IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 12, 2020, accepted October 26, 2020, date of publication November 16, 2020, date of current version December 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037731

Deployment and Analysis of a Hybrid
Shared/Distributed-Memory Parallel
Visualization Tool for 3-D Oil Reservoir Grid on
OpenStack Cloud Computing

ALI A. EL-MOURSY ", (Senior Member, IEEE), FADI N. SIBAI'“2, HANAN KHALED?,
SALWA M. NASSAR3, (Member, IEEE), AND MOHAMED TAHER 4

! Computer Engineering Department, University of Sharjah, Sharjah, United Arab Emirates

2College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia
3Electronics Research Institute, Cairo 12622, Egypt

4Department of Computer and Systems Engineering, Ain Shams University, Cairo 11566, Egypt

Corresponding author: Ali A. El-Moursy (aelmoursy @sharjah.ac.ae)
This work was supported in part by the Cloud Computing Center of Excellence under Grant 5220, in part by the Science and Technology

Development Fund (STDF), Egypt, and in part by the Distributed and Networked Systems Research Group, University of Sharjah, United
Arab Emirates, under Grant 150410. Through those grants the Cloud system is established to perform the experiments and simulations.

ABSTRACT The main goal of oil reservoir management is to provide more efficient, price-effective and
environmentally more secure oil production. Oil production management includes an accurate characteriza-
tion of the reservoir and strategies that involve interactions between reservoir data and human assessment.
Hence, it is important to graphically visualize and handle massive data sets of oil and gas pressure / saturation
levels to help decision makers in statistical analysis, history matching and recovery of hydrocarbons of the
reservoir. In this article, we experimentally study the parallelization of intensive computation for a 3-D (three
dimensional) oil reservoir data visualization tool. For this tool, we develop and implement a transformation
and lighting model to visualize and react with the grid. Herein, we propose a hybrid (shared memory and
distributed memory) parallelization technique to adapt with the data processing scalability. We tested these
implementations on OpenStack Cloud Virtual Cluster. Our results indicate that although the virtual platform
adds overhead for running parallel implementations, utilizing knowledge of the VM location on the compute
host and network traffic among VMs to deploy the virtual environment can achieve significant performance
enhancements. Hybrid parallel implementation using large data size can achieve 70x speedup over serial
execution without owning a costly HPC infrastructure as the conventional parallel processing deployment
model.

INDEX TERMS Cloud computing, data visualization tool, HPC, hybrid (distributed/shared)-memoryparallel

programming, MPI, multi-threading, OpenStack.

I. INTRODUCTION

Cloud computing has been rapidly developing its level of
maturity and popularity, and has provided to researchers a
large pool of computation resources for High Performance
Computing (HPC) applications at possibly low cost [1].
Cloud computing encompasses computer networks and vir-
tualization technologies which can facilitate both remote

The associate editor coordinating the review of this manuscript and

approving it for publication was Jing Bi

computing resources interaction and workload management.
Aside from the technical concepts, Cloud computing offers
a commercial enterprise model as customers pay for the
demanded resources in contrast to conventional HPC plat-
forms. In cloud computing, customers can swiftly modify
their pool of resources, via elasticity mechanism [2] (one of
the cloud computing characteristics), based on the infrastruc-
ture size controlled by the Cloud Service Provider (CSP) [1].
Authors in [3] show three usage scenarios for HPC with
cloud computing; i. HPC over Cloud platform; focused on

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

212280

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 8, 2020


https://orcid.org/0000-0002-3660-6544
https://orcid.org/0000-0002-9677-8911
https://orcid.org/0000-0002-4808-4018
https://orcid.org/0000-0002-4610-0141

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

moving HPC programs totally to a private/public cloud com-
puting environment which is called Infrastructure as a Service
(IaaS). ii. HPC with Cloud platform; focused on using the
Cloud to complement HPC resources to support application
workloads such as heterogeneous requirements and unex-
pected demands. iii. HPCaaS (HPC as a service); emphasised
on offering HPC via Cloud services using demand elasticity
of the Cloud platform by merging the resilient access of the
cloud computing environment with the HPC performance
environment [4].

As the computation power of hardware infrastructure
increases, researchers are running more complicated applica-
tions that may utilize a large number of computing resources
and generate huge amounts of data. It is hard to automate
parallelization for scientific applications due to the cus-
tomized performance analysis needed to identify execution
time hotspots and the performance tuning needed to uti-
lize the underlying computation capability [5], [6]. Recent
research in parallel processing indicates that deep algorithm
analysis and investigation are inevitable to tune the perfor-
mance of the parallel implementation. The performance of the
parallel implementation for different scientific applications
depends on the application design and the used platform.
For shared memory applications, compiler capability such as
OpenMP is not efficient to parallelize complex applications
automatically due to dependencies either in data or in tasks.
For distributed memory applications, there are no tools yet
developed for auto-parallelization [7]. Furthermore, combin-
ing both parallel processing paradigms (shared-memory and
distributed-memory) is extremely challenging for auto paral-
lel tools. One of the applications which needs parallelization
in the field of reservoir engineering is a 3-D oil reservoir
data visualization tool which can render and visualize the
output data of the reservoir simulator such as pressures and
saturations in a 3-D environment to assist the decision maker
in statistical analysis, historical matching and recovery of
hydrocarbons of the oil reservoir.

