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ABSTRACT Predicting stock price based on the features of raw data has been a significant but challenging
task for researchers. Various frequency components of the raw stock price series represent characteristics
of stock prices in different time scales. Therefore, it makes sense for predicting stock prices to take these
frequency components into account. In this paper, a novel hybrid model is proposed to predict stock prices,
which combines empirical mode decomposition (EMD), convolutional neural network (CNN) and Long
Short-Term Memory (LSTM). For this purpose, the original stock price series are first decomposed into a
finite number of intrinsic mode functions (IMFs) under different frequencies by EMD. For each component,
a CNN is used to extract the features. Then through a LSTM network, the temporal dependencies of all
extracted features are modeled and the final predicted prices are obtained after a linear transformation. Two
prediction steps, one day and one week, of Shanghai Stock Exchange Composite Index (SSE) are used to test
the proposed model. The experimental results show that the hybrid network can achieve better performances

by modeling different frequencies compared with other state-of-the-art models.

INDEX TERMS EMD, CNN, LSTM, multi-frequency modeling.

I. INTRODUCTION

Stock price prediction is an important issue to stock investors
to seek profit-maximization strategies [1]—[4]. Since the stock
price series are non-linear and non-stationary, it is a challeng-
ing task to predict the stock prices reliably and accurately [5].
Recently, with the development of machine learning, artificial
neural networks (ANN) has become an effective tool for
analyzing and predicting time series [6], [7] because of its
nonlinear modeling capability.

Traditional ANN lacks the ability to model the long-term
dependency of time series, which promotes the proposing of
Long Short-Term Memory (LSTM) network, a gated memory
cell. Since the predicted stock price is not only related to the
stock price at the current time, but also to the data at earlier
time. LSTM obtains time dependencies of the before-after
associated data through its recurrent structure, which makes
LSTM to be an effective tool to predict time series. Fur-
thermore, LSTM filters the information selectively through
a ‘“‘gate” structure to extract more useful information from
historical data in training [1].

Investors trading at different frequencies result in dif-
ferent levels of stock price volatility [13]. For those
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looking for long-term gains, it relies more on low-frequency
information in stock price series to predict future stock
prices, and vice versa. Therefore, it is significant to reveal
the multi-frequency characteristics of the stock price time-
series. Both discrete Fourier transform (DFT) and empirical
mode decomposition (EMD) are effective tools to decom-
pose time series and they have been applied in previous
researches. However, DFT requires the time series to be
stationary and linear, which are not met in the stock price
series.

Empirical mode decomposition (EMD), proposed by
Huang et al. [14], is a method for proceeding nonlinear and
none-stationary time series, which decomposed original data
into a finite number of intrinsic mode functions (IMFs) and
aresidue, which contain information about different frequen-
cies. Some researchers transform the complicated series into
a finite number of simple series through EMD, which are
more likely to be modeled by neural network. But they just
model the sub-series as new series and neglect the informa-
tion at different frequencies. Meanwhile, the proceedings of
the researches are based on the assumption that the decom-
posed values at the current time are independent of future
information. Therefore, they decompose full series at once
and don’t take the effect of future prices on the decomposed
components into account.
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As one of the most successful deep learning methods,
convolutional neural network (CNN) can extracts features of
the input data through convolutional kernels [27]. By kernels
with different lengths, CNNs can obtain features under differ-
ent frequencies after the original series are decomposed into
frequency components.

In this paper, we divide the original stock price series
instance into four sub sequences based on the temporal
relationship and then each sequence is decomposed through
EMD. In order to obtain the frequency representations,
a CNN is used for each component. Because of the capability
of temporal modeling, LSTM learns the temporal depen-
dencies of features extracted by all CNNs. We get the pre-
dicted price after a linear transform of the output of the
LSTM. The original data in this paper comes from sam-
ples of Shanghai Stock Exchange Composite Index (SSE)
data.

Il. RELATED WORK

There were researches using ANN to deal with time series.
Adebiyi et al. [8] used ANN to predict public stock data
trends and compared the performance with autoregressive
integrated moving average (ARIMA). Wang et al. [9] com-
bined particle swarm optimization (PSO) and BP neural
network to predict gold price. Kuremoto er al. [10] fore-
casted time series using a deep belief network with restricted
Boltzmann machines. Because of the capacity of temporal
modeling, Xiong et al. [11] used LSTM with 27 features to
predict the S&P500 volatility. Saxe et al. [12] proposed a
novel LSTM-AR hybrid model.

