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ABSTRACT The panoramic dental X-ray images are an essential diagnostic tool used by dentists to detect the
symptoms in an early stage and develop appropriate treatment plans. In recent years, deep learning methods
have been applied to achieve tooth segmentation of dental X-rays, which aims to assist dentists in making
clinical decisions. Because the original images contain plenty of useless information, it is necessary to extract
the region-of-interest (ROI) to obtainmore accurate results by focusing on themaxillofacial region. However,
a fast and accurate maxillofacial segmentation without hand-crafted features is challenging due to the poor
image quality. In this study, we create a large maxillofacial dataset and propose an efficient encoder-decoder
network model named EED-Net to solve this problem. This dataset consists of 2602 panoramic dental
X-ray images and corresponding segmentation masks annotated by the trained experts. Based on the original
structure of U-Net, our model structure contains three major modules: a feature encoder, a corresponding
decoder, and a multipath feature extractor that connects the encoding path and the decoding path. In order
to obtain more semantic features from the depth and breadth, we replace the convolution layer with the
residual block in the encoder and adopt Inception-ResNet block in the multipath feature extractor. Inspired
by the skip connection in FCN-8s, the lightweight decoder has the same channel dimension as the number
of segmented objects. Besides, a weighted loss function is used to enhance segmentation accuracy. The
comprehensive experimental results on the new dataset demonstrate that our model achieves better accuracy
and speed trade-offs for maxillofacial segmentation than the latest methods.

INDEX TERMS Maxillofacial segmentation, panoramic radiographs, deep learning, encoder-decoder
network.

I. INTRODUCTION
Dental radiographs are widely used in dentistry for clini-
cal diagnosis, treatment, and surgery. These images enable
dentists to find hidden dental structures, bone loss, and cav-
ities [1], which are hard or impossible to detect in visual
inspection. Hence, dentists can detect symptoms at an early
stage and develop appropriate treatment plans [2]. In the
dental examination, there are three types of conventional
radiographs: bitewing, periapical, and panoramic [3]. The
bitewing X-rays show portions of the upper and lower teeth to
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detect changes in bone thickness caused by gum disease. The
periapical X-rays show the whole teeth in part of the upper
jaw or lower jaw to evaluate the root area and surrounding
bone structures. While the bitewing and periapical X-rays
focus on the details of individual teeth or parts of teeth, the
panoramic X-rays capture the entire mouth area, including all
the teeth, gums, jaws, and bone structure [4] to provide more
diagnostic evidence. Since the panoramic X-rays are filmed
outside the mouth, they have better patient acceptance with
faster shooting, less radiation exposure, and lower infection
rate [5]. During diagnosis and treatment, such as root canal
treatment, caries diagnosis and tooth orthodontics, dentists
are required to analyze panoramic radiographs and record
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specific symptoms of diseased teeth in the electronic medical
record. However, it takes a long training time for a young
doctor to read dental films accurately [6]. Therefore, consid-
erable attention has been paid to automatic panoramic X-rays
analysis.

Many studies have been carried out to explore tooth seg-
mentation since the diagnosis is based on the analysis of
teeth and surrounding tissues. Traditional image segmenta-
tion methods [7]–[10] can quickly extract dental informa-
tion from a single radiograph type. However, these methods
rely on well-designed manual features and lack sufficient
generalization capability. The emergence of deep learning
methods [11], [12] dramatically improves the accuracy of
tooth segmentation under different tooth distributions. The
image segmentation models based on deep learning mostly
adopt an end-to-end learning framework [13], where both
training and inference are performed by dense feedforward
computation and backpropagation to learn the entire image
at once. The training process is designed to optimize the
overall parameters according to the error between predicted
results and true labels. As the deep learning models need
to focus more on teeth and surrounding areas to enhance
pixel recognition, their typical inputs are often the region-
of-interest (ROI) derived from the original image [14], [15].
In panoramic X-rays, the ROI is the maxillofacial region
[16], [17], which contains all the teeth and discards most
of the irrelevant information. Therefore, real-time extraction
of the maxillofacial region is an essential preprocessing step
in the panoramic dental X-ray analysis.

FIGURE 1. An example of the panoramic dental X-rays. The inner area of
the red circle is the approximate outline of maxillofacial region that
contains all the teeth. The pixels and illumination of the image are not
uniformly distributed, and the high-noise outer area accounts for more
than half of the pixels. Due to low-contrast and overlapping anatomical
structures, the maxillofacial region has no strong edges.