The focus of this article is the hybrid shared/distributed
parallel implementations of an oil reservoir data visualization
tool, deployment on Virtual Cluster (VC), and conducting
a comparative analysis of the performance to enable users
of the tool to use a virtual platform instead of bare-metal
one.

The contributions of this article are:

o Developing hybrid shared/distributed parallel imple-

mentations of an oil reservoir data visualization tool.

« Deploying Virtual Cluster (VC) over OpenStack Cloud
and studying the performance of the 3-D oil reservoir
data visualization tool on this virtual cluster.

« Providing comparative and quantitative analysis for var-
ious virtual hardware resources (VCPU or Virtual net-
work ) using the shared and distributed parallel oil reser-
voir data visualization tool for different cases of VCPU
deployment.

o Analyzing and comparing the performance between
HPC as a dedicated hardware platform [8] and VC as

VOLUME 8, 2020

a virtual platform for the parallel oil reservoir data visu-
alization tool.

The rest of the paper is structured as follows. Section II
presents the related work. Section III describes the serial oil
reservoir data visualization tool. The parallel implementation
is depicted in section I'V. Section VI discusses some concepts
of OpenStack Cloud. Section VII describes the experimen-
tal platforms. Section VIII discusses results and analysis.
Finally, the article is concluded in section V.

Il. RELATED WORK

HPC experts have leveraged the benefits of new technology
trends including, parallel processing and cloud computing
technologies. Researches and studies have begun showing
the feasibility of running HPC applications on the remote
resources of cloud computing. Authors in [9] used two bench-
marks of the SPECMPI suite [10] in addition to two Parallel
benchmarks of the NASA benchmarks [11] as the workload
to analyze their performance model. They predict the perfor-
mance of MPI applications on Cloud bare-metal multi-core
machines, achieving, on average, 86% accuracy for the used
benchmarks.

Software Defined Networks (SDN) [12]-[14] is a new
technology to manage the Virtual Networks through Software
controller as a replacement for the physical routers controls.
SDN separates the data plane from the controller plane of the
network to allow much flexible and dynamic network man-
agement in the virtual Networks. Authors in [15] used two
Hypercube and Mesh multiplication algorithms, to evaluate
the performance of distributed HPC model over OpenStack
cloud under SDN infrastructure. A simple Matrix by Matrix
multiplication is used as the benchmark for the study with
no real application is evaluated. While authors [16] in focus
in multi-application scenarios trying to enhance revenues.
No parallel applications are considered in their study. The
authors in [17] and [18] study the performance impact of
OpenFlow (a well-known SDN implementation) on the Mes-
sage Passing Interface (MPI) collective communication. SDN
is proposed to support the dynamic nature of the virtual
servers and networks. Although SDN is utilized in enhancing
the network performance of HPC on Cloud, we do not con-
sider it in our research in this article for many reasons. The
research in the SDN is kind of orthogonal to our work since
we explore visualization performance components and focus
on the computation load distribution rather than the network
routing. Our assumption is a dedicated Cloud platform to run
HPC which much less sensitive to the Network routing com-
pared to a typical Cloud system utilized by different flavors
of workload mix running HPC and non-HPC concurrently.
Our system is solely utilized by our parallel application. The
impact of SDN is more elaborated in large virtual Cluster
Network where the efficient routing is a crucial component
in the system utilization.

Another approach is presented in [19] for estimating the
cloud preparedness for parallel applications. The authors

212281



IEEE Access

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

reported that native cloud and parallel applications design
have inconsistent goals since native cloud applications are
throughput-based. In contrast, parallel application design
aims at headstrong performance enhancement in terms of
parallel efficiency and speedup. The authors’ approach advo-
cated the migration of parallel application to the cloud
depending on the parallel design. Authors in [20] used two
HPC benchmarks, the HPC Challenge (HPCC) and the High
Performance Conjugate Gradient (HPCG), to estimate the
performance of Azure and AWS cloud platforms. They con-
cluded that it is better to test the application on the desired
Cloud platform to determine the suitable platform. Open-
Stack over KVM (Kernel-based Virtual Machine) [21] hyper-
visor provides the best virtualized CPU according to [22]
which analyzed the virtual CPU performance based on KVM
hypervisor for three open source Cloud middleware: Apache
CloudStack [23], Eucalyptus [24] and OpenStack [25]. The
configuration of KVM on each Cloud platform provides sev-
eral abstractions of the underlying CPU hardware that has its
impact on the performance of the running programs. All the
above-mentioned researches depend on benchmarks to test
the Cloud environment for running parallel processing, but
this article focuses on a real parallel application with GUI
overhead to test the performance of the Cloud. In addition,
most of the above-mentioned studies estimate HPC appli-
cations on public Clouds with lack of knowledge of the
underlying hardware infrastructure to conduct fair analysis.
Hence, this study targets the deployment of a parallel 3-D
oil reservoir data visualization tool over an OpenStack Cloud
utilizing the KVM hypervisor.

