSS FUNCTION
Three loss functions are designed in KACNet: the dis-
tance loss function Ldis, association loss function Laso, and
weighted loss function Lwei. We use these loss functions to
update KACNet parameters, which can ensure that KACNet
has a superior keypoints estimation performance and robust-
ness.

1) DISTANCE LOSS FUNCTION Ldis
The distance loss function Ldis used in the Channel-1 is
defined as follows:

Ldis =
K∑
k=1

[
W (k) ·

∥∥Sk − S∗k ∥∥22] (1)

where k(k = 1 · · ·K ) indicates the k-th type keypoint. W (k)
is a binary mask withW (k) = 0 when the k-th type keypoint
is missing in groundtruth, otherwise W (k) = 1. S represents
the predicted keypoints, and S∗ represents the groundtruth
keypoints corresponding to S. ‖ · ‖22 represents the Euclidean
distance between S and S∗.

2) ASSOCIATION LOSS FUNCTION Laso

The association loss function Laso is designed according
to the connected characteristics of human body keypoints,

which is used in the Channel-2. Laso is defined as follows:

Laso =
K∑

k1=1

K∑
k2=1

[
W (k1) ·W (k2)

·

(∥∥Sk1 − S∗k1∥∥22 + ∥∥Sk2 − S∗k2∥∥22) ] (2)

where k1, k2 (k1, k2 = 1 · · ·K ) indicate two type connected
keypoints.W (k1) is a binary mask withW (k1) = 0 when the
k-th type keypoint is missing in the groundtruth, otherwise
W (k1) = 1. W (k2) is the same as W (k1). S represents
the predicted keypoints, and S∗ represents the groundtruth
keypoints corresponding to S. ‖ · ‖22 represents the Euclidean
distance between S and S∗.

3) WEIGHTED LOSS FUNCTION Lwei
The weighted loss function Lwei is used in the fusion module,
which can ensure that the predicted keypoints are consistent
with the groundtruth keypoints. Lwei is defined as follows:

Lwei =
K∑
k=1

[
W (k) ·

∥∥Rk − S∗k ∥∥22] (3)

where k(k = 1 · · ·K ) indicates the k-th type keypoints.
W (k) is a binary mask with W (k) = 0 when the k-th type
keypoint is missing in groundtruth, otherwise W (k1) = 1.
Rk is the output of the fusion module, which is calculated by
Eq.(4). S∗k represents the groundtruth keypoints correspond-
ing to Rk . ‖ · ‖22 represents the Euclidean distance between
Rk and S∗k .

Rk = m ∗ Pk1 + (1− m) ∗ Pk2 (4)

where Pk1 indicates the k-th type predicted keypoint of
the Channel-1, Pk2 is the keypoint from the Channel-2
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TABLE 2. Notations in Algorithm 1.

which corresponds to k-th type keypoint in the Channel-1.
m is the weight.

C. NETWORK TRAINING
1) TRAINING DATASET
At present, the popular datasets of human pose estimation are
MS COCO and MPII. These datasets contain mainly regular
upright poses in natural scenes, which are not suitable for
complex pose estimation. Considering that the extension of
the LSP dataset contains more complex pose data (including
10000 images, e.g. parkour, gymnastics, dance, and hori-
zontal bars), we filter 8305 images from LSP extended data
as the basic data. We enhance the basic data and construct
the network training set EN-LSP. Filtering and enhancement
methods are detailed in Section 4.1.

2) TRAINING ALGORITHM
KACNet training method is summarized in Algorithm 1.
Table 2 summarizes the notations used in Algorithm 1.

III. EVALUATION INDEX
OKS index is based on MS COCO dataset, which cannot be
directly used to evaluate networks trained by other datasets.
We rewrite OKS to OKSm (Objects Keypoints Similarity
with Mask-RCNN), which is suitable for evaluating the pose
estimation results based on different datasets. OKSm index
can be calculated as follows:

OKSm =

∑K
k=1

[
exp

(
−d2k /2λs

2
mr

2
k

)
· δ (vk > 0)

]∑K
k=1 [δ (vk > 0)]

(5)

where k represents the type of the keypoints; dk represents
the Euclidean distance between the k-th predicted keypoints
and the corresponding groundtruth keypoints; rk represents
the ratio of the size of k to sm (the ratio is given in the source
code of the MS COCO API); when the keypoints is visible
δ(·) = 1, otherwise δ(·) = 0; vk represents the visibility of the
k; λ is a parameter. sm represents the size of the person mask
extracted by Mask-RCNN. sm is calculated by Algorithm 2.
Table 3 summarizes the notations used in Algorithm 2.