CNN was also widely applied in researches modeling time
series. Sainath et al. [29] used CNN to extract features under
different frequencies of English-spoken signals and then used
LSTM to classify the spoken words. Li ef al. [27] combined
1D-CNN and LSTM to predict PM2.5 index. In financial time
series prediction, Vidal and Kristjanpoller [28] predicted gold
volatility through modeling Markov Transition Field (MTF)
by multilayer CNNs.

In order to use frequency characteristics, Zhang and Li [13]
decomposed the memory states of LSTM to a set of K
discrete frequencies inspired by DFT. However, financial
series are non-linear and non-stationary, but DFT requires
the time series to be stationary and linear [14]. Furthermore,
the research set the number of discrete frequencies unchanged
regardless of the length of series, which might cause time
domain aliasing. Yu et al. [15] decomposed the crude oil
price series into nine IMFs and one residue, and predicted
each component by a forward neural network. Cao and Li [1]
decomposed the stock price series and predicted each IMF by
a multi-layer LSTM network.

lll. METHODOLOGY

This section details the EMD algorithm and two neural
networks including CNN and LSTM, and then describes
the architecture of the proposed EMD-CNN-LSTM hybrid
model.
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A. EMD

EMD decomposed the original data into a collection of
IMFs and a residue based on the local characters of the
time series, including local maxima, local minima, and
zero-crossings [16]. There are two conditions that an IMF
satisfies: (1) the number of extrema and the number of
zero crossings must be differ at most by one; and (2) the
mean value of the envelope defined by the local maxima
and the envelope defined by the local minima must be zero
at any point. The method for decomposing is called sifting
process [14]

(1) Given a TS x(¢), identify all the maxima and minima,
and form all maxima to an upper envelope u(¢) and all minima
to a lower envelope /(¢) through interpolation.

(2) Calculate the mean value of upper and lower envelopes
m(t) = (u(t) + 1(2))/2.

(3) Subtract m(t) from x(¢) to get a detailed component
h(t) = x(t) — m(t).

(4) Repeat step (1) to step (3) with Ah(¢) as a new input
until the A(t) satisfies the two conditions mentioned above or
the number of iterations reaches the user defined maximum
iteration, and A(t) is defined as ¢ (¢) as the first IMF.

(5) Separate c1(¢) from x(¢) and get a new sequence without
high frequency components r(t) = x(t) — c1(¢).

(6) Repeat step (1) to (5) for r1 (¢) until all IMFs and residue
are obtained.

The original TS is decomposed as:

x(t) =Y cilt) + r() ()

Rilling et al. [17] proposed two threshold-based stopping
criteria
count(¢|8(t) < 61) -

>1l-a 2
c(t)
8(t) < 6, (3)
o u@) + 1)
8(1) = I—u(t)_l(t)l 4)

We typically set o = 0.05, 6; = 0.05 and 6> = 0.05.

B. CNN AND LSTM
1) CNN
A CNN uses generally raw data as input instead of hand-
crafted features. The input data is processed through trainable
convolutional layers for learning an appropriate representa-
tion of the input [18], [25]. In this paper, the input to an
CNN is a frequency component. The network is designed to
learn a collection of parameters to represent the frequency
information of the component.

For the convolutional layer, the operation of i — th layer can
be expressed as:

T; = act(W; ® C; + b)) (5)

where ® denotes convolution operation, W denotes a set of
N one-dimensional kernels which are used for extract the
frequency features of the components, b is a bias vector, and
act is the activation function. C; denotes the i —th component.
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FIGURE 1. LSTM unit structure.

2) LSTM
Long Short-Term Memory is a variant of Recurrent Neu-
ral Network (RNN) proposed by Hochreiter and Schmidhu-
ber [19], which is capable to handle long-term dependency in
a time series. LSTM unit structure is shown in Figure 1.