IIl. SERIAL OIL RESERVOIR DATA VISUALIZATION TOOL
The data grid of the oil reservoir visualization tool con-
sists of individual cube-shaped cells. Pressure, oil and water
saturation values are generated from a serial oil reservoir
simulator [26] and then mapped against a color set to visually
represent a single cell (grid point). The tool also has buttons
for forward, playback and rewind to allow the user and to
visualize the grid at a specific time for checking the produced
data. Each interaction renders a day of simulation hence any
pressure or saturation value changes are emphasised with a
color changing on the grid. The user can choose any cell on
the grid and check on a specific day the values of pressure
and oil or water saturation. The final output of grid rendering
for oil saturation data of grid size 10 x 10 x 8 is shown in
Fig. 1.

The Transformation and Lighting Models are at the heart of
the oil reservoir data visualization processing. Hence, we will
discuss them in more details in the following subsections.

A. TRANSFORMATION

In the visualization tool, transformation of an object in 3-D
environment consumes significant computation power for
matrix manipulations in translation, rotation, and camera
matrices. Translation [27] is a kind of displacement of an
object in the 3-D space to a new position, thus moving the

212282

FIGURE 1. Data grid rendering.

object depending on a vector of translation; Rotation [27]
is intelligent combinations of sine and cosine with an angle
in radians or degrees for each unit axis (X, Y or Z) in 3-D
space; and camera [28] for freely moving in a 3-D scene.
We consider the following vectors to implement camera fea-
tures: Camera position, Camera direction, Camera up vector
(vector of the y-axis) and Camera right vector (vector of the
x-axis). The camera matrix is given by:

rightVectorx  rightVectory  rightVectorz 0
upVectorx upVectory upVectorz 0
zVectorx zVectory zZVectorz 0
Originalx Originaly Originalz 1

The camera materix depends on vectors in 3-D dimension (X,
y and z) where Original is the vector of the camera position
in the world space. zVector is the vector of camera direction
looking at. upVector is the vector pointing upwards from
the camera. rightVector is the vector pointing to the right
direction of the camera.

B. LIGHTING MODEL

Lighting is highly complex in the natural environment and
depends on too many aspects. Therefore, lighting in the
simulation setting is based on reality approximations using
simpler models which are much easier to handle and look
closer to reality [29]. Our model uses the Basic Per-Vertex
Lighting Model [30]. The light per vertex is calculated, and
the shading model smoothens out the region color. The color
of each vertex relies on ambient, diffuse and specular lighting
terms. Each term depends on the combination of the surface
material properties, the properties of light source (such as
color and position of light) and location of the viewer. The
general Eq. 1 describes the Basic Per-Vertex Lighting Model:

Color_Vertex = Diffuse + Specular + Ambient )

Next, we discuss the components of Equation 1.

Ambient Lighting: The ambient component repre-
sents light that has rebounded around the scene that returns
from the surrounded area [31]. Since there is no direct source

VOLUME 8, 2020



A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

of light, the ambient intensity component is simplified by the
ambient light color scaled by the property of the ambient
material. The formula for ambient component is given by
Eq. 2:

Ambient = ambientface * ambientig, 2)

Diffuse Lighting: The diffuse component repre-
sents direct light reflected in all directions equally from a
surface [31]. The intensity of diffuse component relies on the
incident light angle and can be represented as a dot product
between surface normal vector and the surface towards light
vector. The formula for diffuse component is given by Eq. 3:

Diffuse = diffuseg,fac, * diffusejjg, * max (n.,0)  (3)

where [ is the normalized vector toward the light source and
n is the normalized surface normal.

Specular Lighting: The specular component repre-
sents light scattered all around the mirror direction from a
surface [31]. The specular intensity term relies on the viewer’s
position relative to the surface. The viewer will not see a
specular highlight on the surface if the viewer is not at a
place that receives the reflected rays. The formula for specular
component is given by Eq. 4:

Specular = specularyyface * specularygn
* (max (n.h, 0))brightness @)

where n is the normalized surface normal, % is the normal-
ized vector which is halfway between the normalized viewer
vector and the normalized light source vector.

We note that all lighting model equations need the normal-
ized surface normal. In the proposed lighting model, we need
to calculate the normalized surface normal for each and every
vertex/cell of the grid as follows: i. surface normals for every
triangle which can make up the cell are calculated; ii. the sur-
face normals of shared triangles for every vertex are averaged
out; iii. the final average normal is normalized for each vertex.
Egs. 2, 3 and 4 are combined to give a single vertex final color
value, provided by Eq. 1.

To implement t ransformat ion (such as grid Zooming
in/out or Rotation): i. Model_View matrix is generated by
multiplication of the following three matrices: a. camera
matrices which consist of the previously mentioned vectors
to support three functions: Moving forward, Moving back-
ward by increasing and decreasing forward vector (Z-axis)
values and Rotation camera around Y-axis by changing right
vector and forward vector values; b. translational matrix c.
rotational matrix; ii. Each vertex is multiplied by the created
Model_View matrix to get the new vertex position where
transformation calculation is shown in Figure 2. To imple-
ment Lighting Model: Surface normal should be calcu-
lated and is initially computed when the data grid is loaded
to avoid repetition of computation of the surface normal
during each transition through the following steps: i. compute
surface normal for all triangles of each cell, where the sur-
face normal for a triangle can be calculated by creating two

VOLUME 8, 2020

Transformed Vertex= Current

Vertex Position™ Model_view
- matrix

Get Transitional, Rotational,
Camera matrices

I

Calculate Model view
matrix

No

vertices
number
finished

FIGURE 2. Transformation steps.

