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ABSTRACT This article surveys emerging technologies related to pervasive edge computing (PEC) for
industrial internet-of-things (IIoT) enabled by fifth-generation (5G) and beyond communication networks.
PEC encompasses all devices that are capable of performing computational tasks locally, including those at
the edge of the core network (edge servers co-located with 5G base stations) and in the radio access network
(sensors, actuators, etc.). The main advantages of this paradigm are core network offloading (and benefits
therefrom) and low latency for delay-sensitive applications (e.g., automatic control). We have reviewed the
state-of-the-art in the PEC paradigm and its applications to the IIoT domain, which have been enabled
by the recent developments in 5G technology. We have classified and described three important research
areas related to PEC—distributed artificial intelligence methods, energy efficiency, and cyber security. We
have also identified the main open challenges that must be solved to have a scalable PEC-based IIoT
network that operates efficiently under different conditions. By explaining the applications, challenges,
and opportunities, our paper reinforces the perspective that the PEC paradigm is an extremely suitable and
important deployment model for industrial communication networks, considering the modern trend toward
private industrial 5G networks with local operations and flexible management.

INDEX TERMS Edge computing, industrial Internet of Things, 5G network, energy efficiency, artificial
intelligence, cyber security.

I. INTRODUCTION
Today, the Internet of Things (IoT) is a well-established
paradigm in modern wireless telecommunications with
numerous applications to society and the industry. IoT sys-
tems have radically evolved from simple solutions involving
single devices such as a single internet-connected video cam-
era to more advanced systems involving real-time analytics,
artificial intelligence, and hardware such as smart sensors and
actuators. IoT is also key for the so-called Industry 4.0, where
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‘‘smart’’ objects (machines and products) are leading to a new
paradigm shift in industrial production [1].

The application of IoT to the industrial sector is now gen-
erally called Industrial Internet of Things (IIoT) [2]. In IIoT,
a massive number of (smart) industrial machines, actuators,
and sensors connect to each other to form a network of smart
IoT-based devices with some computing power, communica-
tions capabilities, and data storage and caching [3], which
can be potentially shared to jointly perform computational
tasks. IIoT solutions can be used to improve connectivity,
efficiency, profits, scalability, and data speeds for indus-
trial applications, thereby enhancing predictive maintenance,
increasing safety, and boosting operational efficiencies.
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FIGURE 1. Schematic presentation of this paper’s structure and contributions.

Nevertheless, the full potential of IIoT can be realized
only if it is enabled by a flexible communication system
capable of supporting different requirements, from ultra-
reliable low-latency communications (URLLC) to massive
connectivity [4]. In this regard, recent advances in fifth-
generation (5G) communication technologies have emerged
at the center of IIoT applications [5] by offering greater
bandwidth, faster data transmission, and improved spectral
efficiency supported by localized private networks andmicro-
operators [6]. Nevertheless, new developments in both radio
access technologies and core network solutions are needed,
moving beyond the currently dominant design of cellular
systems based on human-type communications (i.e., long
data streams, with dominance of downlink) and cloud com-
puting (i.e., centralized data processing units working as
X-as-a-Service [7]) toward machine-type communications
and edge computing [4].

This article aims to systematically review the state-of-the-
art of edge computing enabled by 5G while indicating poten-
tial future developments beyond it in relation to IIoT. We will
especially focus on the emerging network architecture that is
based on pervasive edge computing (PEC), where virtually all
devices that compose the radio access network (from sensors

to edge servers co-located with the base stations/gateways)
perform computational tasks. As will be discussed in more
detail subsequently, the main advantages of edge computing
are related to the benefits of decreasing the traffic offered
to the core network (which is used to access the computa-
tional capabilities of the cloud) and providing low latency
for specific applications needed in industrial automation. It
is worth saying that while there are several surveys dealing
with edge computing and associated concepts (e.g., [8]–[10]),
they are not focused on the most recent developments related
to PEC in industrial applications. Our contribution (depicted
in Fig. 1) covers this current gap by articulating the recent
advances in radio access and network technologies, especially
those related to the important areas of artificial intelligence
(AI), federated learning (FL), energy efficiency, and cyber
security for different industrial applications.

The rest of this survey is organized as follows. In Section II,
we first clarify the meaning of PEC and elucidate its key
concepts, and then, we list some of its key applications to
5G, describing the recent advancements. Section III focuses
on machine learning (ML) tools that are used to enhance the
intelligence of IIoT processes enabled by PEC. Section IV
deals with the question of energy efficiency in PEC. Energy
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FIGURE 2. Cloud versus Edge Computing. (a) Typical cloud computing network where the end devices, which sense their
operation environments, forward the collected data to the cloud through the communication network for further
processing and inference. (b) Typical edge computing network where the edge devices in the network proximity of end
devices process the collected data, and the cloud acts as a complementary processing and storage unit.

efficiency is an important issue today since the large number
of distributed devices may lead to drastic increase in compu-
tational workloads and, in turn, energy usage. Further, cyber
security is imperative for industries to adopt 5G and PEC, and
hence, in SectionV,we discuss the challenges related to cyber
security and the research work addressing these challenges.
In each section from Section II–V, the most relevant research
works appropriate for the section are summarized in a table
(Tables 2–5, respectively). Finally, in Section VI, we discuss
the open challenges that still need to be addressed before we
have a 5G-based scalable PEC solution for IIoT.

II. PERVASIVE EDGE COMPUTING (PEC): KEY CONCEPTS
AND APPLICATIONS TO BEYOND 5G
The term edge computing has already been widely used by
the research and industrial community alike. However, a clear
definition is still lacking. In this section, we provide the defi-
nition of edge computing used throughout this article explain-
ing why we denominate it as pervasive edge computing.

The main idea behind the edge computing paradigm is to
exploit the storage and computing capabilities of different
devices at (or near) the network edge. A natural question
that arises is what is an edge? Edge can be defined as any
computing and networking resource, such as a smart phone
or a 5G base station, that lies between the data source and
the ‘‘cloud’’ (i.e., the core network). In other words, edge in
this article refers to the edge of the core network including
all the devices related to the radio access network. Since
these (potential) edge computing elements are widely spread,

we denominate this architecture as pervasive edge computing
(PEC), and it also incorporates the more restrictive (or fuzzy)
concepts of mobile edge computing (MEC), edge servers,
edge nodes, and fog network. Fig. 2 illustrates the process of
edge computing (which is decentralized with computational
tasks distributed among the nodes at the edge of the core
network) and contrasts it with cloud computing (which is
mainly centralized with computational tasks being performed
in the servers at the core network and the Internet).