At time t, x; is the input vector, ¢; is the memory state
vector and A, is the output vector from ¢;. Then LSTM can
be formulated as follow:

ir = sigmoid(Wix; + Uih;—1 + b;) (6)
Ji = sigmoid(Wyx; + Urh,_1 + by) @)
¢ = tanh(Wex; + Uchy—1 + be) @
¢t =iroC +fioci— 9)
o0y = sigmoid(Wox; + Uohs—1 + b,) (10)
h; = o0; o tanh(c;) (11

where i; is the input gate, f; is the forget gate, and oy is the
output gate. W, and W, are trainable weight matrices, b, are
trainable bias vectors, and o denotes matrix multiplication by
elements.

Because of its hidden states evolving themselves over
time and its three control gates, LSTM can obtain long-term
dependencies of the input series easily. In this paper, we set
the features extracted by CNN as the input of LSTM to
model frequency features in chronological order. Instead of
capturing the time dependencies of raw data, we model the
frequency features — time features through LSTM.

C. PROPOSED MODEL

In Figure 2, each instance contains 1000 10-minute sam-
ple values of SSE, which is denoted as [x1, X2, ..., X1000]-
We divide every instance to 4 sub-series by every 250 points.
Four sub-series are input into the model in chronological
order.

First, we decompose the first sub-series into several
IMFs and one residue through EMD and five frequency
components are obtained after all components are aligned.
Specifically, for each component, we use a one-dimensional
convolutional layer with 4 feature maps. The neurons in a
convolutional layer are connected only to a small region
of the previous layer called a receptive field. The size of
the receptive field are determined by the length of kernels.
For all convolutional layers, we use kernels of different

206390

(51575005 (Xgsps “'xmno)}

(357545 X500)5

- (xl ’ xza“"xzso)>

Set the number of
components to 5.

Convolutional layer.

Fully connected layer

LSTM layer

X1000+n

FIGURE 2. Structure of proposed model.

lengths to extract features at different time scales of frequency
components. There is edge effect in the frequency compo-
nents when the boundary of decomposed subseries achieves
extreme value. We predict the future prices based on the
features of frequency components extracted by CNN instead
of frequency components themselves. Therefore, the edge
effect of extreme value in the boundary of the decomposed
subseries can be significantly reduced.

The stride of convolutional operation should be deter-
mined. If the convolutional stride is too small relative to the
length of the kernel, there will be a lot of repeated calcu-
lations in the convolution calculation and redundant output
information. Meanwhile, if the stride is too large, the feature
fluctuations will be relatively large, which will result in the
learning difficulty in the next stage of our model. Experiments
with different convolutional strides have been conducted and
the results show that a quarter of the kernel length is optimal.

After the convolutional layer, we use a fully-connected
(FC) layer with 256 neurons to combine all features. The out-
puts of FC can be regarded as features in frequency domain
of the first sub-series, which are used as an input vector of
LSTM network at time + = 0. The number of hidden units
of LSTM is set to 32. Then the 3 sub-series rest are input to
the model one by one so that LSTM layers gets the temporal
dependencies of frequency features extracted from four sub-
series. After a linear transform of the final outputs of LSTM,
we get the predicted stock price finally.

The activation function of convolutional layer and FC layer
are “Relu” function and “tanh” function. We use mean
absolute error (MAE) as the loss function.

M
1 -
Loss = MAE = M E 1 [Ym — Yl (12)
m=

where J,, denotes predicted value, and y,, denotes the original
value corresponding to the m-th instance. To speed up the
training process, we use Adam optimizer algorithm [20] and
the learning rate is set to le-3.
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FIGURE 3. 10-minute samples of SSE.

10-minute samples from October 29, 2001 to December
28, 2018 of SSE are used as our dataset. Figure 3 shows
the original SSE data, which is volatile and non-stationary
in short term. Every instance consists of 1000 consecutive
points, and the (1000 + n) — th point is set as label of the
instance. 80% of instances are used for training, 10% of
instances are used for validating and 10% of instances are
used for testing after all of instances are disrupted.

IV. EXPERIMENTS

In this section, we conduct experiments to test our model.
First, we set the number of components to 5 according to the
numbers of IMFs of all instances, and then we discuss the
impact of single frequency component on prediction perfor-
mance. Finally, we present the comparison between proposed
model and other methods. Two steps of prediction, 24-step
(one day) and 120-step (one week), are conducted in this
section.