However, an accurate and rapidmaxillofacial segmentation
is challenging due to the poor image quality of panoramic
dental X-rays. As shown in Fig. 1, the low quality of the
image comes from three aspects [18]: 1) unavoidable noise,
2) varying illumination, and 3) low pixel contrast of the tissue.
A major dilemma is that panoramic radiographs show over-
lapping anatomical structures [19]. The overlap among teeth,
jaws and surrounding bones then causes complex variations
in grayscale levels of panoramic X-rays. In this case, static

and dynamic methods have been developed to extract the ROI
from panoramic X-rays. The static method defines a fixed
rectangular window for all images. Through a statistical anal-
ysis of the maxillofacial morphology [20], [21], the anchor
point (often the image center) and the rectangle size are
determined, and this window is cropped from the image as the
maxillofacial region. This method is theoretically effective
for samples with similar tissue morphology. Nevertheless,
the shape and position of the maxillofacial region are con-
siderably variable in practice, which limits the application
of the static window. The dynamic method employs manual
threshold selection [22], morphological transformation [23],
or wavelet variation [24] to extract the separation line of the
upper and lower jaws for correcting the anchor point. Then,
the modified anchor point and rectangular, trapezoidal [25]
or oval window [26] are combined to capture the maxillo-
facial region. Although this method improves the segmen-
tation accuracy and has higher flexibility to some extent,
it requires a fine selection of pixel thresholds and fails to
accurately locate the separation line when teeth are missing
or overlapping. To circumvent the limitations of the above
methods, an approachwith greater feature extraction and gen-
eralization capability is needed. Fortunately, the deep learn-
ing approach [27]–[30] is competent for this task because
of its remarkable success in medical image segmentation
[31], [32]. However, the performance gain of this approach
usually comes at the cost of high computation [33] and long
processing time. Therefore, ensuring both the accuracy and
the real-time performance of maxillofacial segmentation still
remains a significant challenge.

In this study, we propose an efficient encoder and decoder
network named EED-Net to address automatic maxillofacial
segmentation using a newly built dataset. Since there is no
open maxillofacial dataset in relevant research fields, we
elaborately collect 2602 panoramic dental X-rays, excluding
the hypoplasia and tooth decay. A group of dental experts are
trained to implement the maxillofacial annotations. On this
basis, we evaluate the performance of FCN-8s [34] and
U-Net [35], which are commonly used as the baseline models
in image segmentation. Despite that both models have their
own advantages in aspect of speed and accuracy, they cannot
balance these two performances. Against this background,
we combine the structure of U-Net with the decoding method
of FCN-8s to design a newmaxillofacial segmentationmodel.
The proposed model is mainly composed of three modules:
a feature encoder, a corresponding decoder, and a multipath
feature extractor that connects the encoder and the decoder in
the last layer. Specifically, the common convolution connec-
tion in the encoder is replaced with a residual structure [36]
to obtain deeper features. Besides, we construct a modified
Inception-ResNet block [37] in the multipath feature extrac-
tor to increase the width of the feature search. The skip
connection between the encoder-decoder pairs is reserved for
passing the low-resolution texture and location information.
To reduce parameters, we employ the category number of seg-
mented objects to identify the decoder’s channel dimension,
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which is far less than the encoder. The extensive experiment
results on the maxillofacial dataset demonstrate that our pro-
posed model achieves better overall performance than the
latest real-time semantic segmentationmodels, which verifies
the efficiency of EED-Net.

The remainder of this paper is organized as follows.
Section II introduces the related works on the maxillofa-
cial segmentation methods and some latest deep learning
semantic segmentation models. Section III describes the new
dataset and the proposed model in detail. Section IV presents
the experimental results. In Section V, our conclusion and
discussion are provided.

II. RELATED WORKS
In the literature of maxillofacial segmentation methods for
panoramic dental X-ray images, two strategies have been
developed: 1) static method: observing the distribution of
teeth and surrounding tissues in the image samples and arti-
ficially selecting a static window to crop the maxillofacial
region; 2) dynamic method: enhancing the contrast of the
original image, extracting the separation line of upper and
lower jaws, and correcting the position and shape of the
dynamic window.

To implement the first strategy, Oliveira and Proença [20]
defined a rough maxillofacial region that took out the nasal
and chin bones as the first stage of teeth segmentation.
They measured the boundary distance of the maxillofacial
region and fitted each distance variable to a corresponding
Gaussian distribution. The shortest distance with 95% cer-
tainty was adopted as the window size to extract the ROI.
According to the statistical analysis of image morphology,
Fares and Feghali [21] positioned the anchor point at the
maxillofacial center to reduce the distance variables.

To improve the adaptability and accuracy of segmen-
tation algorithms, the dynamic methods were proposed.
Jain and Chen [22] used transverse scanning to find the lower
pixel intensity in the y-axis projection histogram. Combined
with the Gaussian distribution assumption and a user-assisted
initialization, this method found the gap valley between the
upper and lower teeth. By locating these gaps, they divided
the maxillofacial region into vertical strips for subsequent
tooth segmentation. Wanat and Frejlichowski [26] utilized
the areas between necks of teeth to determine the separation
line, which did not depend on the gap between adjacent teeth.
Harandi et al. [23] applied morphology transform and modi-
fied geodesic active contour on panoramic X-rays to achieve
better separation and subtraction. Gumus [24] employed the
discrete wavelet transform for better location of the ROI and
adopted polynomial regression to form a smooth separation
line with absent teeth.