PEC is beneficial as it moves data processes away from
centralized servers [11]. As a result, some IIoT applications
do not need to send their data through the core network,
avoiding congestion and potentially high delays. Moreover,
PEC can also pre-process data by filtering during the acquisi-
tion phase, thereby improving the speed of data analysis and
the decision-making processes [12]–[14]. Local processing
provided by PEC also helps to protect sensitive data that
are better processed on an edge device instead of send-
ing to a cloud. Note that although PEC provides signifi-
cant benefits to IIoT, cloud computing cannot be eliminated
completely because having a centralized location for the
data storage and analysis still has many benefits in differ-
ent industrial application. PEC is important for offloading
some tasks from the core network and also to fulfill strict
latency requirements, but the remaining data may still have
to be sent to the cloud for processing because of its better
processing capabilities. In the following section, we will
describe some of the tradeoffs of edge and cloud computing
architectures.
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A. CLOUD VERSUS EDGE COMPUTING: THE KEY
TRADEOFFS
As previously discussed, the edge computing paradigm has
emerged not to replace conventional local and cloud comput-
ing solutions, but to complement their capabilities. The truth
is that PEC alone cannot provide a universal solution that can
tackle all issues of future networks. Instead, it comes with
various tradeoffs that need to be investigated and well under-
stood. Cooperation among local, edge, and cloud computing
will be essential to meet the diverse requirements of IIoT.
Therefore, it is important to provide the readers with a funda-
mental understanding of the benefits and drawbacks that can
be potentially provided by the two architecture paradigms,
edge and cloud computing. In this subsection, we shed light
on themain tradeoffs of cloud computing and edge computing
solutions.

1) LATENCY
When PEC comes into play, the first benefit that one can
think of is the lower end-to-end latency that can be achieved.
Indeed, as widely demonstrated [15]–[19], in contrast to
cloud computing, the distances that data packets need to
travel are, in most cases, shortened with edge servers installed
closer to end-user applications; this can greatly contribute to
reducing latency. However, there are scenarios in which such
a benefit might not be attained. Latency does not depend only
on the distance between the user and the processing server.
It also depends on other factors such as the computational
complexity of tasks, processing power of edge servers, and
edge traffic. For instance, if the edge network is congested,
or if the time spent to process the offloaded computational
tasks is too high, it might be more advantageous to opt for
some cloud computing solution. This tradeoff can be visu-
alized in Fig. 3 that shows the latency versus the central
processing unit (CPU) cycles required per bit offloaded by
a single device in a wireless system assisted by either cloud
or edge computing. This simple example is generated based
on the system models proposed in [15], [16], in which the
total edge computing latency can be represented by

T Edge
=

b
B Edge log2(1+ γ Edge)

+
bC
f Edge , (1)

and the cloud computing latency by

T Cloud
=

b
B Cloud log2(1+ γ Cloud)

+ τ Cloud, (2)

where b is the total number of bits of the offloaded task; C
is the number of CPU cycles required to compute one bit;
B Edge, B Cloud and γ Edge, γ Cloud represent, respectively, the
bandwidths and signal-to-noise ratios (SNR) of the uplink
channels between device and edge server and device and
cloud gateway; f Edge denotes the CPU’s clock frequency in
the edge server; and τ Cloud is a fixed latency due to the long
distance between the cloud gateway and the central cloud
server. As shown in Fig. 3, because cloud servers dispose

FIGURE 3. System latency versus required CPU cycles per bit in wireless
systems assisted by edge and cloud computing (b = 1 Mbit,
B Edge = 10 MHz B Cloud = 10 MHz, γ Edge = γ Cloud = 10 dB,
f Edge = 6 GHz, τ Cloud = 100 ms).

of abundant computational resources, the latency in the sys-
tem assisted by cloud computing is not affected when the
task complexity increases. On the other hand, the latency
in the system assisted by edge computing escalates with
the increase in the number of CPU cycles, i.e., when the
computational complexity of the task becomes high.

A dynamic mobile scenario is another example where it
can be challenging to provide low end-to-end latency. This
is because mobile IIoT devices might not always be able to
fully use edge servers (which have a fixed location) in their
vicinity. As proposed in [20], a solution for this issue can be
achieved by employing some multi-hop strategy so that the
data can reach the nearest server. However, such an approach
comes also at the cost of increased communication latency.
In summary, to efficiently meet the latency requirements of
different IIoT applications, factors such as task complexities,
the processing power of servers, and the network topology
must be carefully taken into consideration when designing a
PEC-assisted network.

2) BACKHAUL BANDWIDTH
To satisfactorily attend a massive number of connections via
a centralized cloud architecture, stringent bandwidth require-
ments in the backhaul lines are needed. Otherwise, severe
congestion and packet losses could occur, resulting in unsta-
ble and unreliable cloud service provisioning. To alleviate
such an issue, cloud providers will have to make heavy
investments in communication infrastructures, which can be
financially unviable. Fortunately, PEC offers cheaper effi-
cient alternatives for reducing backhaul data traffic. By dis-
tributing the computational workload among different edge
servers, lower amounts of data are required to be exchanged
with the cloud. Edge data caching, data cleansing, and com-
pression are other efficient approaches for tackling the traffic
issue [21]–[23]. A combination of all these strategies can
effectively relax the backhaul bandwidth requirements and
decrease the costs of communication infrastructure.

The simulation examples illustrated in Fig. 4 show the
potential benefits that the cooperation between cloud and
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FIGURE 4. Required backhaul bandwidth versus number of edge servers
for different values of bEdge

max (D = 500 devices, γ BH = 30 dB,
T BH = 100 ms).

edge computing can provide to reduce the required backhaul
bandwidth. In these examples, we consider a scenario with D
devices and N edge servers, in which the ith device offloads
bi bits to be computed in a cooperative manner by cloud and
edge servers. Specifically, bits are transmitted to the cloud
server only when the sum of the tasks exceeds the com-
bined computational capacity of the edge servers, i.e., when∑D

i=1 bi > NbEdgemax , where b
Edge
max is the maximum number

of bits that each edge server is able to process. With these
assumptions, we compute the required backhaul bandwidth
by averaging 1× 106 realizations of the following formula

B BH

=


∑D

i=1 bi − Nb
Edge
max

T BH log2(1+ γ BH)
, if

∑D

i=1
bi > NbEdgemax

0, otherwise,
(3)

where the number of bits bi is drawn from a uniform dis-
tribution between 100 kbit and 32 Mbit, and γ BH and T BH

are, respectively, the backhaul SNR and the desired backhaul
latency. These results highlight the attractive capabilities of
edge computing to alleviate backhaul requirements. As one
can see, remarkable reductions in bandwidth are achieved
when increasing the number of edge servers. These savings
become even more prominent when the processing power of
edge servers gets high, i.e., when bEdgemax is increased.

3) PRIVACY AND SECURITY
Privacy and security issues are critical concerns that arise
with PEC-assisted systems [24]–[32]. The pervasive deploy-
ment of edge servers, geographically distributed and closer
to the end users, can introduce numerous vulnerabilities to
the network; moreover, these vulnerabilities can be hard to
track. Edge servers may have limited computational capa-
bilities and might lack physical protection, which creates a
favorable scenario for hacker invasions and eavesdropping
[24]. On the other hand, the centralized architecture of the

FIGURE 5. Outage probability curves for wireless systems assisted by
cloud and edge computing considering different numbers of edge servers
(B BH = 2 MHz, B Edge = 50 kHz, R target = 5 Mbit/s).

cloud computing paradigm together with the high compu-
tational power of its cloud servers enable the implemen-
tation of strong security measures, including sophisticated
encryption techniques and very safe physical infrastructures.
As a result, in general, it is more challenging to hack and to
physically violate cloud servers [33]. An in-depth discussion
highlighting important recent works on this topic is provided
in Section V.