Time series of SSE with a frequency of 10 minutes is used
in our experiments. Since prices one day ahead are predicted,
the time granularity of historical information smaller than
one day is preferred. In addition, we divide historical price
series of two months into sub-series of two weeks and then
decompose the sub-series into frequency components. There
should be enough data points in sub-series to make proper
frequency decomposition.

The experiments are conducted on a Windows 10 PC with
Intel Core i5 CPU and the program is run on python 3.5.
The proposed model is built and run on TensorFlow 1.12.0,
a machine learning platform.

A. THE PROCESSING OF DATA
To ensure the parameters of our network can be updated effec-
tively and speed up the training process [22], we normalize
original data into [—1, 1]. The formula for normalization is
as follow:

x(t) — mean(x(t))

x(@t) = (13)

max |x(r) — mean(x(t))|

where x(¢) denotes raw data and x(¢) denotes normalized
data. We can restore the predicted price by the formula (14).

X(t) = max |x(t) — mean(x(t))| * x(t) + mean(x(t)) (14)
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FIGURE 4. Frequency distribution histogram of component numbers
under Rilling stop criterions.

EMD is an adaptive algorithm based on local characters
and the processing of decomposing will not stop until stop
criterions are reached, which means the number of com-
ponents is unsure before the process is finished. For our
model, however, the number of convolutional networks is set
unchanged. To make the number of components compatible
with the model, we decompose all sub-series of all samples
and under stop criterions mentioned at section II and count
components of all sub-series. The probability distribution
histogram is shown in figure 4. More than 96% of sub-series
are decomposed to five or six components at Rilling stop
criterions. In order to obtain sufficient frequency components
and reduce the model parameters, we set the number of
frequency components to 5 instead of 6.

Considering the large amount of noise in financial time
series, which is mainly contained in high-frequency compo-
nents [21], we align the low frequency components of all
sub-series and combine all high frequency components into
one component. For example, as is shown in figure 5 (a), sub-
series s1 has six components under default stop criterions,
and we combine IMF1 and IMF?2 as the first component, with
the remaining four unchanged. For those with 4 components
at default stop criterions, we set the 4-th component to a
zero-setting sequence as the figure 5 (b) shows. Finally, all
sub-series are decomposed to five components. Because the
values can be very close to zero, we normalize the five
components to [—1, 1] by the formula (13) respectively.

B. RESULTS OF PROPOSED MODEL
We extract the frequency features through several kernels in
convolutional layer. The length of kernels determines the time
scale on which frequency features are extracted. To learn
the impact of time scale on predictive performance, we first
use convolutional kernels of the same length for the five
components to predict prices one day and one week later,
and the best hyperparameters of length are obtained. Then
we adjust the length of five components individually until we
get the best predictive performance. The results are shown
in Table 1.

Prediction steps are shown in the first column in Table 1,
lengths of kernels from the 1-st to the 5-th component,
the order of which are from higher to lower frequency
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FIGURE 5. Alignment of frequency components.

component, are shown in the second column, and the
MAE is shown in the third column. And root mean square
error (RMSE) is shown in the fourth column. In both pre-
diction tasks, kernels of length 64 perform best when all
kernels’ length are consistent. In addition, MAE under ker-
nels with different lengths is lower than the other one, and
the best hyperparameters in this condition follow the order
from smallest to biggest. For high frequency components,
smaller kernels lead to a better performance, and vice versa.
The residue, the lowest frequency component, represents the
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tendency information of the series in the longest period as
figure 5 shows. Therefore, it needs a bigger receptive field to
extract the features. Components representing high frequency
information have smaller periods, so smaller kernels extract-
ing periodic fluctuation information at higher frequencies are
required. What’s more, for the same component, the length
of kernels to predict prices after one day are equal to or
smaller than that to predict prices after one week. For a
short-term prediction, features on a smaller time scale are
more important. For example, tendency and volatility features
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TABLE 1. Prediction mean absolute error of different lengths of
convolution kernels.

