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ABSTRACT Schizophrenia is a devastating disease with a prevalence of 1% in populations around the
world. Current diagnostic techniques of schizophrenia and high-risk population are based on subjective
psychiatric interviews. Early diagnosis and intervention can mitigate progression and improve treatment
outcomes. However, the lack of biomarkers that support objective examinations has been a long-term
bottleneck in clinical diagnosis and assessment of schizophrenia and its high-risk state. In the present study,
resting-state 128-channel electroencephalogram (EEG) data were acquired from 65 participants, including
clinically-stable individuals with first-episode schizophrenia (FESZ), individuals at ultra-high-risk (UHR)
and high-risk (HR), and healthy controls (HC). Microstate analysis was used to assess the dynamics of
functional networks in these participants. Three features were extracted for each class of microstate (A, B,
C, D, E, F): duration, occurrence and time coverage. Furthermore, clinical examinations and cognitive tests
were performed. Behavioral results showed poorer performances in the participants as the disease progressed.
Moreover, microstate features computed from resting-state EEG microstates (especially microstate class D)
were capable of distinguishing the four groups of individuals. Combined biomarkers including clinical
examinations, cognitive tests and EEG microstate parameters were identified as a potential effective
diagnostic tool, achieving the highest classification performance using the random forest model compared
with the support vector machine (SVM) and long short term memory (LSTM) networks, with an average
classification of 92%, mean sensitivity of 91.8%, and specificity of 90.8% among the four groups, which
were much higher than that only using behavioral features. The results demonstrate that microstate-based
indicators together with behavioral results may act as biomarkers for early diagnosis and prediction of at-risk
individuals of schizophrenia. Furthermore, our findings illustrate the potential use of resting-state EEG in
clinical screening, classification and quantitative evaluation of patients with neurodevelopmental disorders.

INDEX TERMS Biomarker, early diagnosis, EEG microstate, schizophrenia.

I. INTRODUCTION
Schizophrenia is a devastating disease with a prevalence
of 1% in populations around the world [1]. Cognitive
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dysfunction, social impairment and behavioral disorganiza-
tion are three core symptoms of schizophrenia. Individuals
are usually affected in their late teens or early twenties with an
enormous variety of psychiatric characteristics and comorbid
conditions, which include depression, affecting almost 50%
of schizophrenic patients; substance abuse in approximately
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47%; posttraumatic stress disorder in approximately 29%;
obsessive-compulsive disorder in approximately 23%; and
panic disorder in approximately 15% of psychotic individ-
uals [2]. Increasing numbers of studies have postulated that
schizophrenia is a neurodevelopmental disorder, although the
underlying etiology remains unknown [1], [3], [4]. Emerging
evidence points to genetic factors, in combination with envi-
ronmental factors, as possibly leading to risk of schizophre-
nia [1], [4]. These findings have generated a broad consensus
that schizophrenia requires robust diagnostic, prophylactic
and therapeutic strategies.

Schizophrenia is currently diagnosed principally on the
basis of behavioral characteristics as defined in psychiatric
diagnostic manuals (e.g. Diagnostic and Statistical Manual
of Mental Disorders, Fifth edition (DSM-V)). These defi-
nitions emphasize the co-occurrence of positive symptoms
(e.g. confused thoughts and disorganized speech), negative
symptoms (e.g. blunting of affect and lack of social interest)
and cognitive symptoms (e.g. difficulty concentrating) [5].
These definitions embrace a wide range of heterogeneous
circumstances, therefore two patients with schizophreniamay
have different symptoms. Kendler [6] highlighted the lim-
itations of current diagnostic criteria that restrict assess-
ments of schizophrenia to subjective diagnostic parameters.
Furthermore, early detection of schizophrenia is challenging
when using these subjective diagnostic factors, especially
in the prodromal stage. One possible reason may be that
no conspicuous psychotic symptoms appear during the early
stage of schizophrenia. There is a typical delay of two years
between the onset of psychiatric symptoms and the diagnosis,
and antipsychotic treatment, of schizophrenia [7].

Early diagnosis of schizophrenia is important not only
because it provides an opportunity for brain development
in young affected individuals, but it also has the potential
to yield greater treatment outcomes and early intervention
more effectively reduces disability in young schizophrenia
patients [8], [9]. Additionally, a great number of studies
[10], [11] have found that the transition rate from being
ultra-high risk to the first onset of schizophrenia could be
significantly reduced if diagnosis and intervention had started
earlier.

Elucidating biomarkers of schizophrenia for early identi-
fication of the illness is of great importance but remains a
serious challenge. Unfortunately, there is currently no reliable
biomarker which can be used to identify individuals at risk of
schizophrenia. Due to its genetic complexity [12], no clin-
ically meaningful genotype has been described that could
detect risk of schizophrenia at present. Electrophysiological
and imaging studies have suggested that some indicators (e.g.
P50, N100, P300, mismatch negativity) may be useful in
the detection of risk of schizophrenia [13]–[15]. However,
controversial results have been reported about the reliabil-
ity, specificity and sensitivity of these indicators [15], [16].
Moreover, structural and functional magnetic resonance
imaging is expensive, and that may not be a practical
approach for detection of schizophrenia in young

individuals. Furthermore, single indicators may not be suf-
ficiently predictive for asymptomatic at-risk populations.
Therefore, reliable biomarkers that are more cost-effective
are required for prediction of schizophrenia.