4) ROBUSTNESS TO FAILURES
One strong aspect of PEC is that it enables robustness to
failures. Due to the branch architecture of PEC, it becomes
very hard to shut down the entire network. For instance, if an
electricity outage happens in a particular area of the grid,
the edge computing services of other areas will continue to
operate normally, unaffected. In contrast, if a given IIoT net-
work relies solely on centralized cloud computing, when the
electricity supply fails due to any natural disaster happening
in the cloud infrastructure, or the backhaul communication
link becomes unstable, the whole network will fail [34], [35].
To exemplify the robustness of PEC, in Fig. 5, we show
the outage probability curves experienced in two wireless
systems assisted by cloud and edge computing. In the first
system, we consider that one IIoT device is assisted by only
cloud computing, in which the device transmits its data to
a gateway, such as a base station, that communicates with
a central server through a wireless backhaul link with band-
width B BH. In particular, we assume that the cloud-assisted
IIoT device experiences outage if the data rate achieved in the
backhaul link is less than its target rate, R target. On the other
hand, the second system is assisted by only edge computing,
where one IIoT device offloads its data to N edge servers
through N wireless links, each with bandwidth B Edge, such
that B Edge < B BH. Differently from the first scenario, in this
edge-assisted system, the IIoT device faces outage only if the
data rates achieved in all N links are less than R target. For
illustrative purposes, the SNR observed in the backhaul link
for the cloud-assisted system is defined by γ BH

=
|h BH
|
2

σn
,
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and for edge-assisted system by γ Edge
n =

|h Edge
n |

2

σn
, where

σn represents the noise variance, and h BH and h Edge
n denote,

respectively, the channel coefficients for backhaul link and
for the nth edge link, which are modeled by complex Gaus-
sian random variables with zero mean and unit variance.
Under these definitions, the outage probability for the cloud-
assisted system is calculated by

P Cloud
= P[B BH log2(1+ γ

BH) < R target], (4)

and for the edge-assisted system by

P Edge
=

N∏
n=1

P[B Edge log2(1+ γ
Edge
n ) < R target]. (5)

As shown in Fig. 5, even though the system assisted by
cloud computing achieves the best performance when the
SNR is low, the one assisted by edge computing becomes
more robust in the moderate to high SNR regime as the
number of edge servers increases, outperforming the cloud-
assisted counterpart. These results provide a clear example
of the tolerance to failures of a PEC system. Nevertheless,
despite the resiliency that PEC can provide to IIoT, systemic
software failures can still happen, and this can result in a
generalized network collapse, as reported in [34], [36], [37].

5) MONETARY COST
Cloud computing providers usually charge the costumers
for data transmissions, storage, and computation services
[38]. Therefore, if the number of transmissions grows, if the
amount of data that needs to be stored increases, or if compu-
tation tasks become more complex (which is likely to happen
in IIoT), it can become excessively expensive to rely only
on cloud services [39]. On the other hand, by computing and
caching data and tasks at the edge, the PEC-assisted networks
can decrease the traffic to cloud servers and effectively reduce
the monetary costs with cloud services. However, note that
even though PEC can reduce the expenditure with cloud
services, shifting to a pervasive decentralized architecture can
also lead to an increase in costs for the installation of new
hardware and additional energy consumption [40].

These tradeoffs show that the design of a PEC-assisted
network should be optimized based on the characteristics
and requirements of each specific application. At the same
time, standardized flexible solutions, such as those offered
by 5G (and beyond) communication systems, are crucial for
guaranteeing the heterogeneous quality of services of the
future IIoT, making 5G a key enabler of PEC.

B. VIRTUALIZATION AS AN ENABLER FOR EDGE
COMPUTING
As we discussed earlier, edge and cloud, and the resources
in between, complement each other. Depending on an appli-
cation’s requirements, a service provider deploys its services
on the available network nodes considering their objectives,
tradeoffs, and constraints. In contrast to the mostly homoge-
neous resources of the cloud, the edge infrastructure might be

composed of multiple parties including end users in the case
of PEC; this leads to an infrastructure with very diverse node
properties. The challenges emerging due to this heterogeneity
can largely be mitigated by virtualization techniques.

Virtualization techniques, be it using a virtual machine
(VM) or a container, offer three key benefits for edge
computing [41]: (i) hiding of resource heterogeneity and
thus enabling of platform independence; (ii) ease of ser-
vice deployment and management via resource abstraction;
and (ii) isolation. First, virtualization hides the underlying
hardware heterogeneity by ensuring an identical execution
environment via the specification of a virtual environment
[41]. Second, virtualization facilitates resource abstraction
and hardware emulation, thereby simplifying the interaction
between the services and the underlying hardware. A hyper-
visor handles the resource management for the services run-
ning in a virtual machine. Finally, virtualization achieves
various levels of isolation, e.g., at hardware level or oper-
ating system level, among the different services hosted on
the same node. Note that virtualization approaches might
differ from each other in their storage overhead, memory
cost, and initialization latency according to the virtualization
is implemented; for example, a VM hosts its own OS and
therefore is considered heavyweight compared to a container
that uses the hardware and the kernel of its host machine [41].
Lightweight containers have gained higher support for edge
computing due to their lower resource footprint in compari-
son to VMs [42].

The deployment may become suboptimal with evolving
network dynamics, e.g., changes in the user or edge node
locations, or in the network conditions, leading to inefficient
operations. Hence, services need to be swiftly migrated to
other network locations, e.g., closer to the request locations.
Note that a service can consist of multiple tasks and the tasks
can be deployed on different nodes based on their computa-
tion and communication requirements as well as the depen-
dencies among the tasks. Hence, a service provider has to
profile the requirements of the sub-tasks of a service, decide
on which network nodes to deploy each task, and migrate the
tasks to the new locations seamlessly or withminimal impacts
on the ongoing sessions [43]. While computation offloading
offers many benefits to the resource-limited devices by aug-
menting themwith resourceful network nodes, it poses signif-
icant challenges such as smooth service migration especially
for mobile end users. Stateful service migration includes
transfer of both the execution environment, e.g., a VM or
container, and the application-related data such as runtime
memory states. Hence, when the data to be transmitted from
one host to another is large, it will result in a long migration
delay. To ensure service continuity, live migration is desirable
as opposed to cold migration which suspends a service during
the time the service is migrated to another host [44].

There is increasing literature on improving service migra-
tion performance, e.g., [45], [46], and [42]. Ma et al. [45],
[46] proposed to leverage the layered storage system of
Docker containers: the base image layers of a container can
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TABLE 1. Description of acronyms used in ‘‘PEC in 5G and Beyond: Applications’’ section .

be downloaded before migration from a cloud server while
the container layer and runtime data are transferred from
the source host to the destination host after initiating the
migration. The authors showed a significant decrease in the
migration time and transferred data size for an example sce-
nario and discussed that pipelining can also introduce further
improvements in the migration delay. Bellavista et al. [42]
proposed a flexible service migration framework that can
operate in various modes, e.g., application-agnostic vs.
application-aware. They showed that understanding the ser-
vice characteristics and leveraging certain properties helps
to migration latency. Please refer to [47] and [44] for an

elaborate discussion on service migration, [41] for virtual
machine management, and [43] for computation offloading
approaches.