Pres(tiégslon convgfﬁgi?;l (l)i:mels MAE RMSE
16,16,16,16,16 21.88 40.11
32,32,32,32,32 20.94 39.61
64,64,64,64,64 19.16 39.11
96,96,96,96,96 19.67 39.72
64,64,64,64,128 18.95 37.13
64,64,64,64,48 19.74 39.28
64,64,64,48,128 18.84 37.66
1-day 64,64,64,80,128 20.58 39.71
64,64,48,64,128 18.44 37.33
64,64,80,64,128 19.38 39.55
64,48,48,64,128 18.11 36.02
64,80,48,64,128 18.66 36.76
32,48,48,64,128 18.37 35.99
16,48,48,64,128 17.61 35.04
80,48,48,64,128 19.15 39.48
16,16,16,16,16 26.88 45.76
32,32,32,32,32 23.76 43.63
64,64,64,64,64 22.82 42.04
128,128,128,128 33.87 58.36
64,64,64,64,32 24.92 4331
64,64,64,64,96 23.87 41.55
64,64,64,64,128 21.73 39.99
64,64,64,32,128 22.82 42.11
1-week 64,64,64,96,128 24.16 4327
64,64,32,64,128 30.57 55.49
64,64,96,64,128 23.43 41.54
64,32,64,64,128 26.73 4538
64,96,64,64,128 25.54 43.86
32,64,64,64,128 21.56 40.17
16,64,64,64,128 21.33 39.88
80,64,64,64,128 22.65 40.92

in recent months are less important than that in recent days to
predict stock prices on next day.

C. IMPACT OF SINGLE FREQUENCY COMPONENT

To study the relationship between different components and
prediction performance, we conduct experiment by removing
the highest and the lowest frequency component separately,
and the results are shown in Table 2. For both predictions,
removing the lowest frequency component makes the pre-
diction performance worse significantly. For one-day step
prediction, removing the highest frequency component makes
MAE larger by 12.3%, and for one-week step prediction,
it makes MAE smaller by 6.9%.

The experimental results show the following information.
Firstly, the lowest frequency components of a stock prices
series, which represents the tendency of the series, contains
important sequence feature information. When we remove
these components, we lost amount of valid information of
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TABLE 2. Comparison with removing two components separately.

Prediction =~ The component

MAE RMSE
steps removed

None 17.61 35.04

Highest
frequency 19.78 37.84
1-day component
lowest
frequency
component

None 21.33 39.88

Highest
frequency 19.88 39.60
component
lowest
frequency
component

157.59 417.32

1-week

160.09 45321

the series. Secondly, because of the high volatility, the stock
price series contain a lot of noise, which is mainly represented
in high-frequency components. However, high-frequency
components contain not only noise, but also a number of
features at short time scales, which are of great importance
to make short-term forecasts. However, high-frequency com-
ponents contain not only noise, but also a number of features
at short time scales, which are of great importance to make
short-term forecasts. Therefore, removing the highest fre-
quency component makes the performance worse in one-day
step prediction. Finally, for long-term prediction, features at
short time scales can be irrelevant. Removing the highest fre-
quency component reduces the effects of irrelevant features
and noise, and the prediction performance becomes better
then. For investors with long trading cycles, they do not pay
attention to short-term price fluctuation characteristics, such
as price changes caused by high-frequency traders, and the
fluctuation can even mislead these investors. On the contrary,
for high-frequency traders, they care not only short-term price
fluctuation characteristics, but also the price trend at a longer
period to make their single stock transaction more profitable.
Therefore, when we make long-term price prediction or stock
transaction, it is better to filter out high-frequency noise
firstly.

D. COMPARISON WITH OTHER MODELS

In this section, to evaluate the prediction performance of pro-
posed model, we compared several prediction models, includ-
ing persistence, LSTM, support vector regression (SVR),
EMD-LSTM, CNN-LSTM and EMD-SVR. In all models,
the same dataset was used.

Persistence model regard the price at current time as the
predicted price. LSTM network predicts the original series
directly through extracting the time dependencies of raw data.
In EMD-LSTM network, we decompose the original data into
5 components in the same way as the proposed model. Then
we predict each component through a LSTM. Five predicted
values are combined as the final predicted price after a linear
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FIGURE 6. Linear regression analysis of prediction.

TABLE 3. Comparison with other models.