Compared to other modalities (e.g., fMRI, MEG), EEG
measures have several characteristics that make them ideal
for use as biomarkers in the diagnosis of schizophrenia. First,
EEG can be recorded in a passive paradigm that does not
require attention, behavioral readout or task engagement [17].
As a result, EEG is well suited for use in populations that
may have difficulty engaging in behavioral studies, such as
those with schizophrenia. Second, because of its high tem-
poral resolution [18], EEG biomarkers can be uniquely used
to track the information flow in the brain, and thus can be
used to identify the earliest stages of information process-
ing impairment [17]. The characteristics make EEG suitable
to detect abnormal brain activities in the prodromal phase
of schizophrenia and monitor the severity of schizophrenia
progression. Third, because EEG biomarkers can indicate
underlying neuronal activity [19], they can be seen as objec-
tive induces of cognitive impairment — a prominent feature
of schizophrenics [17]. Fourth, EEG biomarkers are optimal
for screening because EEG can be obtained using a rela-
tively inexpensive and non-invasive device, which is widely
available, convenient and fast [20]. Fifth, EEG provides a
more direct measurement of electrical activity during neuro-
transmission in comparison to other neuroimaging modalities
(e.g., fMRI) [21]. Last, resting-state EEG is attractive for
clinical research due to its straightforward standardization,
simplicity to subjects, sensitivity to brain diseases, and high
retest reliability [22]. A recent study has proposed that EEG
microstates are a candidate endophenotype for schizophre-
nia [23]. Biomarkers based on microstates in resting-state
electroencephalogram (EEG) in combination with clinical
examination and cognitive tests may be promising indicators
for prediction of schizophrenia. EEG microstate analysis is
a well-established approach for characterization and evalua-
tion of brain network dynamics in fine temporal resolution
(usually millisecond) in health and disease [24], [25]. EEG
microstates are defined as successive quasi-stable time peri-
ods that are characterized by global patterns of scalp poten-
tial topographies recorded by multichannel EEG arrays [26].
Resting-state EEG microstates are considered reflective of
the momentary local states and interactions of large-scale
distributed brain networks [27]. Previous studies [27]–[30]
have found that patients with schizophrenia exhibit signifi-
cant changes in resting-state EEGmicrostates, indicating that
they may be a biomarker for detection of schizophrenia.

In the present study we examined whether microstates
in resting-state EEG together with clinical examination and
cognitive tests could be used as biomarkers for prediction
of schizophrenia. We performed EEG microstate analysis
on 5 minute eyes-closed resting state EEG data in four
groups of people, including patients with first-episode
schizophrenia (FESZ), individuals at ultra-high risk (UHR)
of schizophrenia, those at high risk (HR) and healthy
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TABLE 1. Demographics of patients with FESZ, inidividuals at UHR and HR, AND HC.

controls (HC). In addition, statistical analyses were con-
ducted in clinical and cognitive tests data, as well as
EEG data. We hypothesize that these behavioral results
in combination with electrophysiological results could be
usable as biomarkers to discriminate different stages of
schizophrenia.

II. MATERIALS AND METHODS
A. PARTICIPANTS
Sixty five participants were recruited to the present study,
aged 13 to 40 years, from outpatient clinics at Beijing
Anding Hospital and from communities across China
(Table 1). An estimation of the required sample size was
performed based on similar research previously conducted
by Üçok and colleagues [31]. We estimated that the mean
difference was -10.93 and standard deviation was 5.45.
For α = 0.05 and 1-β = 90%, it was estimated that
the number of samples in each group was 6 for achieving
a meaningful difference. Taking into account a drop-out
rate of 25%, at least 8 participants were required to be
included in each group. In the present study, we recruited
12 participants in the HR group, 14 participants in HC
group, 19 participants in the UHR group, and 20 participants
in the FESZ group. Therefore, the number of participants
in the four groups met the minimum number calculated
from the sample size estimation. These participants were
divided into four groups: 20 that were clinically stable, first
psychotic episode outpatients with a Diagnostic and Statis-
tical Manual of Mental Disorders, Fourth edition (DSM-IV)
diagnosis of schizophrenia; 19 UHR individuals assessed by
the Structured Interview for Schizophrenia-Risk Syndrome,
Criteria of Schizophrenia-risk Syndromes (SIPSCOPS);
12 HR individuals who were unaffected first-degree relatives
of schizophrenic patients that fulfilled the DSM-IV diag-
nostic criteria; and 14 age- and sex-matched HC from the
community. Diagnostic eligibility was confirmed from the
Structural Clinical Interview for DSM-IV Disorders (SCID)
for all participants.

Exclusion criteria for all participants were as follows:
having less than 6 years of education, a history of head
trauma, presence or history of any psychiatric disorder,

presence or history of neurological diseases (e.g. epilepsy),
presence or history of substance abuse (e.g. alcohol abuse) as
assessed by DSM-IV, significant auditory or visual impair-
ment, pregnancy evaluated by a urine pregnancy test for
women or significant intellectual disability (IQ < 70) as
measured by the Chinese version of theWechsler Adult Intel-
ligence Scale (WAIS). Additional exclusion criteria for the
HC were as follows: presence of other psychotic disorders,
bipolar disorders or recurrent major depressive disorder; a
family history of psychotic disorder based on self-reporting;
or exhibiting any form of avoidant, paranoid, schizoid,
schizotypal or borderline personality disorder. Considering
the impact of antipsychotic and psychotropic drugs on EEG
microstate results, we therefore only included antipsychotic
(or psychotropic)-naïve participants.

All interviewers were trained at the Treatment Unit of
Beijing Anding Hospital. All participants were right-handed,
native Chinese speakers with normal or corrected to normal
vision. Signed and oral informed consent was provided by
all participants, or guardians if the participant was less than
18 years old. The study was approved by the Science and
Ethical Committee of Beijing Anding Hospital of Capital
Medical University.