G > :

Determine the vector between a
vertex & light source

Calculate Surface Normal J/

Jf—

Transform Surface Normal

Calculate the Resultant Color

vertices

number

finished
?

Get the absolute values of color
components using Mapping
function

FIGURE 3. Ligting model steps.

triangle vectors using each of the three vertices and obtaining
a two-vector vector product; ii. Average out surface normal
of triangles which share the same vertex. The above two
steps produces the surface normal for each vertex then the
vertex is lit using the Basic Per-Vertex Lighting Model. For
each transition, the surface normal for the transformed ver-
tex depends on the original surface normal and transformed
matrix according to the following procedure to obtain the
parameters for each color component:
1) The surface normal for each vertex is transformed and
is normalized.
2) Using mapping function, specular, diffuse and ambient
color values are calculated for every vertex.
3) The vector between any vertex and source of light is
determined as well as the vector between the vector to
the viewer and the vector to the source of light.

Then, by using Egs. 1, 2, 3 and 4, the resultant color is derived
for each vertex as shown in Figure 3. Finally, the new vertex
positions for the whole grid are drawn and the resultant color
values for each vertex are passed to OpenGL [32], [33].

IV. PARALLEL ALGORITHM AND IMPLEMENTATION

The first goal of our study is evolving parallel methods for
visualization of serial oil reservoir [34] to allow a real-time
processing of the data, smooth and fast data processing by
the analyst, and to promptly adapt to any data changes in the
oil reservoir simulator (pressure, oil and water saturation).
The oil reservoir visualizer allows the user to load the data

212283



IEEE Access

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

of the 3-D grid and sketch each cell, and enter the data for
each block of the oil reservoir. Adjacent cells along the X
axis direction forms a full row. The group of adjacent rows
along the Y axis direction forms one full plane. Moreover,
the adjacent planes along the Z axis direction form the whole
3-D Grid.

Execution time analysis is performed to check the serial
implementation hotspots of the Visualization application
using Gprof (GNU profiler) tool which is used for per-
formance analysis of Linux/Unix applications [35]. This
analysis provides the relative execution time of each task,
which is an essential indicator of the application hotspots
to explore the parallelization opportunities. The tool com-
putation load is splitted into two main tasks: visualiza-
tion (necessary functions for grid computations and ren-
dering) and, Main_Window (necessary functions for GUI
events). Main_window tasks cannot be parallelized due to
GUI events and tasks are sequential by nature since multi-
ple GUI events cannot be executed at the same time. Thus,
we focus on visualization tasks as shown in Figure 4 espe-
cially m3dNormalize Vector and CalculateLight (transforma-
tion and Lighting essential functions) which have prominent
percentages with respect to the whole execution time of pro-
gram. The remaining routines consume smaller quantities of
execution time (from 5% to 10%). The remaining functions
do not only have little relative execution time but additionally
have a high degree of data dependency causing very frequent
data exchanges among the processing elements. Accordingly,
any aggregate performance gain from the parallelization of
the remainder tasks could be a source of considerable com-
munication overhead.

The Master_Slave (MS) model is among the most
popular paradigms for parallel applications. In this model,
one processing element known as the master is responsible for
executing the optimized functions and distributing the heavy
work among slave processing elements. The main advantage
of the MS parallel model is the ability to balance the load
among the slaves [36]. Due to the nature of the proposed
data visualization application, the MS model fits well the
oil visualizer simulation implementation since the tool is
divided into two basic tasks, GUI and processing of the grid
data. The master processing element will be responsible for
executing GUI routines and its events (such as uploading data
or navigation across days) and the data is distributed among
the slave elements to calculate heavy computation (trans-
formation and lighting model), then the overall results are
gathered by the master. Lighting and transformation kernels
are iterative routines as shown in Figures 2 and 3. In each
iteration, a set of calculations is executed on each vertex for
each cell to get the final transformation and color during user
interaction.

A. DATA DECOMPOSITION APPROACHES

The 3-D grid data is either pressure, or saturation levels
of oil or water for blocks of the reservoir. Each block is
represented by a cell in the proposed data visualization tool,

212284

21.36%
640000x

Calculate light (float const* (Cell:Draw (float const*)j Cell set vertice (int,
[float const* 5.00% float, float, float,)
[float const* float const* (0.00%) 9.17%
[float const* light struct) 160000x (5.00%)
21.36% 640000x
10.00%
640000x

M3d normalize Vector point f3D::Draw point f3D::set
(float*) (float const*) position (float,
25.00% 5.00% float, float)

(10.00%) (5.00%) 5.00%

1408000x 2880000x (5.00%)

768000x

M3d Get vector
length(float const*)
15.00%
(10.00%)
1408000x

5.00%
1408000x

M3d Get vector length
square(float const*)

5.00%
(5.00%)
1408000x

FIGURE 4. Call diagrams and relative execution times for visualization
task.

and each cell consists of eight vertices. For each vertex,
lighting model and transformation routines are calculated to
color and transform its cell. Hence, the same routines are
executed MAXX*MAXY*MAXZ* 8 times on different data
with each grid transaction where MAXX, MAXY and MAXZ
represent the grid size in x, y and z directions, respectively.
We found that the best fitting parallel technique is Single
Program Multiple Data (SPMD) since the same functions are
executed for each vertex.