The above-mentioned dynamic methods aim to sepa-
rate the upper and lower jaws, whereas the deep learn-
ing method requires a complete maxillofacial image to
achieve the training and inference of end-to-end models.
Fares and Feghali [21] searched for the occlusal gap to locate
the maxillofacial center and extracted the entire ROI with

FIGURE 2. The network architectures of (a) FCN-8s and (b) U-Net. For both
models, 2x down module downsamples the input feature map to half the
size, 2x up module upsamples the input feature map to twice the size,
and 1/8 denotes that the feature map size of the module is 1/8 of the
input image size. Low-resolution and high-resolution features are fused
by addition operations in FCN-8s and concatenation operations in U-Net.

a fixed rectangle. However, their method cannot find the
accurate maxillofacial region when the upper and lower jaws
are connected. Hasan et al. [25] combined the gradient vector
flow(GVF) snakes with K-means clustering to accomplish
maxillofacial segmentation with missing gaps between upper
and lower jaws. Although this method has been proved to
work with more types of panoramic radiographs, it is highly
dependent on manual threshold selection to extract the max-
illofacial edges.

In recent years, significant progress has been made to
improve the performance of low-contrast medical image
segmentation using deep learning algorithms. Among these
works, FCN [34] and U-Net [35] are the popular classical
models. FCN lays the foundation for most modern segmen-
tation architectures. As shown in Fig. 2(a), the removal of
the full connected layer allows the model to predict the dense
output from an arbitrary-sized image theoretically. Specifi-
cally, VGG [38] is employed as the encoder to extract high-
resolution semantic features. For the decoder, the transposed
convolution and skip connection are integrated to restore the
object spatial. In this context, three versions of the model:
FCN-32s, FCN-16s, and FCN-8s are presented with different
depths of the connection architecture. Since the frequent use
of pooling layers in FCN results in a loss of low-resolution
features, U-Net builds dense skip connections to further
explore the recovery of image details. Fig. 2(b) shows that
U-Net has a symmetrical encoder-decoder structure. Due
to the concentration operation for multi-scale feature inte-
gration, low-resolution context and high-resolution features
can be fused without loss. As a result, the abundant feature
information effectively improves model performance at the
cost of increased computation.

More recently, many lightweight models have been pro-
posed for real-time semantic segmentation. RefineNet [39]
constructed an encoder-decoder network in the full resid-
ual form [36] and leveraged multiple-level abstract fea-
tures to perform high-resolution semantic segmentation. The
multi-branch systems ICNet [40] and BiSeNet [41] learned
a global context with reduced-resolution input in a deep
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branch, while boundaries were learned in a shallow branch
at full resolution. Fast-SCNN [42] merged the two-branch
pattern with the encoder-decoder framework and introduced
a novel initial layer to share the computations of both
branches. LEDNet [43] proposed an asymmetric encoder-
encoder architecture with channel split and attention pyramid
to lighten the model complexity.

However, real-time maxillofacial segmentation with high
accuracy remains challenging. Inspired by the above works,
the proposed EED-Net incorporates the multipath feature
extractor and the simplified decoder in the residual encoder-
decoder framework to guarantee both speed and accuracy of
maxillofacial segmentation.

III. METHODOLOGY
In this section, we describe our research methodology in
detail from the following aspects: the establishment of the
dataset, the structure of EED-Net, and the weighted loss
function.

A. DATASET
1) THE SOURCE AND ATTRIBUTES OF THE IMAGES
In the early stage of our research, we found it difficult to find
a maxillofacial segmentation dataset in the community. The
existing open dental datasets contain no maxillofacial results,
and their quantity is not enough to support the training of deep
learning models. Therefore, we cooperate with the experts
from the Hospital of Stomatology Wuhan University to build
a maxillofacial dataset. To gather data quickly, we choose
to screen panoramic dental X-rays from electronic medical
records rather than waiting for new patients. It is worth noting
that these images do not contain any personal privacy, so there
is no ethical issue involved. Considering the maxillofacial
growth and deformity caused by age, the experts remove
the samples that are too young or too old. Moreover, every
image is labeled ‘‘non-periodontal disease’’ or ‘‘periodontal
disease’’ for the follow-up research. In total, our dataset is
composed of 2602 panoramic X-rays, including 1146 ‘‘non-
periodontal disease’’ samples and 1456 ‘‘periodontal dis-
ease’’ samples.