C. PEC IN 5G AND BEYOND: APPLICATIONS
The discussions within 3rd Generation Partnership Project
(3GPP) indicate the path for current and future devel-
opments of 5G and beyond technologies. We identified
four types of PEC applications, which are enabled by
these technologies. For greater clarity, the abbreviations
used in this section are listed, expanded, and explained in
Table 1.
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TABLE 2. Summary of the relevant research work related to Section II-C ‘‘PEC in 5G and Beyond: Applications’’.

1) MISSION-CRITICAL APPLICATIONS
An active PEC-related research field is concerned with mis-
sion critical settings that have strict requirements of latency,
availability, and reliability. For example, URLLC in 5G
aims to support mission-critical applications.Mission-critical
applications are almost always related to industrial applica-
tions that have greater emphasis on feedback control loop and
automation.

Different advanced multiple access techniques are being
proposed to improve the system performance in terms of
latency and reliability. Grant-free access and non-orthogonal
multiple access (NOMA) are examples of such promising
techniques. For instance, in [48], a closed-form expression
for the spectral efficiency of two preamble structures in
a multiple-input multiple-output (MIMO) based grant-free
random access (mGFRA) scenario was obtained. The first
preamble structure was named as concatenated orthogonal
preamble (COP) and the second as single orthogonal pream-
ble (SOP). The authors concluded that there is a threshold
between both preambles in terms of the number of anten-
nas in the massive MIMO (mMIMO) scheme. In [49], the
authors proposed a framework to treat collisions in a grant-
free NOMA (GF-NOMA) scheme. The authors used Pois-
son point processes and order statistics to derive simplified
expressions of the outage probability and throughput of the

system for both successive joint decoding (SJD) and succes-
sive interference cancellation (SIC).

Another key research area is the minimization of task exe-
cution latency. A mathematical model of the minimization of
the sum of task execution latencies of devices, which operate
under interference, was presented in [17]. Here, the authors
provided an integrated framework for partial offloading and
interference management using the orthogonal frequency-
division multiple access (OFDMA) scheme. They formulated
the total latency of minimization as a mixed integer nonlinear
programming (MINLP) problem, in which desired energy
consumption, partial offloading, and resource allocation con-
straints were considered. A novel iterative scheme named
joint partial offloading and resource allocation (JPORA)
on data segmentation was proposed to optimize the Qual-
ity of service(QoS)-aware communication. JPORA obtained
the lowest latency as compared to other baseline schemes,
while simultaneously reducing the energy consumption in the
devices.

2) AUGMENTED AND VIRTUAL REALITY APPLICATIONS
5G radio access and computational resources must be brought
closer to augmented reality (AR) and virtual reality (VR)
applications, which will also employ PEC. Since these
immersive media applications require very low latency,
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typically lower than 20 ms, the delay budget of the network to
deliver the requested content is very tight. Edge servers can
both reduce the computation time and energy consumption
on the end devices by performing computation-heavy tasks
such as rendering or object detection in AR. The authors
of [21] formulated a joint radio communication, caching,
and computing decision problem to optimize resource allo-
cation at edge access points and mobile VR devices. In
[50], the underlying dynamic rendering-module placement
problem on mobile VR group gaming services was studied
using model predictive control. Here, the authors proposed a
methodology based on graph theory to explore the connec-
tion between the placement problem and the minimal s-t cut
problem.

Since a ultra-high transmission rate is required for immer-
sive media applications, the authors of [51] formulated a
joint caching and computing optimization on a PEC-based
mobile VR delivery framework to support diverse fields
of view (FOVs) in advance. They proposed a closed-form
expression for the optimal joint policy that identifies key
tradeoffs in terms of computing, communication, and caching
capabilities, when FOV are homogeneous. In the case of het-
erogeneous FOVs, the framework considered a local optima
transformation into a linearly constrained quadratic problem.
It is important to remark that AR and VR applications are
very important to the field of intelligent machines and remote
control, which can, for example, can increase the safety of
operations in mining and maritime vessels.

3) NETWORK OPTIMIZATION APPLICATIONS
In 5G cellular networks, edge computing is a key enabler
to support specialized key performance indicators (KPIs)
such as low latency, high connection density, and bandwidth
efficiency. In addition, the evolution of virtual network func-
tions (VNF) running on general purpose edge infrastructure
creates novel technical possibilities, such as virtualization of
a portion of the access network with functionalities deployed
close to the end users. In the context of network slicing,
which facilitates the creation of a logical end-to-end isolated
network to support specific applications, the authors in [52]
established a combinatorial optimization model that natively
supports multiple network slices with different QoS require-
ments. The algorithm addressed a combinatorial problem that
was a multi-period variant of the generalized assignment
problem. They also showed that the network performance
benefits from a multi-sliced approach that is more suitable
for capturing the distinct spatiotemporal pattern of each slice
than conventional single-slice models.

The distributed network topology that characterizes PEC
and new improvements in software defined networks (SDN)
and software defined radio (SDR) will enable cutting-edge
technologies, with the potential to improve the performance
of wireless communication systems beyond the current KPI
requirements. One promising research topic is orchestration
on network slicing within private 5G networks with local
operators [6]. This featured approach, which is implemented

via advanced ML techniques, aims to optimize the perfor-
mance of complex systems such as the combination of dif-
ferent sub-slices on the end-to-end network slice. Shen et al.
has highlighted some benefits and potentials of AI-based
techniques on next-generation wireless networks [53]. Three
challenging scenarios were addressed using AI, including
flexible radio access network slicing, automated radio access
technology selection, and mobile edge caching and content
delivery.

A promising beyond 5G technology is cell-free massive
MIMO, which aims to deploy distributed access points in
contrast to the traditional cellular deployment of current
broadband wireless networks. In [54], a PEC implementation
was considered with a diversity of computational/processing
requirements of the users. The authors considered access
points with PEC servers and a central server with cloud
computing capability. It is also important to consider that
local industrial network operators for 5G are key enablers for
realizing the PEC to its fullest extent as the most suitable
way to flexibly manage the network resources in virtual
slices reserved to different applications [55]. Finally, PEC
is expected to support every layer of mobile networks to
renovate the common computing architecture, based on the
analysis of the wireless big data, as stated in [56].

4) VEHICULAR COMPUTING APPLICATIONS
The safe and efficient deployment of autonomous vehicles
is a key application area of PEC and 5G networks, and it
has been attracting strong research interest [57]. For exam-
ple, cooperative autonomous driving based on PEC was pro-
posed in [58]; here, the authors developed a prototype system
that was based on a 5G next-generation radio access net-
work, a PEC server providing high definition 3D dynamic
map service, and a cooperative driving vehicle platoon.
They also performed several field tests, where the results
indicated that the combination of 5G-vehicle-to-everything
(V2X), PEC, and cooperative autonomous driving can pro-
vide important improvements to the system. However, these
practical deployments also presented some challenges. To
address them, the authors proposed twoAI-based approaches.
The first one was a deep-learning-based tool called deep
spatio-temporal residual networks with a permutation oper-
ator (PST-ResNet), and the second was a swarm intelligence-
based optimization tool called subpopulation collaboration
based dynamic self-adaption cuckoo search (SC-DSCS).