Algorithm 1 KACNet Training
[1]

Input: Original image I . GT1 and GT2 are calculated as
follows:

G = exp

(
−

∥∥p− xj∥∥22
2σ 2

)

Ifm = CVGG−16(10)(I )
In the 1-st stage,
F1
1 = N

(
W 1

1 , Ifm
)
, F1

2 = N
(
W 1

2 , Ifm
)

l1dis = Ldis
(
F1
1 ,G T1

)
, l1aso = Laso

(
F1
2 ,G T2

)
F1
concat = ⊕

(
F1
1 ,F

1
2 , Ifm

)
In the 2-nd stage,
F2
1 = N

(
W 2

1 ,F
1
concat

)
, F2

2 = N
(
W 2

2 ,F
1
concat

)
l2dis = Ldis

(
F2
1 ,G T1

)
, l2aso = Laso

(
F2
2 ,G T2

)
F2
concat = ⊕

(
F2
1 ,F

2
2 ,F

1
concat

)
In the last stage,
F3
1 = N

(
W 3

1 ,F
2
concat

)
, F3

2 = N
(
W 3

2 ,F
2
concat

)
l3dis = Ldis

(
F3
1 ,G T1

)
, l3aso = Laso

(
F3
2 ,G T2

)
In the fusion module,
lwei = Lwei

(
fu
(
F3
1 ,F

3
2

)
,G T1

)
Use the Adam optimizer to minimize ldis, laso, lwei to
update the parametersW s

i .∇ is the loss function gradient.

N
(
W 1,2,3

1,2

)
← N

(
W 1,2,3

1,2

)
+∇

(
l1,2,3dis , l1,2,3aso , lwei

)
Output: Network parameterW s

i

Algorithm 2 The Calculation of the Mask Area sm
Input: Mask image. It is a binary image and obtained from

Mask-RCNN.
1: Initialization.
2: cmask = 0, coutline = 0,

3: 2(i, j) =


1, if V (i± 1, j± 1) or V (i± 1, j)
or V (i, j± 1) = 255

0, otherwise
4: for i = 1 to w, j = 1 to h do
5: if 2(i, j) = 1 then
6: cmask = 1, coutline. append((i, j))
7: end if
8: end for

Output: cmask , coutline.

Remarkably, it is necessary to evaluate the performance
of the network on the entire dataset, so mean OKSm
(mOKSm), Average Precision (AP), and mean Average Pre-
cision (mAP) also needs to be introduced. mOKSm is
the average value of the OKSm values for everyone in
the dataset. AP@n represents the proportion of OKSm
value greater than n. mAP represents the average value of
AP@n, whose n is {0.5 : 0.95 : 0.05}.The higher the
mOKSm, AP@n, and mAP value, the better the network
performance.
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FIGURE 2. Image filtering flowchart.

TABLE 3. Notations in Algorithm 2.

FIGURE 3. Examples of data filteration.

IV. EXPERIMENT
In this section, we conduct numerous experiments on EN-
LSP, MS COCO, MPII datasets and Internet data to verify
the performance of our method and compare it with a series
of state-of-the-art methods. The depth of KACNet is three.
All experiments are implemented on a workstation with CPU
Xeon E5-2620 and GPUs NVIDIA GTX 2080Ti (32 GB
RAM). Our framework is implemented in Tensorflow.

A. EXPERIMENTAL DATA EN-LSP
1) DATA FILTERING
We select 8305 images from the extension of LSP as the basic
data. We randomly divide 8305 images into training (6645),
validation (1249) and test set (411). The filtering flowchart is
illustrated in Fig. 2.

Fig. 2 shows the data filtration process: (i) Send the exten-
sion data of LSP toMask-RCNN. The Bbox categories, Bbox
coordinates, and objects mask are obtained. (ii) Reserve the
Bbox that belongs to the category ‘‘people’’ and delete the
rest. (iii) Calculate the size of the Bbox by coordinates,
and reserve the mask with the largest Bbox. (iv) Print the
groundtruth keypoints on the mask area. If the mask covers
most of the keypoints, the input data is retained as the basic
data. Fig. 3(a) is the retained data and Fig. 3(b) is the dis-
carded data.

2) DURING TRAINING
We enhance the basic training data (e.g. rotating, ver-
tical flipping, horizontal flipping, vertical and horizon-
tal flipping, cropping, adding noise), and obtain about
60000 enhanced LSP data (EN-LSP). The data in EN-LSP
is all-encompassing, which is helpful for KACNet to learn
complex and changeable pose.

3) DURING TEST
For single-person test data, we directly input them into KAC-
Net. For multi-person data, we use the two-step framework to
test: (i) The Bbox is detected by YOLO. (ii) The edge of the
Bbox is extended by 5% and then cropped as test data. (iii)
The test data is sent to KACNet to estimated keypoints.