2) THE ANNOTATION PRINCIPLES OF THE
MAXILLOFACIAL REGION
In medicine, the maxillofacial region is located at the begin-
ning of the digestive tract and respiratory tract to commu-
nicate with the outside world through the oral cavity and
nasal cavity. This description aims to delineate the specific
functional area, but our research is designed for maxillofa-
cial segmentation. Therefore, a clear maxillofacial definition
is required to accommodate the panoramic X-rays. After
analyzing the correlation between teeth and maxillofacial
region in different types of the images, we develop the fol-
lowing three principles for maxillofacial annotation: a) the
segmented region should contain all the teeth; b) there should
be a significant difference between the segmented region

and the unsegmented region; c) The boundary of the seg-
mented region should be as smooth as possible. According to
these rules, the new maxillofacial region is precisely outlined
between the nose and chin, forming a smooth surface with the
left and right jaws.

3) THE ANNOTATIONS OF THE PANORAMIC DENTAL X-RAYS
The maxillofacial annotations are achieved by anchoring and
connecting the points in the images. In general, 30-50 points
are required in an image to outline the target region, which
makes the annotations labor-intensive and time-consuming.
To improve annotation efficiency, we test some common
annotation methods and finally choose VGG Image Annota-
tor (VIA) [44]. This tool is easy-to-use and compatible with
different operating systems, which ismore suitable for collab-
orative annotations than other tools. Based on the proposed
segmentation principles, our experts are trained to outline
the maxillofacial region in the image using VIA, where the
annotation files are obtained in JSON form. By converting
the files into images in python, the maxillofacial masks are
generated in grayscale. The segmentation results are verified
by our experts and unqualified images are relabeled. Finally,
we establish a dataset of 2602 panoramic X-rays and cor-
responding maxillofacial masks for deep learning models.
Fig. 3 shows the typical images and their masks.

FIGURE 3. The panoramic X-rays in the first row are ‘‘non-periodontal
disease’’, and the images in the third row are ‘‘periodontal disease’’. The
yellow curves in these images are the maxillofacial contour outlined by
the experts. The other rows are the corresponding masks generated by
the annotations.

TABLE 1. The sample composition of different categories in the dataset.

For the performance assessment of the models, we divide
the whole dataset into a training set and a test set with a
ratio of 4:1. Table 1 describes the distribution of different
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FIGURE 4. The structure of EED-Net. In addition to the initial convolution layers and the last sigmoid activation layer, the model is mainly composed of
three parts: 1) the residual encoder modules, 2) the multipath feature extractors based on the simplified Inception-ResNet block, 3) the object-oriented
decoder modules. The main path realizes the breadth extraction of the encoder output features, and passes high-resolution features to the decoder after
channel compression. In order to recover image details accurately, the dense short paths are utilized to achieve the gradient flow in shallow layers. Since
there is only one target type in maxillofacial segmentation, the corresponding decoder has a single feature channel, converted from a 1 × 1 convolution
layer.

categories of images in the dateset. In order to main-
tain category balance, both types of samples are randomly
assigned to the homologous datasets in the same ratio of 4:1.
Since the original panoramic X-rays have a resolution of
2976× 1536 pixels, our GPU will run out of memory during
the calculation of such a large image. Therefore, we resize
them to a resolution of 744 × 384 (which is a quarter of the
original size) by the nearest interpolation. This dataset serves
the purpose of supporting the verification and optimization of
maxillofacial segmentation models.

B. EED-NET
Before developing our model, we evaluated the common
segmentation models, FCN-8s and U-Net, on our maxillofa-
cial dataset. The comparison results indicate that U-Net has
higher accuracy, while FCN-8s uses less computing time with
more parameters. It is worthwhile to design a new network
model to inherit the advantages of these two baseline models.
In this case, both accuracy and efficiency can be guaranteed.

Based on the structural analysis of existing models,
we propose a novel efficient encoder-decoder network
named EED-Net for maxillofacial segmentation. As illus-
trated in Fig. 4, the main architecture of EED-Net consists
of three components: an encoder module, a decoder module,

and a multipath feature extractor module. Before entering
the serial encoder modules, a 3 × 3 convolution layer is
used for the preliminary feature extraction and channel trans-
formation of the input image. The encoder module adopts
the residual structure to obtain effective high-resolution fea-
tures and speed up the model calculation. In the encoding
path, its channel increases by multiples to compensate for
the information loss caused by maxpooling layers. Then,
two concatenated multipath feature extractor modules (which
we call the main path) are utilized to connect the encoding
path and the decoding path. Since high-resolution features
have a decisive influence on the results, the multiple feature
extractor is constructed on the simplified Inception-ResNet
structure. Due to the combination of receptive fields with
different widths, the main path can obtain multi-dimensional
deep features to enhance the discriminative capacity of the
segmentation target. Next, our decoder module realizes the
addition of input feature maps after the channel transfor-
mation using a 1 × 1 convolution layer. Most importantly,
the number of segmented objects, not the encoder, determines
the channel number in the decoders. Since each panoramic
X-ray has only one maxillofacial region, the object-oriented
decoders dramatically reduce the model complexity. More-
over, skip connections (which we call the short path) between
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FIGURE 5. The structure of the encoder in (a) U-Net and (b) EED-Net. The
full pre-activation residual structure is adopted in EED-Net to make
training easier and improve generalization.

the encoder-decoder pairs are reserved to achieve the gradi-
ent flow in shallow layers, allowing the training of a very
deep network. Finally, the segmentation results are obtained
through the last sigmoid activation layer.