Our parallel implementation method consists of a sequence
of three phases: loading, calculation and gathering. In the
loading phase, the data is divided among the processing
elements (threads or nodes), then every processing element
executes needed calculations on its data. Finally in the gather-
ing phase, the final output values are collected in master/main
processing element to draw the final results.

Our parallel technique for 3-D oil reservoir data visu-
alization tool has the following advantages: i. Scalability,
our parallel implementations scale properly with increasing
data size and increasing number of processing elements; ii.
Decreasing communication overhead, by gathering all data
when all processing element complete their calculations.

According to the grid creation nature in the tool, Two par-
allel data decompositions can be implemented: coarse grain
data decomposition and fine grain data decomposition. In the
coarse grain data decomposition, each processing element
computes Lighting and transformation routines on one plane

VOLUME 8, 2020



A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

Grid Size = [31[41[6]

=5 (0 &6
/9 &8

If No. of Processing Unit (PU)=12
d PU/Plane=12/6=2 1 -
1 Rows number/PU = 4/2 =2 I:i:i:l I
Y z
L -X
SESp==S ==
I P 1T 1  — — 7
13 cr—t 79 139
If No. of Processing Unit (PU)=18
PU/ Plane=18/6=3
Rows number/ PU = 4/3=1 i i | ||:||:||:! |:‘:|:!
Row Remainder/ plane=1 ] 7

FIGURE 5. Fine grain (2D) data decomposition.

Grid Size = [3][4][6]
If No. of Processing Unit (PU)=3
Plane(s) number/ PU= 6/3 =2 &2

Y % IfNo.of PU=4
X Plane(s ) number/ PU = 6/4 =1
Remainder =2

If No. of PU=6
Plane number/ PU= 6/6=1

FIGURE 6. Coarse grain (1D) data decomposition.

of the 3-D grid at least. In the fine grain data decomposition,
parallelization is executed on the level of plane since every
processing element can manage one or more cells. Assigning
cell operations to the processing elements (nodes or threads)
in adjacent chunks of cells (row wise, 2D or fine grain data
decomposition) as shown in Figure 5, or adjacent rows (plane
wise, 1D or coarse grain data decomposition) [37] as shown in
Figure 6, is the most efficient assignment to avoid sparse data
processing and achieve a more optimized communication
handling.

B. PARALLEL IMPLEMENTATIONS

The parallel implementation depends on the underlying
infrastructure of the hardware system. Typically two models
are utilized, shared memory and distributed memory. Each
of these models has its advantages and drawbacks. In shared
memory architecture, shared address space among process-
ing elements provides the ability to develop programs effec-
tively since the software engineer does not need to explicitly
exchange messages among processing elements (send and
receive) for data sharing. Furthermore, shared address space
is characterized by the uniform data among threads due to
relative short distance between CPUs and memory. How-
ever the system scalability is limited. The shared memory
model drawback is the lack of CPUs scalability as growing
numbers of CPUs can increase the traffic on the shared

VOLUME 8, 2020

Master
Node

N I 1 ﬁ

LV

MPl-node; ||| MPI-node, wnee | [ | MP1-nOAEp1aneiurs
MPJ-COMM_WORLD
(a) Logical communication
Slave Node2
Master Node

1. Receive the data from master node.
2. Receive new Model_View Matrix.
3. working on its planes:

1. Load GUI Main-Window.

2. Read oil reservoir data (grid data)
3. Broadcast the data to Slave Nodes.
4. Broadcast Model_View Matrix.

5. Gather Transformed Vertex »{ a- Calculate new TransformedVertex for all its

6. Gather ResultantColor. data chunk.
7“ D:mlfrlhee sg‘:idén oler b- Calculate new Resnl:ltaﬂl:t(‘olor for all its data
chunk.

4- Send all new TransformedVertex &
ResultantColor to master node.

e

e

Slave Node N

(b) Implementation details

\__—___/—_———\

FIGURE 7. Coarse grain data decomposition on distributed memory
model.