B. BEHAVIORAL EXAMINATIONS
1) CLINICAL EXAMINATIONS
Clinical characteristics for patients with FESZ were assessed
on the Positive and Negative Syndrome Scale (PANSS) and
the Calgary Depression Scale for Schizophrenia (CDSS).
Except for CDSS, UHR individuals, HR individuals and HC
were assessed using the Structured Interview for Prodro-
mal Syndromes (SIPS). PANSS is a rating scale which help
researchers and clinicians measure the severity of psychiatric
symptoms in patients with schizophrenia. CDSS is a reliable
scale for assessing the level of depression in schizophrenia,
especially in individuals considered to be at UHR or HR
for the condition. SIPS has been developed to assess the
positive, negative, disorganization and general symptoms of
individuals at UHR and HR, in addition to HC.

213080 VOLUME 8, 2020



Y. Luo et al.: Biomarkers for Prediction of Schizophrenia: Insights From Resting-State EEG Microstates

2) COGNITIVE TESTS
Neurocognitive ability and social cognition for participants
were assessed using the MATRICS Cognitive Consensus
Battery (MCCB), developed to evaluate cognitive perfor-
mance in schizophrenia. MCCB principally assesses seven
cognitive functions, including information processing speed,
attention/alertness, working memory, verbal learning, visual
learning, reasoning and problem solving, and social cogni-
tion. MCCB comprises a set of tests, such as the Trail Making
Test (TMT), Symbol Coding Test, Hopkins Verbal Learning
Test-Revised (HVLT-R), WMS-III Spatial Span Test, Digit
Span Test, Continuous Performance Test (CPT), Neuropsy-
chological Assessment Battery Mazes edition, Brief Visu-
ospatial Memory Test-Revised, Animal Naming Test and
the Managing Emotions Test. These tests are widely used
for cognitive functioning assessments. For example, TMT
is a neuropsychological test of perception, motor functions,
visual attention and information processing speed. HVLT-R
is an evaluation tool for verbal learning and memory. CPT is
a well-known test to measure an individual’s sustained and
selective attention.

C. EEG MEASUREMENTS AND MICROSTATE ANALYSIS
1) EEG DATA ACQUISITION AND PREPROCESSING
EEG data were recorded using NetStation software and a
Net Amps 400 amplifier (Electrical Geodesic Inc., EGI,
Eugene, OR). Data were continuously sampled at a rate
of 1000 Hz from a 128-electrode HydroCel Geodesic Sensor
Net in accordance with the 10-20 system, with Cz as a
reference electrode. The 128-channel HydroCel Geodesic
Sensor Net covered the entire scalp in sufficient density to
ensure that all relevant data were captured. Impedance was
maintained below 50 k�. Participants were seated in a com-
fortable, upright position facing a computer monitor in an
electrically-shielded room. The amplified and digitized EEG
signal was transmitted to a recording computer placed outside
the scanner room via fiber optic cables. Participants were
instructed to stay awake, keep as calm as possible, to close
their eyes and relax for five minutes without falling asleep.

The EEG datasets were imported into the EEGLAB tool-
box [32] in Matlab (Mathworks, Natick, MA) for preprocess-
ing. A channel location file was loaded and the datasets then
band-pass filtered between 1 and 80 Hz and notch filtered
at 50 Hz. A blind source separation algorithm was inserted
into the Automatic Artifact Removal plug-in to remove arti-
facts such as saccades, muscular artifacts and eye blinks.
Continuous EEG data were then segmented into
2 second-long epochs. All EEG epochs with an amplitude
exceeding ± 100 µV at any electrode were removed. Bad or
noisy channels were identified manually and modified using
interpolation algorithms. Bad trials were removed manually.
EEG signals were then re-referenced to a common average
reference and filtered between 2 and 20 Hz for microstate
analysis.

2) EEG MICROSTATE ANALYSIS
After preprocessing, EEG microstate analysis was conducted
in each participant using the Microstate plug-in in EEGLAB.
The overall analysis pipeline is shown in Figure 1. The
microstate analysis consisted of a bottom-up procedure for
construction of the microstate classes [30] and a top-down
procedure in which the topographical map of each sub-
ject in each group was assigned to the corresponding EEG
microstate class with greatest spatial correlation.

EEG microstates are defined as global patterns of scalp
potential topographies recorded using multichannel EEG
electrode arrays which changes dynamically over time in an
organized manner [26]. Using modified k-means clustering,
these scalp potential topographies were clustered into mean
EEG microstate classes. Extensive EEG studies have found
that during rest and task execution, EEG microstate maps
fall into four standard classes [30], [33], [34]. The four
microstate classes demonstrate right-frontal to left-posterior
(microstate class A), left-frontal to right-posterior (microstate
class B), midline frontal-occipital (microstate class C), and
fronto-central maximal (microstate class D) activity and are
quasi-stable for approximately 80–120 milliseconds [34].
Moreover, these four microstate classes have been exhibited
to be relatively consistent across participants (in both health
and disease) and throughout the lifespan [33]. In the present
study, Cartool toolbox [35] was used for the calculation of the
optimal number of cluster maps based on the cross-validation
criterion [25], [36].

The local maxima of the Global Field Power (GFP) were
analyzed to improve the signal-to-noise ratio [37] in EEG sig-
nals. For identification of the most representative class of sta-
ble topographies, EEG data were extracted at the time frames
corresponding to GFP peaks and utilized the time point of
those peaks in the modified k-means clustering analysis,
which was conducted at both an individual and group level.
The clustering of eye-closed resting state EEG data was based
on Global Map Dissimilarity criteria [38], disregarding map
polarity. At the individual level, original maps were randomly
and repeatedly selected as seeds using modified k-means
clustering, then clustered into the optimal classes determined
by the cross-validation criterion. Individual model maps were
computed by averaging all maps after permutation of the
polarities of the maps to find the minimum variance of the
mean. At the group level, group model maps were computed
based on individual model maps of all participants, producing
one-to-one assignments for minimal overall variance [27].
Group model maps then acted as a template to sort individual
model maps of each participant into one of the microstate
classes. To assure that the topographies of the selected classes
are similar across groups, the spatial correlation analysis was
performed [23], [36].