1) FEATURE ENCODER MODULE
The primary function of the encoder is to gradually reduce
the spatial dimension of feature maps and capture more
high-level semantic features. Since the proposed model is
deeper than U-Net, we replace the ordinary convolution block
with the residual block to avoid gradient degradation. Fig. 5
indicates the encoder structures of these two models. Both
encoders are composed of two 3 × 3 convolution layers
and activation layers. The activation layer contains a batch
normalization layer [45] and a rectified linear unit (BN and
ReLU). Compared with U-Net, our residual encoder has a
shortcut connection and an addition operation that enable the
model to learn residual features rather than entire features,
which is easier to optimize. By learning existing various
residual structures, we choose the pre-activation residual
block [46] with activation layers in front of the weight lay-
ers to accelerate the training and improve the generalization
ability. Besides, the convolution layers within the encoder
have the same channel number. Since there is a maxpooling
layer between adjacent encoders to reduce the feature map,
the channel number of the next encoder is twice that of the
previous encoder to compensate for information loss.

2) MULTIPATH FEATURE EXTRACTOR
After passing through five encoders, the input feature map of
the main path is 1/32 of the original image size. However,
the high-resolution information plays a decisive role in the
restoration of the segmented region. Since the excessive
increase of convolution kernel and channel number will bring
too many parameters, we construct a modified Inception-
ResNet block to obtain deep features under multiple receptive
fields. As shown in Fig. 6, the extractor has three separate
paths, whose convolution kernels are 1 × 1, 3 × 3, and
5× 5. The 5× 5 path is composed of two 3× 3 convolution
layers. The 1 × 1 convolution layers are used to adjust the

FIGURE 6. The structure of the multipath feature extractor.

input dimension to reduce the extra computation. In addition,
the original Inception-ResNet structure is converted to the
pre-activation form to keep consistent with the encoder. Then
we use a concatenation operation to combine the multipath
outputs with the same dimensions. Meanwhile, the feature
concatenation causes no information loss. Finally, we use
two 192-channel modules instead of a 384-channel module
to build the main path.

FIGURE 7. The structure of the feature decoder module in (a) U-Net
and (b) EED-Net.

3) FEATURE DECODER MODULE
In the maxillofacial segmentation experiments, we find that
U-Net is more accurate and FCN-8s is faster with some per-
formance loss. Based on the analysis of two models, it can be
inferred that the symmetric decoders of U-Net bring plenty of
information redundancy, which slows down the calculation.
To reduce the complexity, we refer to FCN-8s and adopt
1 × 1 convolution layers to recover the object details and
spatial dimensions before information fusion. In Fig. 7, our
decoder has no common weighted layers, and an addition
operation completes the feature combination of the two paths.
Unlike the single-channel decoder in FCN-8s, the channel

VOLUME 8, 2020 207827



Z. Kong et al.: Automated Maxillofacial Segmentation in Panoramic Dental X-Ray Images

number in our decoder is determined by the number of the
segmented objects to enhance the segmentation quality. Since
each panoramic dental X-ray has only one target maxillofa-
cial region, the object-oriented decoder is much lighter than
U-Net. The activation layer is placed at the end of the decoder
to ensure the pre-activated form.

C. WEIGHTED LOSS FUNCTION
As an end-to-end model, EED-Net is trained to predict
whether each pixel belongs to the foreground or the back-
ground to extract the target region. Before the training, it is
necessary to specify the task type and expected performance
for choosing the loss function. Since regression functions
are mainly used to predict dynamic variables, maxillofacial
segmentation should be more a pixel classification problem
than a regression problem. In general, the entropy loss func-
tion [47] is applied to train the multiple classification models
by calculating the loss value of each pixel type. Considering
that there are only two types of pixels in our task, we adopt the
binary entropy loss function to estimate each pixel category.
Equation (1) describes the loss calculation of a single image:

Lbce(y, p) = −
1
n

∑N

i
(yi log pi + (1− yi) log(1− pi)) (1)

where y is the ground truth of the input image and yi ∈ {0, 1},
p is the predicted values of the pixel classification and pi ∈
[0, 1], and N denotes the total number of pixels. The final
loss value Lbce is obtained by calculating the average loss of
all pixels.