CPU-memory bus and congest data transmission. On the
other hand, distributed memory machines can be scaled in
terms of processor numbers. A network that connects the
far distant processing elements allows much more scalability
compared to the shared memory. However, in the distributed
memory model, data communication among processors is
much slower, highly dependent on the network speed, and is
carried out explicitly by the software engineer [38]. Detailed
parallel implementations of 3-D oil reservoir data visualiza-
tion based on different memory models, are proposed in the
following sections.
1) Distributed-Memory Implementation
First, the Model_View matrix and oil reservoir data are
broadcasted by the master node since this information
is accessible from GUI Main_Window after user trans-
action (such as uploading data, rotation or zooming).
Then the three phases; loading, calculating and gath-
ering are executed. Implementation of “coarse grain

212285



IEEE Access

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

Slave Node MaxPlane+1

> Semi_Master Node 1

Semi_Master Node 2
1- Receive the data from master node.
2- Recerve new Model View Matrix.
3- Join to its plane intra-communicator.
4- Join to grid intra-communicator.
5- working on its Rows:
a- Calculate new TransformedVertex for all

Slave Node MaxPlane+2

1- Receive the data from master node.
2- Receive new Model_View Matrix.
3- Join to its plane intra-communicator.
4- working on its Rows:

Master Node

1- Load GUI main-window.
2- Read oil reservoir data (grid data).
3- Broadcast the data to other nodes.

4- Broadcast Model View Matrix. its data chunk a- Calculate new TransformedVertex
-0 b- Calculate new ResultantColor for all its | > for all its data chunk.

5-Join to grid intra-communicator. |
6- Gather TransformedVertex
&ResultantColor values.
using intra-Communicator.

7- Draw the grid.

data chunk.
6- GatherTransformedVerte& ResultantColor
values using plane intra-Communicator.
7- Send all newTransformedVertex &

b- Calculate new ResultantColor for all
its data chunk.

5- Send newTransformedVertex &

S

ResultantColor to master node.

ResultantColor to its Semi_Master
node.

data decomposition approach” is shown in Figure 7
as in the “loading phase”, planes are circulated among
the slave nodes. In the “calculating phase”, every slave
node executes lighting and transformation kernels and
stores its final outcomes into local buffers. Finally, the
master node collects the final outcomes of lighting and
transformation models in the “gathering phase” to draw
the grid using rendering since the data transfer between
compute processors requires explicit communication in
the distributed memory techniques.

Implementation of “fine grain data decomposition
approach” is shown in Figure 8 as the rows are divided
among the slave nodes in the “loading phase” since
more than one node work in the same plane but on
distinct rows. A recursive (hierarchical) decomposi-
tion of the planes into rows is the most effective
way to split the rows between the nodes. This will
allow few node subsets to interact and partly col-
lect information to one node (semi_master) then this
node will send the collected data to the master node.
The MPI library supports this hierarchical strategy
through the capability of sub_communicators. This is
accomplished by using the MPI_Comm_Split func-
tion to create (MAXZ+1) intra-sub-communicators
from the (MPI_COMM_WORLD) (main communicator
of MPI). The GRID-COMM is utilized for accom-
plishing the communication between the master node
and semi_master nodes. An example is shown in Fig-
ure 9, when operating on 25 processors, MPI COMM
WORLD divides into six sub_communicators for data
grid size 3 x 4 x 6. Each slave node executes Lighting
and Transformation kernels in the “calculating phase”
and stores its final outcomes in local buffers. In the

212286

FIGURE 8. Fine grain data decomposition approach on distributed memory model.

2)

3)

“gathering phase” and using PLANE-COMM-i, every
semi_master node collects the outcomes from its slave
nodes for an entire plane, then the master node collects
the final outcomes of semi-master nodes of lighting and
transformation models to render the entire grid.
Shared-Memory Implementation

In this implementation, reservoir data and Model_View
matrix are shared among all threads. Implementa-
tion of “coarse grain data decomposition approach” is
shown in Figure 10. Synchronization among threads
is required and data grid processing is limited to a
single compute node RAM capacity. In the “calculat-
ing phase”, every slave thread executes lighting and
transformation kernels. Afterward, each slave thread
copies the final outcome of lighting and transformation
models to global buffers in the “gathering phase” so the
master thread can render the grid as soon as the slave
threads are synchronized.

Implementation of “fine grain data decomposition
approach” is similar to the coarse grain one in all
phases, however every slave thread operates at the row
level instead of the plane level as shown in Figure 11,
thus allowing more threads to work together on the
required calculations.

Hybrid Shared/Distributed Memory Implementation
Each strategy of data decomposition (Coarse grain
or Fine grain) has its advantages. Coarse grain data
decomposition strategy operates on adjacent big pieces
of data (planes). Hence the data is divided among
a small number of slaves a small number of pro-
cessing elements are utilized. However, the fine grain
data decomposition strategy operates on adjacent small
pieces of data (Rows). Fine-grain is more scalable with

VOLUME 8, 2020



A. A. El-Moursy et al.:

Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

Master-Node

________
-
-

Ptane. COMM,

MPI.COMM_WORLD

(a) Logical communication

[ |cOMM_WORD
[ Jpuane cowm
[P LANE Lo
[ JPLANE_COMNZ
[ JPLANE_COMMG
[ PLANE_COMN
[ PLANE COMNS

|:| GRID_COMM

(b) sub_communicators detail

FIGURE 9. Six sub_communicators from MPI_COMM_WORLD.

running more processing elements. However, it may
involve an elevated level of communication with the
master processing element. In terms of processing
elements, the distributed memory model is scalable.
On the other hand, implementation of shared memory
has the benefits of less overhead communication.