Three parameters were computed for quantification of the
microstates for each microstate class in each participant,
including duration, occurrence and time coverage. Average
duration refers to the mean length of time during which
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FIGURE 1. Microstate analysis methodology pipeline.

successive GFP maps were assigned to the same microstate
class. The average number of occurrences per second was
calculated across all epochs of a specific class. Time coverage
was the mean percentage of time covered across epochs in a
given class.

D. CLASSIFICATION USING MACHINE LEARNING
ALGORITHM
To distinguish the four groups (FESZ, UHR, HR and HC),
we used three machine learning algorithms, including the
support vector machine (SVM) [39] model, random forest,
and long short-termmemory (LSTM), for classification based
on the behavioral features and the combination of behav-
ioral and EEG microstate features (Figure 5). SVM is a
well-regarded supervise learning model and widely used in
classification task as well as regression problems. We used
SVM for classification because it is suitable for the cur-
rent application scenario. SVM demonstrates many unique
advantages in resolving small sample, nonlinear and high
dimensional pattern recognition [40]. SVM is suitable for the
current study which has small sample size. Other machine
learning methods (e.g., neural networks) often requires large
sample size otherwise it may cause overfitting problem [41].
Furthermore, SVM can work efficiently with complex, non-
linear and real-world data whereas other algorithms (e.g.,
linear discriminant analysis) can only be applied on groups
that can be separated by a linear combination of feature [42].
SVM is also a powerful method in detecting complex and
subtle differences between groups [42], and has been widely
used in neuroimaging settings in schizophrenia diagnostic
studies [42], [43]. Therefore, we used SVM for classifica-
tion. Furthermore, we used random forest algorithm [44] for

classification in comparison to SVM. Random forest
was chosen because it has been successfully applied in
schizophrenia classification studies, and has shown the best
performance in identifying schizophrenia subgroups com-
pared to SVM and logistic regression [45]. As a robust,
relatively simple and easily interpretable classifier, random
forest model is discriminative, suitable for small sample size
and capable of capturing nonlinear relationships across input
features. For feature extraction, behavioral features were
from the demographics and cognitive tests. In addition to the
behavioral features, resting-state EEG microstate parameters
in the four groups constituted combined features. Regarding
the classification, 80% of the data formed the training set,
and the remaining 20%was the test set. Then cross-validation
was performed. LSTM is a special kind of recurrent neural
network (RNN) architecture used in the deep learning field,
which may be possible to connect previous information to
the current task [46]. LTSM has been used for the diagnosis
and prediction of diseases (e.g., Alzheimer’s disease) [46].
Here we used LSTM to classify the four groups (FESZ, UHR,
HR, and HC) with 5-fold cross-validation, learning rate as
0.001 and training times as 100. We calculated the average
classification accuracy and compared the accuracy between
computation only using behavioral features and using com-
bined features. Furthermore, we also computed sensitivity
and specificity.

E. STATISTICAL ANALYSIS
Statistical analysis was conducted on both behavioral (includ-
ing clinical examinations and cognitive tests) and EEG data.
Independent sample t-tests were performed on the behav-
ioral data to measure the differences among the four groups
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TABLE 2. Behavioral performance of FESZ patients using PANSS examination.

(FESZ, UHR, HR and HC) in demographic, PANSS, CDSS,
SIP and MCCB tests. All t-tests were 2-sided with α =
0.05. For EEG data, independent t-tests were also performed
to investigate statistical differences within EEG microstate
parameters among the four groups (e.g. duration). Further-
more, differences between microstate classes and groups
(FESZ, UHR, HR and HC) were ascertained by performing
an ANOVA. In the case of significant interactions between
microstate classes and groups, subsequent post-hoc t-tests
were performed after univariate ANOVAs to further explore
intergroup differences.

III. RESULTS
A. DEMOGRAPHICS
Demographic information of the four groups (FESZ, UHR,
HR and HC) is shown in Table 1. Compared to HC, no sig-
nificant difference was found in the age, gender or years of
education in FESZ, UHR or HR individuals. The duration
of schizophrenia was 34.54 months in FESZ patients and
29.32 months in UHR individuals.

B. BEHAVIORAL RESULTS
1) CLINICAL CHRACTERISTICS
Tables 2-4 display clinical performance of patients with
FESZ, UHR and HR individuals, and HC. On the PANSS
examination (Table 2), positive and negative symptoms, cog-
nitive performance or general psychopathology were scored
in patients with FESZ. The mean total PANSS score was

82.71 (SD = 12.44). Compared to HC, FESZ patients
demonstrated significant differences in 8 items (e.g. depres-
sion) by CDSS examination (Table 3). UHR individuals
exhibited significant differences in 9 items and HR individ-
uals showed significant differences in 4. CDSS total scores
were 1.18 (SD = 1.25), 2.20 (SD = 2.48), 0.79 (SD = 1.31)
and 0.13 (SD = 0.50) in FESZ patients, UHR individuals,
HR individuals and HC, respectively. The severity measured
by CDSS was in the order: UHR > FESZ > HR > HC.
Table 4 displays behavioral performance of the three groups
(UHR, HR and HC) by SIPS examination. Compared to HC,
UHR patients were significantly different (P ≤ 0.001) in
all items concerning positive, negative, disorganization and
general symptoms on the SIPS test, whereas HR individuals
exhibited significant differences in most items on the SIPS
test compared to HC. Severity as tested by performance in
the SIPS examination among these participants, in decreasing
order were: UHR > HR > HC.