Actually, maxillofacial segmentation is not only a pixel
classification problem, but also a region segmentation prob-
lem, that takes a connected whole in the image as the tar-
get area. Moreover, the small difference in pixel intensity
between the bone and tooth structures on panoramic radio-
graphs increases the difficulty in recognizing the maxillofa-
cial edges. Considering the boundary connectivity, we adopt
the dice coefficient loss [48] to focus on the overlap between
the ground truth and the predicted maps. In image segmen-
tation, the ground truth and prediction can be viewed as two
sets, and the dice coefficient is used to gauge their similarity.
In this manner, the predictedmap approaches the ground truth
by minimizing the dice coefficient loss in (2).

Ldice(y, p) = 1−
2ω

∑N
i yipi∑N

i y
2
i +

∑N
i p

2
i

(2)

where
∑N

i yipi denotes the intersection of the ground truth
y and the predicted results p,

∑N
i y

2
i and

∑N
i p

2
i are the

quadratic sums of the pixel category of two samples. We set
ω = 1 in this study, and Ldice will come to zero when the
predicted result is the same as the ground truth.

To balance the performance of EED-Net in pixel predic-
tion and overall segmentation, we adopt the weighted loss
function composed of binary entropy loss and dice coefficient
loss. The final loss function is defined as

Lloss(y, p) = (1− α)Lbce(y, p)+ αLdice(y, p) (3)

where α ∈ [0, 1] is the weighted coefficient. This weighted
loss function can be transformed into a single loss function
by setting α = 0 or α = 1. The integrality of segmentation
is emphasized with a large α. In our experiments, we set
α = 0.8 to get better performance.

IV. EXPERIMENTS AND RESULTS
In this section, the extensive experiments are conducted to
validate the effectiveness of our approach. Firstly, the experi-
mental environments and the implementation details ofmodel
training are introduced. Then, the evaluation metrics are pre-
sented to quantify the performance of the models in vari-
ous aspects. Finally, the proposed model is optimized from
the structure and loss function, and compared with other
methods.

A. EXPERIMENT ENVIRONMENTS AND
IMPLEMENTATION DETAILS
The training and testing are implemented on a desktop server
with an Inter(R) i9-9900K CPU, 64 GB memory, and two
NVIDIA GeForce RTX 2080 Ti graphics cards. These GPUs
are configured with CUDA 10.0 and cuDNN 7.6 to realize
the fast parallel computation of convolutions. The software
environment is built on the Keras 2.3.1 with Tensorflow
1.15.0 in Python language. In implementation, the pixel val-
ues of the input image are normalized to 0 to 1 before entering
the model. The convolution kernel parameters are initialized
using Tikhonov regularization method (more often known
as L2 regularization). Moreover, an Adam optimizer [49]
is employed to minimize the loss value with a multi-staged
learning rate. The training epoch is 100, and the batch input
size is 4. During the training, the learning rate is 5e − 4
in 1 to 10 epochs, 2e − 4 in 11 to 50 epochs, and 1e − 4 in
51 to 100 epochs.

B. EVALUATION METRICS
In order to make a comprehensive evaluation, it is necessary
to measure model performance in terms of segmentation
integrity. To this end, we add some widely accepted objective
criteria to evaluate these segmentation methods.

1) JACCARD SIMILARITY COEFFICIENT
Similar to the dice coefficient, the Jaccard index (also referred
to as IoU) is used to measure the similarity of two sets.
Defined as the size of the intersection divided by the size of
the union, the Jaccard index can quantify the overlap between
the predicted map and the ground truth. In our experiments,
its value ranges from 0 to 1, and a larger value indicates a
better segmentation result. The Jaccard index is defined as:

Jaccard =
|X ∩ Y |
|X ∪ Y |

(4)

where X denotes the image array composed of the approx-
imation of predicted results, and Y represents the image
array of the ground truth. The elements in both X and Y are
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either 0 or 1. In practice, the intersection and the union are
realized by logical matrix operations.

2) HAUSDORFF DISTANCE
The hausdorff distance (HD) [50] is widely employed to eval-
uate medical image segmentation methods as an indicator to
measure the maximum boundary of the segmentation surface.
Since maxillofacial segmentation is a preprocessing step of
tooth analysis in panoramic radiographs, HD provides a good
measure of the usefulness of the segmentation results for
the intended task. For overlapping binary images, HD can
be obtained by calculating the distances from each point in
one image to the nearest point in the other image, and then
taking the largest distance. The bidirectional HD between two
images is defined as follows:

hd(X ,Y ) = max
x∈X

min
y∈Y
‖x − y‖2 (5)

hd(Y ,X ) = max
y∈Y

min
x∈X
‖y− x‖2 (6)

HD(X ,Y ) = max (hd(X ,Y ), hd(Y ,X )) (7)

where X denotes the binary predicted map and Y denotes the
ground truth. We employ Euclidean distance to compute the
distance between the pixels of the same class.While hd(X ,Y )
and hd(Y ,X ) are the one-sided HD between the binary
images, the maximum HD(X ,Y ) represents the longest seg-
mentation error.