In [20], the authors proposed a computation offloading
scheme for vehicles using the multi-hop vehicular ad hoc net-
work (VANET), called multi-hop VANETs-assisted (MHVA)
offloading strategy. A reliability model for multi-hop rout-
ing was developed using link correlation theory applied to
VANET. The offloading strategy based on a binary search
algorithm was optimized in order to identify the lowest
relaying and reduced computing cost. The simulation results
of multi-hop VANETs-assisted (MHVA) offloading strategy
showed better offloading performance in terms of delay and
cost, when compared to typical strategies. Although vehicular
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technologies are being studied in scenarios related to trans-
portation, similar solutions could be used in private industrial
networks considering mobile (autonomous) robots or large-
scale plants related to, for example, mining.

PEC will play a key role in beyond 5G technologies. As in
5G, it is expected that PEC will operate as an intermediate
layer providing low latency and local data processing for crit-
ical and resource constrained applications. AR, VR, network
optimization, V2X communication, energy efficiency, and
offloading for URLLC can be cited as particularly relevant
use cases [59].

III. ARTIFICIAL INTELLIGENCE IN PEC
IoT devices are normally heterogeneous devices and difficult
to coordinate. As a result, a major challenge in PEC is the
efficient resource co-ordination and communication between
different types of heterogeneous edge devices, from comput-
ers equipped with graphical processing units (GPUs) to smart
phones with mobile processors to devices with just small
single-board computers like Raspberry Pi [67]. Secondly,
edge devices have to coordinate with the cloud under dynamic
network conditions and different settings to ensure satisfac-
tory application-level performance. Several AI techniques
have been proposed to meet these challenges. Among them,
deep learning (DL) is very promising due to its potential
to create hybrid approaches that combine cloud and edge
computing.

In this section, we first briefly present the recent status
of DL research applied to PEC before moving to our major
focus, the relatively new concept of federated learning (FL).
FL is an extremely important technique that has a nearly sym-
biotic role with PEC for addressing privacy issues. Privacy is
a major concern with smart devices because of the need to
interact and share data with the cloud and third-party plat-
forms. FL takes advantage of PEC to maintain user privacy
while performing the required computations efficiently.

A. DEEP LEARNING AND APPLICATIONS TO PEC
The application of DL at the network edge offers many
improvements to PEC as DL and PEC together can sup-
port numerous applications, including computer vision, smart
surveillance, natural language processing, network functions,
and VR and AR. In a recent paper, Chen et al. surveyed
research literature at the confluence of DL and PEC [67].
They highlighted that the researches so far have been based on
three major architectures: (1) centralized edge server-based
architectures, where data from end devices are sent to one
or more edge servers for computation; (2) semi-distributed
architectures in which the computation is shared among end
devices, edge servers, and the cloud via a joint computation
mechanism; and (3) distributed architectures based on on-
device computations, where deep neural networks are exe-
cuted on the end device itself.

In the future, edge intelligence is expected to move DL
implementations from the cloud to the edge, forming the
so-called edge DL [68], [69]. Research into the industrial

applications of this convergence of DL and the edge is still
nascent but is expected to increase significantly, especially
with the implementation of 5G. In [70], the authors proposed
an edge computing-based DL model that migrates the DL
process from the cloud to the edge in an IIoT network using
edge computing concepts. The DLmodel is optimized so that
computational power requirements are reduced. By deploying
a testbed implementation with their proposed convolutional
neural networkmodel and real-world IIoT dataset, the authors
showed that network traffic overheads are reduced without
compromising the classification accuracy.

In another study, a DL-based method was used to detect
hazardous conditions in supermarkets, such as spilled liq-
uids or fallen items on floors [71]. They showed that their
lightweight DL model can be deployed on edge devices
for quick computations. Similar studies based on intelligent
visual recognition using DL implemented at the edge have
been applied to industrial electrical equipment [72], health
monitoring [73], and flat surface texture inspection [74].

B. FEDERATED LEARNING AND APPLICATIONS TO PEC
FL is a relatively recent ML paradigm that was motivated by
the need to protect user privacy. FL aims to train a centralized
model using training data that are distributed over a large
number of client devices that themselves are a part of the
training [66]. In other words, FL differs from classical ML
learning approaches such as DL in the fact that the model
training does not use a single processing device [75], [76].
In FL, end devices use their local data to cooperatively train
an ML model (using ML techniques such as DL, support
vector machines (SVM), artificial neural networks (ANN),
etc.) required by an FL server. They then send the model
updates to the FL server for aggregation. These steps are
repeated in multiple rounds until a desirable accuracy is
achieved [60]. Fig. 6 illustrates the difference between DL
and FL. In general, FL involves the training of statistical
models directly on remote devices, and it is motivated by the
need to maintain information privacy [77].

Such a decentralized approach facilitates collaborative
complex ML techniques while guaranteeing that the data will
remain in the personal devices, thereby preserving privacy.
Note that there is usually an underlying assumption that the
data owners are honest: they use their real private data to do
the training and submit the true local models to the FL server.
The main advantages of the FL approach are as follows:

• Bandwidth efficiency: Less data is required to be trans-
mitted to the cloud.

• Privacy: Raw (local) data need not be sent to the cloud
any more.

• Low latency: Real-time decisions can be made locally
instead of being made in the cloud.

An important question in FL research is whether its per-
formance is comparable to that of traditional DL-based
approaches for resource coordination. In [63], the authors
examined this question by employing FL for the joint
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TABLE 3. Summary of relevant research works on artificial intelligence in PEC.

FIGURE 6. (a) Traditional deep learning: end devices send their local data to a global server that collects all data and performs the complete model
training. (b) Federated learning: end devices use local data to cooperatively train a local model and then send it to the global server for aggregation.
These steps are repeated in multiple rounds until a desirable accuracy is achieved.

allocation of communication and computing resources by
guiding the training of deep reinforcement learning agents.
The IoT devices in their model harvested energy units from
edge nodes and stored them in their energy queue. The
authors demonstrated that the fluctuation range of FL-based
DL with respect to utility variation is bigger than that from
centralized training. Their results confirm that the perfor-
mance of FL-based DL training for computation offloading
approaches the results from centralized DL training.

The efficient utilization of limited computation and
communication resources to increase the optimal learning

performance of different applications was examined in [65].
The authors considered a typical edge computing architecture
where the edge nodes are interconnected with the remote
cloud via network elements such as gateways and routers.
The raw data was collected and stored at multiple edge nodes
and FL learning was performed. In the FL approach in this
work, the frequency of global aggregation was configurable;
that is, it was possible to aggregate at an interval of one or
multiple local updates. Each local update consumes com-
putation resources and each global aggregation consumes
communication resources of the network. The amount of
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consumed resources may vary over time, and there is a com-
plex relationship among the frequency of global aggregation,
the model training accuracy, and resource consumption. This
is a tradeoff between the model resource optimization and
precision. In this work, the convergence bound of gradient-
descent based FL was analyzed from a theoretical perspec-
tive, and a control algorithm that learns data distribution was
proposed. This algorithm was tested using real datasets both
on a hardware prototype and simulated environment.

Based on the distributed topology that characterizes the
PEC paradigm, different architectures are being considered
to deploy FL techniques in order to improve the trade-
off between energy consumption, computation capacity, and
training capabilities of distributed learning nodes connected
by a customized communication network. For instance,
in [61], a two-stage FL algorithm was proposed for a col-
laborative scenario between user equipment (UE), unmanned
aerial vehicles (UAV)/ base stations (BS), and a heteroge-
neous computing platform (HCP) to predict content caching.
Here, an asynchronous weight updating method was adopted
to reduce the effects of redundant learning in FL.