P r‘“’s‘ti;tsion Model MAE  RMSE
1-day Persistence 29.45 49.14
LSTM 29.82 52.37

EMD-LSTM 25.50 43.86

CNN-LSTM 25.39 43.12

SVR 29.60 50.06

EMD-SVR 23.98 44.05
EMD-CNN-LSTM 17.61 35.04

SFM 19.98 39.27

1-week Persistence 68.82 112.71
LSTM 67.73 108.65

EMD-LSTM 38.03 63.68

CNN-LSTM 44.62 74.51
SVR 68.09 107.26

EMD-SVR 36.94 61.07
EMD-CNN-LSTM 19.88 39.60

SFM 27.53 46.90

transform. The number of hidden units are set to 256 and
32 in these two models. The CNN-LSTM extracts the features
directly from original sequence through CNN and models
the time dependencies of these features through LSTM. The
length of convolutional kernels is set to 64 and the number of
hidden units of LSTM is set to 32.

To compare the performance with other prediction models
for time series, SVR and EMD-SVR are also included in
our experiments. As a widely applied model for predicting
time series, SVR maps the input data to a high-dimensional
space, and then uses linear regression on features in
high-dimensional space to fit the data in original space [23].
Radial basis function (RBF) is used as kernel function,
epsilon is set to 0.01, C is set to 1.0, and gamma is
set to 0.01. The results of models are presented in table
3. MAE represents the prediction error of these models.
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Both in one-day and one-week prediction, the proposed
model gets the smallest MAE among the models. The per-
formance of LSTM and SVR, is close to persistence method.
Combined with EMD, the performance of these two net-
works has been improved significantly. We can also see
from table 3 that the prediction error is significantly reduced
by EMD-CNN-LSTM compared with CNN-LSTM and
EMD-LSTM.

Finally, linear regression is used to assess the predictive
accuracy of the model and the results are shown in figure 6.
The determination coefficient R? is used to test the degree of
association between the two variables. In 1-day prediction,
R* = 0.9913 and in 1-week prediction R> = 0.9901, which
are close to 1. This means that our model can predict the stock
price accurately.

V. CONCLUSION

In this paper, we build a financial series prediction model by
combining EMD, CNN and LSTM to predict stock price. The
model uses 10-minute samples of SSE to predict daily and
weekly stock price. The main steps are as follow: (1) divide
every 1000 consecutive sampling points into 4 sub-series;
(2) decompose each sub-series into five components repre-
senting five levels of frequency features; (3) extracting fre-
quency features through a CNN for each component; (4) com-
bine all frequency features by a fully connected layer and
extract the time dependencies of frequency features from
four sub-series; (5) get the final predicted price after a linear
transform of LSTM outputs. Compared with several state-of-
art models, the proposed model has been verified effective.
In addition, we study the impact of frequency information on
prediction performance. The conclusions are summarized as
follow:

« Different frequency components represent features at
different time scales. Longer convolutional kernels are
suitable for low frequency component to extract features
at long time scales, and vice versa.

o The highest frequency contains amount of noise as well
as a number of features at extremely short time scales.
For longer step prediction, remove these components
can improve prediction accuracy.
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« Residue, the lowest frequency component of a stock
price series, represent most effective features which are

of significance to the prediction performance.
There are some points to further study to improve the

model. First, all the features in this paper are extracted
from raw series, instead of taking financial characteris-
tics into account. Combining frequency features and finan-
cial characteristics, like volume, highest price, lowest price
and so on, in appropriate time scales, may be a further
study direction. Second, there are some improved versions,
such as ensemble empirical mode decomposition (EEMD)
and complementary ensemble empirical mode decomposi-
tion (CEEMD). Whether the improved versions of EMD
can improve prediction performance is not clear. Finally,
how to improve the model to predict other nonlinear and
non- stationary series, such as wind speed, traffic, earth-
quake wave and traffic flow. Finally, the idea of EMD is
similar to the wavelet decomposition. EMD is a frequency
transformation and decomposes original series into multiple
independent vectors, while wavelet transformation is a time-
frequency transformation and decomposes the series into a
two-dimensional matrix (time and frequency). Price predic-
tion based on time-frequency features can be our future work.
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