B. COMPETITION METHODS
We adopt a series of state-of-the-art human pose estima-
tion methods for experiment comparison, including Con-
volutional Pose Machines (CPM), Stacked Hourglass Net-
work (SHN), DeeperCut, and HRNet. Our and competitive
methods are trained and tested by EN-LSP. Table 4 shows
source codes of the competing methods are downloaded from
the websites provided by the authors or third-party authors.
The parameters were used, which are recommended by the
authors.

C. EXPERIMENTAL RESULTS
We train our and competitive networks with EN-LSP, and test
all on the EN-LSP test set, MS COCO, MPII, and Internet
data.

1) EN-LSP RESULTS
In Fig. 4, we show the results of 5 competitive methods on
EN-LSP. The original image numbers from (a) to (f) are
00012, 00862, 05523, 04418, 00430.

2) MS COCO RESULTS
In Fig. 5, we show the comparative results of 5 competi-
tive methods on MS COCO. The original image number is
000000000785.

3) INTERNET DATA RESULTS
In Fig. 6, we show the comparative results of 5 competitive
methods on Internet data.

4) MORE RESULTS OF OUR METHOD
From Figs. 7 to 9, we show more results of our method on
EN-LSP, MS COCO, and MPII.
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FIGURE 4. Comparison of human pose estimation results in EN-LSP.

5) HRNET RESULTS
HRNet that trained by MS COCO is the latest and best
method in the competitionmethods.We use the HRNetmodel

parameters provided by the author to estimate human pose for
the EN-LSP test set. The experimental results are illustrated
in Fig. 10.
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FIGURE 5. Comparison of human pose estimation results in MS COCO.

FIGURE 6. Comparison of human pose estimation results from Internet data.

FIGURE 7. The results of our method on EN-LSP.

D. EXPERIMENT ANALYSES
1) VISUAL QUALITY
By comparing and analyzing the experimental results of
Figs. 4 to 10, our method has the following conclusions:
(i) Keypoints of the complex human body can be located
accurately. For example, Fig. 4(a) to 4(f) are inverted, back-
ward, twisted, squat, etc. (ii) It is robust to various postural
changes. Figs. 4 to 9 show our method can better identify the

keypoints of the various simple upright or complex pose. (iii)
The influence of the background is very small. In other words,
the keypoint association constraint mechanism can effec-
tively suppress the interference of other humans or objects
in the background. As shown in Figs. 4(c), 4(f), 7, 8, and 9,
the person’s pose is not disturbed by other people or buildings
in the background. (iv) The network performance is closely
related to the training set. As shown in Fig. 4, the results
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TABLE 4. The Details of compared methods.

TABLE 5. mOKSm, AP@n, and mAP values of all competing methods.

FIGURE 8. The results of our method on MS COCO.

FIGURE 9. The results of our method on MPII.

of HRNet trained by EN-LSP are close to our results, while
the estimated keypoints of HRNet trained by MS COCO
are inaccurate, as shown in Fig. 10. (v) The accuracy of
multi-person pose estimation depends on the accuracy of the
target human Bbox. As shown in Figs. 8, and 9, when the size
of the Bbox is appropriate, the irrelevant background can be
suppressed and the positioning accuracy of keypoints can be
improved.

In summary, compared with competing methods (CPM,
SHN, DeeperCut, and HRNet), our KACNet not only can

completely extract, correctly locate and classify keypoints
for both regular and complex poses but also has superior
robustness.

2) mOKSm, AP@n AND mAP
Table 5 shows themOKSm, AP@n, andmAP of all competing
methods on all EN-LSP test set. HRNet (MS COCO) repre-
sents HRNet network parameters are trained by MS COCO.

Table 5 reflect the mOKSm, AP@0.5, AP@0.6 and mAP
values of our method are significantly higher than CPM,
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FIGURE 10. The results of HRNet on EN-LSP.

SHN, DeeperCut, and HRNet (MS COCO). Compared with
HRNet, the mOKSm, AP@0.5, AP@0.6 and mAP values of
our method are competitive. The AP@0.75 value is slightly
inferior to HRNet.

A large number of experimental results show that KACNet
has good robustness to complex and changeable human pose.
It can significantly improve the positioning and classification
accuracy of keypoints. In addition, the OKSm index can be
used to evaluate the performance of human pose estimation
networks trained by different datasets.

V. CONCLUSION
In this paper, we design a novel human pose estimation
network KACNet via keypoint association constraint. The
Channel-1 and Channel-2 of the KACNet are constrained by
the distance loss function and the association loss function
to learn the position and association information of human
keypoints. The fusion module fuses the keypoints from the
Channel-1 and the keypoints physiological association rela-
tionship from the Channel-2. A large number of experimental
results indicate that KACNet not only achieves competitive
mOKSm, AP@n, and mAP values, but also improved the
accuracy of keypoint location and classification.
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