C. EXPERIMENTS
To validate the effectiveness of the proposed model, we
design a series of comparative experiments on our max-
illofacial dataset. We first explore the performance of
EED-Net with different depths and investigate the impact of
the weighted loss function on segmentation accuracy, then
demonstrate the differences between the proposed model and
the baseline models by visualizing the predicted maps, and
finally confirm the performance in comparison with the latest
real-time segmentation models.

1) EVALUATION OF MODEL DEPTH
Based on the flexible structure, we construct the correspond-
ing models according to the number of encode-decoder pairs.
These models have the same multipath extractor. Using the
same binary cross entropy (BCE) loss and gradient learn-
ing rate, we test four different versions of the network:
EED-Net-3, EED-Net-4, EED-Net-5, and EED-Net-6.

To obtain a comprehensive evaluation, the frame per sec-
ond (fps) is augmented to describe the real-time performance
of the models. In particular, the output rate measurement
is performed on the whole dataset with all 2602 images
to enhance the credibility. The overall performance of
EED-Nets is presented in Table 2. As the network gets
deeper, the spatial and time complexity of EED-Net gradually
increases, indicating that the model parameters are mainly
derived from the bottom encoder-decoder pairs. Among these
models, EED-Net-3 with the fewest parameters achieves

TABLE 2. The performance comparison for EED-Nets of different depths
using BCE loss.

FIGURE 8. The training loss curves of EED-Nets.

the highest output rate of 42.3 fps. In contrast, EED-Net-3
has the lowest segmentation accuracy, where the jaccard
is 0.9790 and the hausdorff distance is 16.31. In gen-
eral, the segmentation accuracy of the underfitting model
benefits from additional parameters. However, the experi-
mental results in Table 2 show that EED-Net-5 instead of
EED-Net-6 yields the highest accuracy. As shown in Fig. 8,
when the model depth exceeds three layers, the convergence
trend of the loss values is roughly similar. For EED-Net-6,
the increased parameters bring no improvement in segmenta-
tion accuracy, but lead to slight overfitting. Due to the small
difference for EED-Nets in output rate, we can infer that a
deeper network may not lead to better performance. Since
both segmentation accuracy and speed must be considered in
maxillofacial segmentation, the most accurate EED-Net-5 is
selected for subsequent optimization.

2) EVALUATION OF THE LOSS FUNCTIONS
To verify the validity of the weighted loss function, we train
EED-Net-5 with the other two classical losses under the same
conditions. Specifically, the model performance of three typ-
ical weighted coefficients α are reported in Table 3. Besides,
the loss curves of EED-Net-5 with different configurations
are plotted in Fig. 9, where the weighted loss curves are
located between the BCE curve and the Dice curve. With the
increase of α, the curve gets closer to Dice, otherwise, it rises
near BCE, which conforms to its definition. Table 3 shows
that the weighted loss has a higher segmentation accuracy
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TABLE 3. The comparison of segmentation accuracy of EED-Net-5 trained
by different loss functions.

FIGURE 9. The loss curves of EED-Net-5 with different loss functions. BCE
and Dice are the classical loss functions, and ours is the weighted
realization of these two losses, where α is the weighted coefficient of
Dice.

than the classical losses, especially in the hausdorff distance.
However, the performance improvement of the weighted
coefficient is nonlinear. According to the experimental results
of the typical weights, the boundary weights bring greater
performance gain than the middle weights, approximating
a U-shaped distribution. Compared with BCE and Dice,
the model receives the biggest boost with a α of 0.8, where
the jaccard increases by 0.15% and 0.14%, and the hausdorff
distance reduces by 14.14% and 8.87%. As a result, this
version of EED-Net-5 is chosen as our final model.

3) COMPARISON WITH THE BASELINE MODELS
Since the proposed model is built on the basis of FCN-8s
and U-Net, it is necessary to analyze the changes brought
about by our adjustments. Fig. 11 displays the visual seg-
mentation results of FCN-8s, U-Net, and EED-Net-5. The
corresponding accuracy values are presented in Table 4. The
input images are the representative dental X-rays selected
from the test images. On the whole, all three models are
able to extract the basic contours of the maxillofacial region.
However, there are significant differences in the details of
the contour edge. FCN-8s has continuous pixel recognition
errors in the maxillofacial edges, resulting in a jagged bound-
ary. Compared with FCN-8s, the boundaries of U-Net are
more distinct and smoother. Based on the structural analysis,

TABLE 4. The accuracy performance of EED-Net-5 and the baseline
models on the specified images. Image1 to Image5 are the test samples
listed from top to bottom in X-ray column of Fig. 11.