The combination of both strategies in one hybrid
approach can add further enhancement in calculation
ability [39]-[41]. Figure 12 shows the detailed imple-
mentation since in the “loading phase”, grid planes are
distributed using MPI among the semi-masters, then
every node forks multiple slave threads to distribute the
rows among them. Every thread executes the routines
of the lighting and transformation model for its rows
in the “calculating phase”. Each semi-master sends its
final outcomes to the master node in the “gathering
phase”. Then the master node collects the data to ren-
der the entire grid. Hence, the combination of both
implementations into one hybrid shared/ distributed
parallel technique makes it possible to capitalize on the

VOLUME 8, 2020

] Main

Thread

1- Load GUI Main-Window
2- Read oil reservoir data

r-=— ""=7 I
i ‘ I
Thread, | Global Memory .
[.—.—.2
(a) Logical synchronization
G e
Thread 2
Main Thread

working on its Planes:

1- Calculate new Transformed Vertex for all

3- Calculate Model View its data chunk

Matrix as global variable 2- Copy new TransformedVertex to a

4- Wait joining of other R global buffer.

threads 3- Calculate new ResultantColor for all its
data chunk

5- Draw the grid

J

4- Copy new ResultantColor to a global
buffer.

(b) Implementation details

FIGURE 10. Coarse grain data decomposition on shared memory model.

benefits of both techniques to adapt effectively with
the recent computing systems and to use suitable data
decomposition granularity hierarchically.

V. COMPLEXITY ANALYSIS

In this section, a quantitative complexity analysis of our
parallel implementations is presented and compared
to the serial implementation of the parallel visualiza-
tion tool. The computational complexity depends on
the number of mathematical operations performed in
each implementation. The computational complexity
of the serial implementation is O(dimension * ver-
tex_per_cube * MAXX * MAXY * MAXZ) since the
dimension is provided by the called functions inside the
loops which are shown in Figure 2 and 3 flowcharts.
In addition, each cube in the grid has eight vertices as
well as the dimension is small so these parameters can
be neglected from the complexity with the large grid

212287



IEEE Access

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

| M.Pl-nodemwmml

| Thread,

[

(a) Logical synchronization and communication

' Thread 1 '

FIGURE 11. Fine grain data decomposition on shared memory model.

Master Node
Thread 2
1- Load GUI main-window. - Recive deler o .
sizes, therefore the serial implementation has a cubic 2-Read il rsanoir at yid ) Rt e Vb | |
i R . 3- Broadcast the data to other nodes (o7 S IR AL — I
complexity O(dimension * vertex_per_cube * MAXX * B Mokl Vi Mo | | el 1 Calelac e Rrstmedete o
. 5. I — = Wail jomming of threads I all its data chunk.

MAXY * MAXZ ) On the other hand, the computat1onal ;“gf:‘lﬁ;n‘:‘al:;f:? :;citenex S+ Send all new TransformedVertex 2- Caleulate new ResultantColor for all its
complexity for the parallel distributed memory imple- D tegnd i ResbnColromaserol ot sk
mentations is performed on multiple stages depends
on the computational operations and communication —
operations and the final complexity is the largest one. e i ntim .( Thread

For the coarse grain implementation with MPI, the
computational complexity can be illustrated through
two stages as it is shown in Figure 7:

| .
(b) Implementation details

FIGURE 12. Coarse/ fine grain data decomposition on hybrid memory
model.

« Iteration operations: each node calls the function
inside the loops with (planes_per_node * MAXY
* MAXX * vertex_per_cube * dimension) times
so its computational complexity O(dimension *
vertex_per_cube * MAXX * MAXY * MAXZ /
num_nodes) since planes_per_node = (MAXZ /
num_nodes).

o Gathering operations: the master node gathers a
number of elements from the slave nodes so the
computational complexity depends on the num-
ber of elements that is received from each slave
node as well as the number of nodes. The mas-
ter node collects vertex_per_cube * dimension *
MAXX * MAXY * MAXZ / num_nodes elements
from each slave so the computational complex-
ity is O(dimension * vertex_per_cube* MAXX *
MAXY * MAXZ * log (num_nodes) / num_nodes).
According to the aforementioned analysis, the
overall computational complexity for the coarse
grain implementation is therefore O(dimension *
vertex_per_cube* MAXX * MAXY * MAXZ * log
(num_nodes) / num_nodes).

« Iteration operations: each node calls the function inside
the loops with (planes_per_node * rows_per_node *
MAXX * vertex_per_cube * dimension) times, as more
than one node are working on the same plane, and
planes_per_node = 1, rows_per_node = (MAXY *
MAXZ /num_nodes). Therefore the computational com-
plexity is O(dimension * vertex_per_cube * MAXX *
MAXY * MAXZ / num_nodes) which is similar to the
coarse grain implementation.

« Semi_Gathering operations: each semi-master node col-
lects the data from its slaves since the number of col-
lected data elements from each slave is (rows_per_node
* MAXX * vertex_per_cube * dimension), and the num-
ber of nodes for each plane (i.e, nodes_per_plane) is
num_nodes/MAXZ. Therefore the computational com-
plexity is O(dimension * vertex_per_cube * MAXX*
MAXY* MAXZ *log (num_nodes/MAXZ) / num_nodes).