FL in PEC also increases the reliability and security for
some critical applications such as vehicular edge computing
(VEC). VEC faces a major challenge that the accuracy of
image quality can decrease during the model aggregation.
To address this, the authors in [64] proposed a selectivemodel
aggregation exploiting a geometric model that illustrates the
relationship between the object of interest and the camera in
each vehicular agent. FL was used to train image classifica-
tion and to tackle the asymmetry caused by it, and a model
selection procedure was formulated as a two-dimensional
contract theory problem. Then, the contract problem was
transformed into a problem that can be tracked by relaxing
and simplifying the complicated constraints. In [62], FL was
applied to urban informatics tasks where the vehicular net-
work consisted of a macro base station, a number of road-
side units, and moving vehicles. The authors focused on three
aspects: enhancing the privacy of the updated models in FL,
development of a new asynchronous FL architecture by lever-
aging distributed peer-to-peer update schemes, and boosting
the proposed FL process. The proposed FL method not only
gave higher accuracy than the compared methods such as
convolution networks, GraphStar, and text graph convolution
networks, but it could also execute parallel local training;
moreover, increasing the number of data providers did not
affect the accuracy.

IV. ENERGY EFFICIENCY IN PEC
Despite the benefits of PEC, this new computing paradigm
also raises concerns such as energy efficiency. To accom-
modate the massive number of IIoT connections efficiently,
a large number of distributed servers must be installed.
As a result, energy consumption can increase drastically
if the resources and computational workload are not well
distributed within the PEC-assisted IIoT network. More-
over, as illustrated in Fig. 7, in contrast to the conventional

FIGURE 7. Energy consumption in industrial IoT (IIoT) deployments. Edge
computing can provide remarkable energy savings to IIoT devices, and
the cooperation with cloud computing can reduce energy consumption at
the edge servers.

remote cloud servers that possess abundant energy resources,
IIoT devices and edge serves may have access to only lim-
ited power supplies and limited computational capabilities.
Therefore, energy efficiency has become a critical concern
calling for an energy-centric design of PEC solutions.Wewill
now present and discuss the most recent literature that is
relevant to energy efficiency.

A. CLOUD-EDGE COOPERATION FOR REDUCED ENERGY
CONSUMPTION
The work in [78] addressed an industrial scenario where
multiple IIoT devices are assisted by both edge and remote
central servers. Aiming to minimize the energy consumption
at the edge, the authors developed two optimal dynamic algo-
rithms for offloading the computation-intensive tasks from
the edge nodes to the remote server. Specifically, the first
algorithm used an improved gradient method for achieving
faster convergence, while the second one employed the con-
cept of dynamic voltage scaling for further maximizing the
energy gains at the edge servers. Simulation studies in [78]
showed that the proposed algorithms outperform the conven-
tional approaches both in terms of energy consumption and
convergence time.

In [15], the authors studied a heterogeneous network con-
sisting of a macro base station equipped with a central server,
multiple multi-antenna small base stations equipped with
edge servers, and multiple single-antenna energy-constrained
devices with low computational capabilities. The authors pro-
vided an optimization approach to minimize the energy con-
sumption of the network by jointly optimizing the devices’
transmit powers, server selection, and edge servers’ receive
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beamformers. To solve the non-convex formulated problem,
the authors proposed an iterative algorithm based on decom-
position and successive pseudo-convex approach.

In some IIoT settings such as in hard-to-reach mining sites,
it might be very challenging to provide single-hop connec-
tivity. Hence, enabling PEC also for multi-hop networks is
necessary for IIoT. Reference [79] focused on such a setting
where IIoT devices can operate as relays in a distributed
cooperative edge–cloud network. This work applied game-
theoretic concepts to develop two distributed offloading algo-
rithms forminimizing the tasks’ computation time and energy
consumption. The authors showed that their proposal can
ensure the required QoS of each IIoT device and achieve
the Nash equilibrium. Their numerical results demonstrated
the superiority of the developed algorithms over benchmark
schemes in terms of stability, scalability, time processing, and
energy gains. With the idea of distributing the computational
tasks among the local edge server, neighbor edge servers, and
cloud, the authors of [80] formulated an optimization problem
for minimizing the network’s energy consumption under per-
task time processing constraints. To solve the problem, the
authors devised an optimal task allocation algorithm based
on Lyapunov drift-plus-penalty theory for queuing systems.
The obtained solution showed significant energy efficiency
gains and improvements in end-to-end latencies.

B. REDUCED ENERGY CONSUMPTION IN IIoT DEVICES
While the researches discussed in the previous subsection
focused on enhancing the energy efficiency of the entire
network and is mainly concentrated on the servers, in this
subsection, we survey important contributions that optimize
the energy consumption at the IIoT devices. For instance,
the work in [81] employed a task caching strategy at the
edge servers to avoid unnecessary offloading transmissions
and computations of repeated tasks. Based on the proposed
caching-enabled system design, and aiming to minimize the
devices’ energy consumption under delay constraints, the
authors formulated a problem to jointly optimize caching,
computation, and communication resources. The problem
turned out to be a mixed-integer non-convex optimization
formulation, which is difficult to solve optimally. To tackle
the complex formulation, block coordinate descent and con-
vex optimization techniques were explored and a sub-optimal
iterative algorithm was developed. The simulation results
showed that substantial energy efficiency gains and a signif-
icant reduction in processing time can be achieved with the
proposed solution.

The energy efficiency of IIoT devices with multitask capa-
bilities was studied in [82]. In the proposed system model,
each device was able to simultaneously offload multiple
tasks with different requirements to the edge servers using
a NOMA technique. Specifically, a two-step optimization
approach was proposed for minimizing the total energy con-
sumption at the IIoT devices, i.e., energy spent with NOMA
transmissions and local task computations. In the first step,
a problem was formulated for jointly optimizing the number

of bits to be offloaded, the computation rate, and the transmis-
sion time for each task. Even though the original problemwas
non-convex, after several simplifications, the authors devel-
oped a layered algorithm for computing the optimal solution.
In the second step, for further minimizing the devices’ energy
consumption, an index-swapping algorithm was developed
for determining the optimal assignment of the tasks to the
most suitable edge servers. Numerical results revealed the
effectiveness of the proposed algorithms for improving the
energy efficiency of IIoT devices.

PEC-assisted vehicular networks with device-to-device
offloading capabilities were investigated in [83]. In this
work, by modeling both the network mobile traffic and the
computational workload, the authors investigated the trade-
offs between energy consumption and system delay. In the
considered network design, smart vehicles were capable
of optimizing their energy consumption and computation
time by properly offloading their most demanding tasks to
edge servers or to neighboring vehicles that were willing to
share their computational resources. To find such an optimal
offloading strategy, the concepts of Markov decision pro-
cesses were exploited to formulate an energy/time cost min-
imization problem. Then, two reinforcement learning-based
algorithms were proposed to compute the optimal solution of
the formulated problem. Simulation results showed that the
energy and delay performances achieved with the developed
solutions were remarkably superior to those observed with
the considered benchmark schemes.