FIGURE 10. The comparison of output rate and average one-epoch
training time of EED-Net-5 and the baseline models.

we consider that the encoder-decoder network form con-
tributes to the fine-grained segmentation. However, there are
still some regional pixel recognition errors around the edges,
which looks like some bubbles. As for EED-Net-5, the resid-
ual encoders and the multipath feature extraction enable it
to obtain a higher pixel accuracy and regional connectivity.
Therefore, the results of EED-Net-5 are closer to the ground
truth with smoother boundaries and fewer bubbles.

In addition to the recovery of image details, we illustrate
the speed performance of the three models in Fig. 10. The
concatenation operation of U-Net brings high computation
while obtaining fine-grained segmentation, resulting in the
longest training time and lowest output rate. The output form
of FCN-8s enables it to lead U-Net 10 fps in speed with
decreased accuracy. Due to the combination of channel prun-
ing and decoder simplification, EED-Net-5 reduces the epoch
time by 37.7% from 67.6 to 42.1 and increases the output rate
by 79.1% from 22.9 fps to 41.0 fps compared to FCN-8s.
In summary, the proposed model achieves significant
improvements in accuracy and speed over the baseline
models.
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FIGURE 11. The sample results of the three models. The first column is five different dental X-rays where the first two samples are ‘‘non-periodontal’’
and the others are ‘‘periodontal’’. The ‘‘GT’’ is the ground truth generated by manually annotation. The other columns denote the visual segmentation
results of FCN, U-Net, and EED-Net-5.

4) COMPARISON WITH THE LATEST METHODS
To further confirm the effectiveness of the proposed model,
we design comparison experiments with the latest real-
time segmentation models on the maxillofacial dataset. The
weighted loss and Adam optimizer with stepped learning rate
are employed for all models. It is worth noting that the model
performance and properties may be slightly different from
the original method because we have migrated the code of
authors to our environment. From Table 5, it can be seen that
except for the classical models, RefineNet and Fast-SCNN
are representative of the other models. RefineNet achieves
0.9926, 0.9827, and 8.93 in the accuracy, the jaccard, and
the hausdorff distance respectively, but this improvement is
derived from the increase of model parameters, and its seg-
mentation speed is unsatisfactory. Fast-SCNN achieves the
output rate of 66.2 fps, but this real-time performance comes
at the expense of segmentation delicacy, which is detrimental
to subsequent image processing. The performance of other
models on maxillofacial segmentation falls between these
two models, and they fail to find a balance between speed
and accuracy.

The results in Table 5 indicate that our model is a better
implementation of maxillofacial segmentation. The proposed
EED-Net-5 achieves 0.9928 in the accuracy, 0.9829 in the
jaccard and 8.32 in the hausdorff distance with the fewest
parameters, which outperforms the other methods. In the
aspect of segmentation speed, our model can maintain an

TABLE 5. The performance comparison between EED-Net-5 and the latest
segmentation methods on the maxillofacial dataset.

output rate of 41.0 fps, which meets the requirements of
real-time segmentation. Since the environmental configura-
tion of the models is identical, the highest accuracy and the
increased speed further validate the efficiency of our network
architecture. This is mainly due to the optimization of the
encoder-decoder structure and the addition of the multipath
feature extractor, which enables our model to focus on image
details with fewer parameters. Considering both accuracy
and speed performance, the conclusion can be reached that
the proposed model achieves better overall performance than
the other real-time segmentation methods for maxillofacial
segmentation.
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V. CONCLUSION AND DISCUSSION
An accurate and automatic extraction of the ROI is essential
for the researches of panoramic dental X-rays. In this study,
we establish a maxillofacial dataset and propose an effi-
cient encoder and decoder network model named EED-Net
to achieve maxillofacial segmentation. The dataset consists
of 2602 panoramic X-ray images and the corresponding
maxillofacial mask results. Based on the structure of U-Net
and the decoding form of FCN-8s, the proposed EED-Net
is composed of the residual encoders, the multipath feature
extractors, and the object-oriented decoders. The encoders
and extractors are used to capture deep features, and the
channel number of the decoders is simplified to reduce the
parameters. Moreover, we adopt a weighted loss function to
further improve segmentation accuracy. The extensive exper-
iments on the dataset demonstrate that EED-Net outperforms
other methods in segmentation accuracy. In addition, our
model can output an average of 41.0 fps segmented images
per second, which is highly feasible to realize the prepro-
cessing of panoramic X-rays. Based on the extensibility of
the baseline models, it can be inferred that our method can be
applied to the X-ray images with a single target type. For the
multi-class segmentation, the effectiveness of the proposed
method requires further study. Since we have to compress
the original images to avoid insufficient computer memory in
this work, how to directly extract ROI using high-resolution
images also deserves further exploration.
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