2) COGNITIVE CHRACTERISTICS
Figure 2 displays the results of cognitive tests in the four
groups (FESZ, UHR, HR and HC). Compared to HC, FESZ
patients had significantly worse performance on almost
all cognitive tests, such as information processing speed,
working memory and social cognition. Except for work-
ing memory and social cognition, there were significant
differences in most cognitive tests between the UHR and
HC groups. We found significant differences between the
HR and HC groups in CPT, information processing speed,
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TABLE 3. Behavioral performance of the four groups (FESZ, UHR, HR and HC) BY CDSS examination.

attention facilitation and the total scores of cognitive tests.
Furthermore, behavioral performance in theMCCB and other
tests were ranked in the order: FESZ < HR < UHR < HC.
The results of the MCCB and other cognitive tests are shown
in Table 6.

C. EEG MICROSTATE PARAMETERS
We found that the optimal number of EEG microstate maps
were 6. Figure 3 illustrates the six average microstate classes
(classes A, B, C, D, E, F) in the four groups (FESZ, UHR,
HR and HC). The six microstate classes explained 90.4%,
91.1%, 85.7% and 90.4% of the global variance across the
FESZ, UHR, HR and HC groups, respectively. We also
found high spatial correlation coefficients (>90%), which
suggested that the microstate classes were similar between
groups.

Figure 4 depicts the three microstate parameters (including
duration, occurrence and time coverage) in the four groups
(FESZ, UHR, HR and HC). The predominant differences
among the four groups were in microstate class D. For
microstate class D, the duration was significantly lower in
the FESZ group than it was in the HC group (P = 0.01,
Cohen’s d = 0.93), consistent with findings in previous stud-
ies [28]–[30], [47], [48]. UHR and HC groups also exhibited
significantly reduced duration in microstate D in comparison

with the HC group (UHR: P = 0.01, Cohen’s d = 0.96; HR:
P = 0.04, Cohen’s d = 0.86). Compared to the HC group,
the FESZ and UHR groups showed significantly decreased
occurrence in microstate class D (FESZ: P = 0.02, Cohen’s
d = 0.85; UHR: P = 0.05, Cohen’s d = 0.73), but there
were no significant difference in occurrence in microstate
class D between the HR and HC groups (HR: P = 0.60,
Cohen’s d = 0.22). The FESZ, UHR and HR groups exhib-
ited decreased time coverage in microstate class D than the
time coverage in the HC group (FESZ: P = 0.006, Cohen’s
d = 1.04; UHR: P = 0.01, Cohen’s d = 0.96; HR: P = 0.15,
Cohen’s d = 0.58).

One-way ANOVA revealed significant differences in dura-
tion in microstate class D [P = 0.02, F(3, 65) = 3.65],
and time coverage in microstate class D [P = 0.02,
F(3, 65) = 3.47] across the four groups (FESZ, UHR,
HR and HC). There were no significant differences in occur-
rence in microstate class D [P = 0.08, F(3, 65) = 2.33].

D. CLASSIFICATION RESULTS
Table 5 summarizes the classification results of the four
groups (FESZ, UHR, HR and HC) using the three classifi-
cation models (SVM, random forest and LSTM). Parameters
(e.g., kernel type, cost function) may have an effect on the
classification accuracy of the SVM model. For example,
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TABLE 4. Behavioral performance of three groups (UHR, HR AND HC) by
SIPS examination.

TABLE 4. (Continued.) Behavioral performance of three groups (UHR,
HR AND HC) by SIPS examination.

if the parameter gamma value in kernel function is too
large, then it may result in over-fitting. If the gamma value
is too small, then it will lead to under-fitting [49]. So we
optimized the parameters to improve the SVM classification
accuracy. Using the SVM model inserted in LIBSVM [39],
we obtained the highest classification accuracy using 5-fold
cross-validation of the four groups (FESZ, UHR,HR andHC)
of 49% and 66% based on behavioral features and combined
features, with −t = 0, −c = 6, −g = 1, −b = 1.
Where -t represents to kernel type (0 represents linear kernel),
-b represents probability estimates, -c represents the cost of
the penalty, -g represents gamma in kernel function. On the
basis of behavioral features, we attained the classification
accuracy of 65%, 53%, 17% and 50% for the FESZ, UHR,
HR and HC groups, respectively. On the basis of combined
features extracted from both behavioral tests and EEG exami-
nations, we attained the classification accuracy of 85%, 50%,
68% and 50% for the for the FESZ, UHR, HR andHC groups,
respectively. Moreover, the mean sensitivity and mean speci-
ficity of the four groups were 49.2% and 48.0% only using
behavioral features. When using both behavioral features
and EEG microstate features, the mean sensitivity and mean
specificity were 63.4% and 65.9%. Using the LSTMnetwork,
we obtained an average classification accuracy of 53%, sensi-
tivity of 52.9%, specificity of 43.5% based on the behavioral
features, and an average classification accuracy of 69%,
sensitivity of 68.9%, specificity of 69.4% based on the
behavioral and EEG microstates combined features. Using
random forest, we obtained the best classification results
compared to SVM and LSTM. For the random forest model,
the average classification accuracy was 92% using combined
features, and 69% using behavioral features. The sensitivity
and specificity were 91.8% and 90.8% for the combined
features, and 74.3% and 63.8% for the behavioral features.

IV. DISCUSSION
In this study we compared clinical examinations, cognitive
tests and resting-state EEG microstates of FESZ patients,
UHR individuals, HR individuals and HC. We also applied
the SVM, random forest and LSTM for classification of
the four groups. To the best of our knowledge, the present

VOLUME 8, 2020 213085



Y. Luo et al.: Biomarkers for Prediction of Schizophrenia: Insights From Resting-State EEG Microstates

FIGURE 2. Behavioral performance of the four groups (FESZ, UHR, HR and HC) in the MCCB and other cognitive
tests. ∗P < 0.05, ∗∗P < 0.01, and n.s. denote not significant. Error bars are the standard error of the mean (s.e.m.).

study is the first to compare four groups of individuals using
all three forms of examination. As expected, we found that
participants showed decreased performance as the disease
progresses. Furthermore, combined features consisting of
behavioral indicators and EEG microstates achieved an aver-
age classification accuracy of 92% among the four groups
using the random forest model, which was higher than accu-
racy based on the behavioral features. These findings suggest
that EEG microstates, in combination with clinical and cog-
nitive assessments, may be biomarkers for the prediction of
schizophrenia.