The work in [97] also studied the energy efficiency of
PEC in a vehicular network. However, differently from the
previous reference, the authors focused on reducing the
energy consumption of in-vehicle battery-powered devices
and not on the vehicle itself. Specifically, a task offload-
ing optimization problem was formulated to minimize the
energy consumption of in-vehicle devices under energy and
latency constraints. Due to the fractional form of the objective
function and the complicated constraints, the optimization
problem turned out to be NP-hard. To tackle such a chal-
lenge, the complex original problem was transformed into an
equivalent consensus problem with separable objectives. The
transformed problem was further decomposed into multiple
tractable sub-problems, which allowed the authors to achieve
a low complexity solution based on the alternating direction
method of multipliers. The obtained solution enabled the in-
vehicle devices to solve the sub-problems simultaneously in
a distributed fashion. To demonstrate the effectiveness of the
developed solution, the authors provided simulation results
based on a real-world topology. The results showed that
significant reductions in energy consumption were achieved
with the proposed approach.

V. CYBER SECURITY CHALLENGES IN PEC
Despite the rapid growth in research and many technologi-
cal advancements, PEC still faces numerous problems with
respect to security risks and privacy challenges, as discussed
in [24]–[32]. These challenges are particularly critical in
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TABLE 4. Summary of relevant research works on energy efficiency in PEC.

TABLE 5. Summary of relevant research works on cyber security in PEC.

industry applications. In this section, we overview the studies
focusing on the security and privacy aspects of PEC from
a holistic perspective, keeping in mind that the discussions
apply also to industrial applications.

To systematically investigate the security aspects and to
identify potential security risks of PEC, Xiao et al. [24]
provided a four-layer architecture as follows: edge server
security, network security, devices security, and infrastruc-
tural security. On the edge server side, the security concern
could be, for example, that adversaries attempt to access the

edge servers and manipulate the services or that they control
the edge servers and exploit their privileges even as legitimate
administrators. Subsequently, attackers can execute attacks
such as denial of service, man in the middle, etc. Similarly,
edge devices could be infected by adversaries with a malware
injection, with these malicious devices consequently posing
security challenges to edge servers, edge networks, and core
infrastructure.

In this vein, Zhang et al. [25] elaborated on the secu-
rity challenges faced by edge computing and their defense
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mechanisms. The authors inferred the root cause of security
threats and challenges and explained the question of why are
these attacks more common in edge computing than tradi-
tional cloud computing? The key reasons discussed in the
paper are as follows: (i) weak or low power computation,
(ii) resource constraints, (iii) protocol heterogeneity, and (iv)
distributed access control.

In a similar vein, Yahuza et al. [26] thoroughly reviewed
the cyber security aspects in PEC and pointed out the vari-
ous possible cyberattacks in the edge computing paradigm,
including message alteration, camouflaging, networking
attacks, physical attacks, and reputation tarnishing. Also, the
authors discussed two types of methods to evaluate these
attacks—‘‘with tools’’ including algorithmic proofs, simu-
lations, and prototype implementations, etc., and ‘‘without
tools’’ including mathematical analysis and informal secu-
rity proofs. Further, many other works have highlighted the
aforementioned discussion from different perspectives, for
instance, edge security in terms of data analytics [27], secure
IoT services [28], and others [29]–[32]. It is worthmentioning
that such challenges could be due to misconfiguration, design
flaws, implementation bugs, data correlations, and missing
fine-grained access controls.

The four most important state-of-art security challenges
in PEC are distributed denial of service (DDoS) attacks,
malware injection attacks, side-channel attacks, and authenti-
cation & authorization attacks. Next, we explain each of these
attacks.

A. DDoS ATTACKS
DDoS attacks are a type of cyberattack in which an attacker
attempts to distort normal services by flooding the internet
traffic and making the service temporarily unavailable to the
end users [84]. This type of attack is broadly classified into
two types—flooding attack and logical attack. In a flood-
ing attack, an attacker frequently sends malicious packets to
edge devices or servers (victims) from (an electronic) source
and makes the victims unable to handle these packets. As a
result, the victims cannot respond to any legitimate requests
on time [85], [86]. In a logical attack, the attacker sends
malicious packets and misleads the application/protocol of
the target machine by reflecting that all resources are fully
occupied.

In comparison to cloud computing, PEC is more prone
to such attacks as it provides services to edge devices that
cannot maintain a strong defense system because of het-
erogeneous malware and computational limitations. More-
over, the DDoS attacker often intends to attack edge devices
and then use them as a weapon against (edge) servers. In
this aspect, a prominent example is Mirai botnet, which
infected 65000 IoT devices and then exploited these devices;
this DDoS attacker launched attacks against well-known ser-
vices such as OVH, Dyn, and Krebs [87]. Bhardwaj et al. [88]
demonstrated a proactive strategy to limit the impact of DDoS
attacks by leveraging a proposed ShadowNet approach.
The proposed approach consists of three components—edge

function, locally derived information, web service—and is
unique in terms of the fast detection of the attack and defense
responses. The authors presented that the proposed approach
detects IoT DDoS attacks up to 10 times faster and enables
reductions in the impacts of the damage by 82% of the
internet traffic. Similarly, Zhou et al. [86] analyzed the DDoS
attack mitigation in IIoT under the fog computing concept.
The authors addressed the requirements of response time
and the constraints related to the computational capabilities
of devices in the IIoT network. A three-level architecture
was proposed to mitigate the DDoS attack, which was then
implemented in the Mero control system to yield effective
results.

B. MALWARE INJECTION ATTACKS
In malware injection attacks, the attacker aims to access
the victim’s service requests and to transfer malware into
the network or computing systems [89]. Such attacks pose
significant threats to data integrity and system security. In par-
ticular, (low level) edge servers and edge devices are more
prone to such types of attacks. The injection of malware or
malicious code at the edge server end is termed as server-side
injection (SSI). SSI is classified into four types—SQL injec-
tion, extensible markup language (XML), server-side request
forgery (SSRF), cross-site request forgery (CSRF), and cross-
site scripting (XSS). The injection at the user side, in which
an attacker injects malicious code into IoT devices, is termed
as device-side injection (DSI). Examples of such attacks are
remote code execution (RCE) and reaper [24], [90].

C. SIDE-CHANNEL ATTACKS
In the side-channel attack, the attacker exploits publicly
available data (not sensitive data) and correlates it with
the user’s private data ‘‘secretly’’ to infer confidential data.
In this attack, an attacker continuously seizes the informa-
tion from PEC infrastructure and uses it as an input to the
ML/DL models or anonymous algorithms that produce the
desired output (sensitive information). This type of adver-
sarial attack can happen at any node of the network, and
attackers exploit multiple techniques for side-channel attacks,
for example, cache attack, timing attack, and electromagnetic
attack [91]–[93]. The susceptibility of DL or ML-based sys-
tems and devices with edge intelligence to adversarial attacks
is well known and has been studied intensely [94], [95].
In [96], the authors described a framework for edge learning
as a service (EdgeLaaS) for healthcare infrastructures and
emphasized the need for securing such data-sensitive systems
against adversarial attacks. In [94], the authors exhaustively
reviewed the fundamental methods to generate adversarial
examples—intentionally designed inputs to ML models con-
stituting an attack to force the model to make errors—and
proposed a taxonomy for these methods. Additionally, the
authors provided insights into adversarial attacks’ applica-
tions to reinforcement learning, generative models, malware
detection, etc. State-of-the-art approaches (e.g., input recon-
struction, network verification, network distillation, etc.) to
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FIGURE 8. An overview of cyber security and cyberattacks in pervasive edge computing.

cope with such adversarial attacks are also discussed. In [95],
Li et al. proposed a defensive framework (decentralized
swift vigilance) in industrial systems to detect adversarial
attacks swiftly and eliminate the risk failure without relying
on complex reinforcement models. Concurrently, their work
incorporated MEC and generative adversarial networks to
achieve ultra low latency and privacy protections in industrial
scenarios.