Clinical examinations are predominant tools for diagnosis
of schizophrenia at present. We used PANSS to rate the
clinical symptoms of the FESZ group. Themean total PANSS
score of positive and negative symptoms, in addition to cog-
nitive or general psychopathology, was 82.71 (SD = 12.4),
demonstrating that the FESZ group could be considered
mildly ill [50]. CDSS was used for evaluation of depression
levels in patients with FESZ, UHR and HR individuals and
HC. The mean total CDSS scores were ranked in the order:
UHR > FESZ > HR > HC. Compared with HC, the other

three groups exhibited significant differences in total CDSS
scores. In particular, the FESZ and UHR groups had item
scores that were significantly raised on the CDSS than the
HR group. Depression is a common comorbid condition in
schizophrenia, affecting approximately 50% of schizophrenic
patients [2]. Our results demonstrated that besides FESZ
patients, UHR individuals also had clear depressive symp-
toms, whereas HR individuals appeared to be less affected
by depression than the FESZ and UHR groups. Interestingly,
UHR individuals exhibited more severe depressive symptoms
then FESZ patients, consistent with a previous study [15].
One possible reason may be that the depression suffered by
an individual is a probabilistic event (7% - 75%). Prodromal
stages of schizophrenia are usually diagnosed using SIPS.
In this study, the severity of schizophrenia was assessed using
SIPS in the UHR, HR and HC groups. The SIPS results
scored the groups as: UHR > HR > HC. Higher scores
represented greater risk for schizophrenia. The results indi-
cate that the SIPS scores became higher as mental condition
worsened. Therefore, we can infer from the clinical examina-
tions that clinical symptoms may become increasingly severe
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FIGURE 3. Spatial configuration of the six microstate classes (A-F) in the four groups (FESZ, UHR, HR and HC).

FIGURE 4. Statistical results of microstate parameters of the microstate classes (prdominant class D) in the four groups (FESZ, UHR,
HR and HC). ∗P < 0.05, ∗∗P < 0.01, and n.s. denote not significant. Error bars are the standard error of the mean (s.e.m.).

as schizophrenia progresses in schizophrenic patients and
individuals at risk.

Cognitive deficits are a core feature of schizophrenia.
Individuals at risk also have cognitive deficits [31]. We inves-
tigated cognitive functions in the four groups (FESZ, UHR,
HR and HC) using the MCCB. We found that in most
tests (e.g. trail making test, continuous performance test),
the results were scored in the order: FESZ < UHR < HR <
HC. FESZ patients exhibited performance in all cognitive
tests that was worse than HC. These tests evaluated some
functions, including attention, working memory, social func-
tions, perceptual function and motor function [51]. We only
included drug naive participants, thus the effects of antipsy-
chotics drugs on cognitive outcomes was excluded. Individu-
als that were UHR of schizophrenia had significantly poorer
performance in several cognitive tests than HC, including

the trail making test, symbol coding test, digit span test and
some other cognitive tests. However, UHR individuals did
not exhibit a significant difference in working memory or
social cognition compared to HC. The cognitive results of the
HR group were different from HC only in a limited manner.
Moreover, total MCCB scores ranked in increasing order
were: FESZ < UHR < HR < HC. Lower scores represent
worse performance. These results suggest that cognitive
deficits gradually increase as the disease progresses, support-
ing the staging model of psychosis. In addition, the cognitive
results indicate that most impairments of cognitive function
are apparent from the UHR stage.

In the present study, EEG signals were recorded from
128 EEG electrodes which were placed based on the inter-
national 10-20 system using the 128-channel HydroCel
Geodesic Sensor Net. The 128-channel HydroCel Geodesic
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TABLE 5. Classification results based on SVM, random forest and LSTM
algorithms using behavioral features, and combined features to separate
the four groups (FESZ, UHR, HR and HC).

Sensor Net covered the entire scalp in sufficient density to
ensure that all relevant data were captured. After EEG pre-
processing, the 128-channel cleaned EEG data were analysed
using the standard EEG microstates analysis pipeline. EEG
microstates are defined as global patterns of scalp poten-
tial topographies recorded using multichannel EEG electrode
arrays which changes dynamically over time in an orga-
nized manner [26], [52]. Using modified k-means cluster-
ing, these scalp potential topographies were clustered into
mean EEG microstate classes. Extensive EEG studies have
found that during rest and task execution, EEG microstate
maps fall into four standard classes [26], [29], [30]. The four
microstate classes demonstrate right-frontal to left-posterior
(microstate class A), left-frontal to right-posterior (microstate
class B), midline frontal-occipital (microstate class C), and
fronto-central maximal (microstate class D) activity and are
quasi-stable for approximately 80–120 milliseconds [34].
Moreover, these four microstate classes have been exhibited
to be relatively consistent across participants (in both health
and disease) and throughout the lifespan [33]. Here, using
the cross-validation criterion [25], [36] inserted in the Cartool
toolbox, we found that the optimal number of EEGmicrostate
maps was 6 among the four groups, which suggested that
4 microstate classes may be not sufficient to describe the data,
and 6 cluster maps optimally explained the data. High spatial
correlation coefficients indicate that the microstate classes
were similar among groups.

Consistent with previous studies [28]–[30], [47], [48],
[53], [54], we found significant differences in EEG
microstates in FESZ patients and individuals at risk com-
pared to HC. EEG microstate analysis has been increasingly

used for investigation of the spatial and temporal properties
of resting-state networks in health and disease [26], [55].
Actually, there are various methods for investigating net-
works in a resting state during which the brain is considered
inherently active in an organized manner in order to be opti-
mally prepared for processing incoming stimuli [56]–[58].
Functional magnetic resonance imaging (fMRI) has been
used for interpretation of resting state networks in the
correlation between blood oxygen-level-dependent (BOLD)
fluctuations in different brain areas [59], whereas EEG
measures correlations between fluctuations in amplitude of
oscillation activity in different regions of the brain [60].
Compared to fMRI, EEG is a direct measurement of the
dynamics and synchronous polarization in spatially-aligned
neurons [26]. Furthermore, EEG is much less expensive.
Using 128-channel high-density EEG, we ascertained the
global topography of momentary activity of the brain with
high temporal resolution. The topography remains stable
for approximately 80 to 120 milliseconds (ms), so EEG
microstates comprise periods of quasi-stability [61], [62].
We applied resting-state EEG microstate techniques in FESZ
patients, UHR individuals, HR individuals and HC. Previous
studies [29], [37] have demonstrated that four microstate
classes (A, B, C and D) are optimal across participants.
We found that six microstate classes (A-F) were sufficient
to describe the data of schizophrenia and its risk state. We
demonstrated the spatial configuration of the six microstate
classes (A-F) in the four groups (FESZ, UHR, HR and HC),
and found a stable pattern in eachmicrostate class, in addition
to consistent topography of the six microstate maps in the
four groups. These findings indicate that resting state EEG
microstates may be cost-effective indicators of brain activity
in patients with schizophrenia, individuals at risk and HC.

Furthermore, we calculated microstate parameters of the
six microstate classes (A, B, C, D, E and F) in the four
groups (FESZ, UHR, HR and HC), including duration, occur-
rence and time coverage. Microstate class D exhibited the
most predominant differences among groups. Previous stud-
ies have suggested that microstate class D is related to the
attention network and may result in a progressive attach-
ment of mental states from internal and external information
input [26], [63]. Compared to HC, FESZ patients exhibited
significant differences in time coverage of class D. Time
coverage in UHR individuals were also significantly different
in class D. HR Individuals showed no significant differences
in time coverage of D. In addition, the other three groups
showed significantly lower duration in microstate class D
than the HC group (in the order: HC > HR > UHR >

FESZ).Many studies [29], [30], [47], [48], [53] have reported
reduced duration of class D in patients with schizophrenia,
and an improvement in psychotic symptoms through drug
administration that prolongs class D [47]. We also found that,
compared to the HC group, the HR, UHR and FESZ groups
exhibited successively decreased occurrence of microstate
class D. Previous studies have found that antipsychotic med-
ication can increase the occurrence of microstate class D
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in patients with schizophrenia [47]. Thus, abnormalities in
microstates D possibly representing potential biomarkers for
diagnosis of neuropsychiatric and neurodegenerative disor-
ders (e.g. schizophrenia).

In addition, we explored the role of behavioral indicators
and combined features (including both behavioral indicators
and EEG microstate parameters) as diagnostic markers in
the classification of the four groups (FESZ, UHR, HR, and
HC). Currently, the diagnostic methods of schizophrenia and
high-risk population are on the basis of essentially subjective
psychiatric interviews [64]. The lack of disease biomarkers
that support objective laboratory testing has been a long-term
bottleneck in clinical diagnosis and evaluation of schizophre-
nia. Previous clinical studies have shown that early interven-
tion can reduce disease progression and improve treatment
outcomes [65]–[67]. The establishment of biomarkers will
contribute to early disease prevention and thus improve
prognosis. In this study, three classification models (SVM,
random forest, and LSTM) were used to classify the four
groups (FESZ, UHR, HR, and HC) based on the behav-
ioral features and combined features. The classification
performance (measured by average classification accuracy,
sensitivity and specificity) was relatively lower only using
behavioral features than using the combined features, which
indicate that EEGmicrostate parameters together with behav-
ioral indicators may be potential objective biomarkers for
prediction of schizophrenia. Moreover, classic deep learning
algorithms SVM and random forest achieved better per-
formance than the LSTM deep learning algorithm, which
may be due to the following reasons. First, our sample
size is small which may be not suitable to apply the deep
learning approaches. We only had 65 participants including
4 groups (FESZ, UHR, HR and HC), and each participant
had 5 minutes resting state EEG data, whereas deep learning
approaches usually require large sample size to achieve
good results [68]. Second, one of the biggest benefits of
deep learning over various machine learning algorithms is
its ability to automatically extract features, but deep learn-
ing have obstacles, such as the lack of quality training
data and poor interpretability [69]. Here, we defined EEG
microstates-related features and behavioral features (e.g.,
cognitive measurements) which had good interpretability.
Third, EEG data is one-dimensional data with a low signal-
to-noise ratio (SNR), making EEG data different from other
types of data (e.g., images, text and speech) for which deep
learning has beenmost successful [68]. Furthermore, all three
classifiers predicted the schizophrenia and risk group with
relative high accuracy. Additionally, the random forest classi-
fier outperformed the SVM and LSTM classifiers in predict-
ing FESZ, UHR, HR and HC groups. Our results suggest that
these groups can be partly attributed to distinct resting-state
EEG microstates alterations. Extracting the most predictive
features in the random forest classification indicates that ran-
dom forest is suitable to predict schizophrenia, and different
parameters in EEG microstates (especially class D) were

informative for the classification of schizophrenia and risk
group.