D. AUTHENTICATION AND AUTHORIZATION ATTACKS
Authentication refers to the confirmation or verification of
the identity of the entity who requests for certain services.
And authorization refers to the process of ensuring the rights
and access of an entity that should be within certain con-
straints and boundaries. In authentication and authorization
attacks, the adversary aims to achieve access to the desired
resources with fake credentials. Generally, PEC authentica-
tion is often accomplished among edge devices and servers,
while authorization is the permission that edge servers grant
to certain edge devices or its services/applications. The work
in [24] classifies such attacks into four categories—dictionary
attacks, authentication protocols attacks, authorization proto-
cols attacks, and over-privileged attacks. Table 5 summarizes
research works that have been cited in Section V, and Fig. 8
presents the aforementioned state of the art of cyber security
attacks in PEC.

In addition to cyber security, there are still several open
challenges that need to be solved to have a 5G-based PEC
solution for IIoT, and these will be discussed in the next
section.

VI. FUTURE DIRECTIONS AND OPEN CHALLENGES
In addition to the IIoT-related challenges [98], [99], there
are various other roadblocks to overcome for PEC to

become a mainstream and widely adopted solution. Below,
we list these open research directions that merit further
investigation.

A. COMPUTATION PLACEMENT
While PEC offers numerous benefits discussed throughout
this article, how to place the computation tasks on the avail-
able PEC nodes has to be determined considering the various
tradeoffs discussed in Section II-A. Moreover, computation
tasks such as ML processes might consist of multiple com-
ponents with certain input-output dependencies. Hence, the
computation tasks should be placed accordingly in the con-
tinuum of the pervasive edge and the cloud considering the
tradeoffs, available resources, and the dependency among the
computation tasks. Prior researches on edge service place-
ment mostly consider smaller scale settings, and security
aspects are largely overlooked, making such solutions ill-
suited for IIoT settings where scalability and security are
crucial. Moreover, the IIoT devices might consist of low-end
sensors with limited uplink bandwidth and energy resources.
Hence, the computation placement should take these pecu-
liarities into account. For large-scale IoT solutions where the
data produced by smart objects might be requested by many
consumers, the efficiency of the communication between
data producers and the consumers needs special attention,
in particular, with respect to the existence of low-end data
producers. In this respect, broker-based communication,
also known as Pub/Sub architecture, facilitates transparency,
mobility of data providers and consumers, scalability, and
energy savings at the low-end data producers by decou-
pling the data producers and consumers. An emerging ques-
tion is the placement of the brokers and computation tasks
jointly.
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B. SPECTRUM MANAGEMENT
Data collection from the devices toward the PEC nodes
results in increased uplink traffic in an industrial network.
Moreover, given that some computations might be offloaded
to the fog or cloud, there will be network traffic from the
access network toward the core network and the Internet. As a
result, the PEC policies will affect the amount of spectrum
resources needed for the radio access network in the uplink
and downlink as well as in the backhaul. Given that 5G envi-
sions self-backhauling for small cells [100], there is a need
for spectrum management schemes that dynamically allocate
resources based on the needed capacity in each segment of an
industrial network.

C. EDGE INTELLIGENCE
Recent advances in communication systems have opened
a path for FL in edge computing. However, several major
challenges remain to be addressed for the edge intelligence
to be offered ubiquitously. In particular, the deployment of
FL at scale is not straightforward. Some of the key concerns
are as follows. First, the learning framework needs to be
robust against disruptions. That is, it should be able to handle
cases where some nodes performing the computation lose
connectivity temporarily or go completely offline due to,
e.g., energy failures. Second, even if the nodes are reachable
and perform their tasks, the results from each participating
node need to be communicated efficiently, e.g., within certain
delay bounds, to the rest of the nodes that rely on these nodes.
Under dense deployments and low spectrum reuse factor,
interference management plays a key role in ensuring the per-
formance guarantees of FL. Third, due to the heterogeneity of
the data produced by a variety of devices, the data that has to
be processed and fed into learning schemes is mostly non-
standardized. Finally, since some critical decisions about the
operation of an industrial system for automation might rely
on the outputs of the learning schemes, it is paramount that
communication security is ensured and that learning schemes
are robust against malicious or noisy inputs.

Significant research efforts are being made to deal with
these problems across the world, and communication secu-
rity, asynchronous FL techniques, improved ML algorithms,
statistical analysis, and algorithms for communication reduc-
tion are some of the candidate solutions that will eventually
accelerate the use of FL in edge computing.

D. COMPUTATION OVER ENCRYPTED DATA
Even when the data to be processed is sensitive, there might
be cases where a remote cloud is a favorable computation
location due to the ample computation resources available for
this sensitive data. To unlock the performance benefits offered
by the cloud while preserving the data confidentiality, there is
a need for performing computations over the encrypted input.
There is a growing interest in privacy-preserving approaches
such as solutions in [101] or [102]. However, to the best of
our knowledge, it is still a widely unexplored research area.

E. NETWORK MANAGEMENT
Due to the stringent performance and security requirements
of IIoT networks, it is widely argued that industry plant own-
ers would not prefer to outsource the control of their network
to a third party, i.e., a 5G operator [98]. Private cellular
networks aim to address this concern. However, there are
many open questions such as the operation and deployment
models, dynamic provisioning of the spectrum resources for
the radio access network and the backhaul, as well as the
deployment of computation units to meet the performance
requirements of a particular vertical industry [103].

VII. CONCLUSION
In this article, we have surveyed emerging technologies
related to industrial internet-of-things (IIoT) enabled by
5G and beyond communication networks. We have dis-
cussed the main advantages of this paradigm—core net-
work offloading (and benefits therefrom) and low latency
for delay-sensitive applications (e.g., automatic control)—
and reviewed the state-of-the-art in the PEC paradigm and
its applications to the IIoT domain. We have also surveyed
and described researches on distributed artificial intelligence
methods, energy efficiency, and cyber security, which are
three important research areas related to PEC. We identified
the main open challenges that must be solved to have a
scalable PEC-based IIoT network that operates efficiently
under different conditions.

PEC deployments clearly have several interesting future
directions, and academic and industrial researches into PEC
are ongoing at a fast pace. This is motivated by the fact that
PEC provides an extremely suitable and important deploy-
ment model for industrial communication networks, espe-
cially considering the recent trends of private industrial 5G
networks incorporating local operations and flexible manage-
ment. Nevertheless, PEC deployments also face many chal-
lenges that still need to be solved in order to have an effective
solution that could be deployed in larger scales across differ-
ent industrial domains, especially in terms of computational
performance, energy efficiency, and cyber security.
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