EEG and related measures have been used as putative
biomarkers for schizophrenia prediction. Different signal
processing methods have been proposed to contribute to bet-
ter understanding of schizophrenia, including ERPs, EEG
power spectrum, EEG oscillations, EEG connectivity, inde-
pendent component analysis (ICA) and principle component
analysis (PCA) [15], [70]–[74]. However, these methods are
often used in two-class classification studies (e.g., distinguish
schizophrenia patients and healthy controls), and there are a
few studies using these methods to monitor the progression
of schizophrenia. Most of these methods have achieved clas-
sification accuracy, sensitivity and specificity below 0.8 in
separating schizophrenia patients from HC [70]–[73]. In the
current study, EEG microstates were used for discriminat-
ing schizophrenia progression, and we found that microstate
class D showed most predominant differences in schizophre-
nia patients and risk populations. We also obtained higher
than 66% of classification accuracy, sensitivity and speci-
ficity in the four-class classification (FESZ, UHR, HR and
HC). These results indicate that EEG microstates may be
promising biomarkers for schizophrenia prediction.

Our findings suggest that the combined features which
included MCCB tests, CDSS examinations and EEG
microstates, especially the dynamics of microstate class D
are candidate biomarkers for schizophrenia and risk groups.
Previous studies have found that EEG microstates are
highly reproducible [23], and abnormal dynamics of EEG
microstates are consistently identified in patients with
schizophrenia [23], [26]. However, few studies have applied
EEG microstates to schizophrenia risk groups. For biomark-
ers, it is important that ultra-high risk (UHR) and unaffected
relatives/ high risk (HR) individuals also show abnormalities,
pointing to the genetic underpinnings of schizophrenia [23].
To our knowledge, this is the first study to reveal that
EEG microstate class D was significantly different among
patients with FESZ, individuals with UHR and HR, and
HC. Our findings suggest that microstates D captures some
of the genetic components that are shared by patients with
schizophrenic and those at risk. The biomarkers also provide
an opportunity for early diagnosis and intervention for the
risk population. Because the dynamic of microstates can be
changed by transcranial magnetic stimulation (TMS) [75]
and neurofeedback [76], the findings open the way for the
development of new therapies for schizophrenia.

These combined features are relevant physiologically.
Meta-analysis studies have found that abnormalities in
EEG microstates have been related to schizophrenia with
medium effect sizes [63]. Previous studies support the notion
that EEG microstates can provide information of potential
clinical value and are thought to be useful for monitor-
ing schizophrenia [63]. A negative correlation was found
between the schizophrenia symptoms and EEG microstate D
duration [47]. Shortening of microstate D correlated with the
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TABLE 6. Behavioral performance of the four groups (FESZ, UHR, HR and HC) in THE MCCB tests.

hallucinations in schizophrenic patients with auditory verbal
hallucinations [77]. Regarding the relationship between cog-
nitive features and EEG microstate features, microstate D is
due to flexible changes in attention, and related to the fron-
toparietal attention network [37]. Moreover, EEGmicrostates
can be influenced by cognitive training. For example, the per-
centage of time spent producing microstate D has been
increased after neurofeedback intervention [76]. Therefore,
the cognitive, clinical and microstate features are relevant
physiologically.

It appears quite natural that people at a more advanced
stage of schizophrenia showed more remarkable cognitive
impairments and poorer clinical performance. As the disease
progresses, the cognitive deficits and clinical symptoms
gradually increase. The cause of schizophrenia remains
unknown [1]. According to a neurodevelopmental model
of schizophrenia [1], the developmental trajectory of
schizophrenia may include excessive pruning of excitatory
pathways and reduced elaboration of inhibitory pathways,
resulting in altered excitatory–inhibitory balance in the pre-
frontal cortex. Reduced myelination would alter connectiv-
ity [1]. This model divides schizophrenia into four stages,
including HR, UHR, FESZ and chronic schizophrenia, with
more sever clinical symptoms and cognitive deficits as the
disease progresses [1]. Furthermore, EEG microstates (espe-
cially class D) change as the disease progresses, which may
be because the abnormal microstate dynamics in schizophre-
nia are considered as an imbalance between processes that
load on saliency, which are increased, and processes that

integrate contextual information (microstate class D), which
are reduced [23]. Thus these features change due to the
change in the condition.

V. CONCLUSION
Schizophrenia has been considered a neurodevelopmental
disorder, the neurodevelopmental model [1] having divided
the trajectory of schizophrenia into four different stages,
comprising HR, UHR, FESZ and chronic disability stages.
In the present study, we recruited four groups of individuals
at different stages of schizophrenia. The biomarkers used
for the prediction of schizophrenia are combined biomark-
ers including behavioral examinations and EEG microstates
parameters. Specifically, the combined biomarkers consist
of resting-state EEG microstates (including duration, occur-
rence and time coverage), cognitive measures (including
MCCB tests) and clinical examinations (including CDSS
tests). The average classification accuracy, mean sensitivity
and mean specificity of the four groups were higher on the
computation of combined features extracted from behavioral
indicators and EEG microstates than only using behavioral
features, especially when using the random forest model.
We also found six optimal cluster maps across the groups.
The results may indicate that certain abnormalities in behav-
ioral and EEG microstates (especially in microstate class D)
may be associated with the progression of schizophrenia.
These abnormalities may become biomarkers for prediction
of schizophrenia, which raises the possibility of postponing
or even preventing the onset of schizophrenia, decreasing the
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severity of the disease and ameliorating the circumstances of
the individual, their family and social consequences.

.

APPENDIX A
See Table 6.

APPENDIX B
See Fig. 5.

FIGURE 5. A behavior-brain model of schizophrenia diagnosi. To explore
biomarkers of schizophrenia, we computed and compared the average
classification accuracy of the four groups (FESZ, UHR, HR, HC) based on
behavioral features and combined features extracted from both
behavioral measures and EEG microstates. The biomarkers which were
used for predicting schizophrenia included behavioral examinations
(e.g., MCCB, CDSS) and EEG microstates (e.g., duration, occurrence and
time coverage).
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