« Final Gathering operations: the master node collects the
overall data from the semi-master nodes since the num-
ber of collected data elements from each semi-master
node is a complete plane (MAXX* MAXY) and the num-
ber of nodes equals MAXZ. Therefore the computational
complexity is O(dimension * MAXX * MAXY * log

For the fine grain implementation with MPI, the compu-
tational complexity can be explained within three stages as
shown in Figure 8 for this implementation:

212288 VOLUME 8, 2020



A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

TABLE 1. Complexity analysis results.

Implementation Complexity

Serial S

Coarse Grain S *log(num_nodes) / num_nodes

Fine Grain S *log(num_nodes / MAXZ) / num_node

(MAXZ)). According to the aforementioned analysis,
the overall computational complexity for the fine grain
implementation is O(dimension * vertex_per_cube *
MAXX * MAXY * MAXZ *log (num_nodes / MAXZ) /
num_nodes).

Comparing the complexities of the three implementations,
and setting S to dimension * vertex_per_cube * MAXX *
MAXY * MAXZ, reveals the results shown in Table 1. The
fine grain implementation has the best complexity when /
<= num_nodes / MAXZ < 2, i.e., hum_nodes is near MAXZ,
but not larger than 2 * MAXZ. When num_nodes > 2 * MAXZ,
the coarse grain implementation is better.

VI. OpenStack CLOUD COMPUTING

In 2010, OpenStack was presented and the first contribu-
tors for its development were Rackspace and NASA. It is
a rapidly growing free open source middleware for Cloud
[42]. OpenStack is a Cloud middleware which manages huge
pools of storage, networking and computing resources of
the data center. The whole resources are overseen via a
dashboard that provides administrators with a high level of
supervision (e.g., Quota of each project, status for all services,
creating new flavors for machine creation) while enabling
their clients to provision resources by a web page portal.
OpenStack is the most common open source solutions of
Cloud which offers Infrastructure as a Service (IaaS) archi-
tecture. There are three main advantages that make Open-
Stack an attractive candidate among other private Cloud
solutions [43], [44]:

« Publicity: OpenStack is already deployed in different
large distributed environments (deployed by 4500 indi-
vidual members and 850 organizations [42]).

« Flexibility: OpenStack supports most of the existing
hypervisors (such as Xen, KVM, Hyperv, XenServer,
VMware) in order to support virtualization for the envi-
ronment.

o Open source: OpenStack code can be modified accord-
ing to the requirements and OpenStack maturation for
new releases and new features can be developed easily
since the code is openly distributed.

A. OPERATION OF OpenStack NETWORK

This section provides an overview of virtual network com-
ponents of the OpenStack Neutron service which handle
network traffic among virtual machines (VMs). These com-
ponents collaborate to provide simple and friendly steps for
VMs network communication. Multiple VMs can be con-
nected with each other via a private network to establish Vir-
tual Cluster(VC) which can be used as a distributed memory

VOLUME 8, 2020

ComputeNode

VM
e

qb
[ttt

Patch-in} ;
T Patc i i
Br-tun Br-tun
L eth [7], [Teth

="
_—

T S
eth

H VM-Tap Device
Interface

[l Linux-Bridge
[] ©penvswitch

Network Node

FIGURE 13. Logical architecture of compute and network nodes’ bridges
and interfaces [46].

platform. When the VM is created, the Neutron service can
create a private network and associate this private network
with a subnet. During VM booting, it connects to the private
network [25]. Two IP addresses, private IP and floating IP
are assigned to each VM. A DHCP server offers a private
IP address from the private network of OpenStack to the
VM interface, and the VM guest operating system knows
this IP. Thus, VMs interact with each other using these
private IPs through virtual switches and bridges configured
on each compute node. Floating IP addresses are features
assigned to VMs by the Neutron service to access VMs
from the Openstack external network. Virtual Linux net-
working components are shown in Table 2 since VM traffic
has to go through them before reaching its VM destination.
For more understanding of VM network communication on
OpenStack, it is required to investigate the internal logical
architecture of compute and network nodes with their bridges
and interfaces as shown in Figure 13. The network compo-
nents inside compute node can be divided into three parts as
follows [45]:

o Tap Device: The Virtual Network Interface Card (VNIC)
of a VM that accepts Ethernet frames. Tap interfaces
are special software entities which instructs the Linux
bridge to forward Ethernet frames. In other words, the
virtual machines connected to tap interfaces will be able
to receive raw Ethernet frames. IP-table rules are used on
this tap device to implement the security groups ( such
as, SSH and Pinging protocols) associated with the VM.

212289



IEEE Access

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

TABLE 2. Definition of Linux network components.

Linux network Component Definition

TAP device A tap device is a software-only interface thata
userspace program can attach to itself and
send/receive packets to if. TAP devices are the
way that KVM/QEMU implement Virtual
Network Interface Card (VNIC) attached to the
VMs.

A veth pairis a pair of virtual NIC cards
connected via a virfual cable. If a packet is sent
on one of them, it will come out of the other
one and vice versa. Veth are usually used to
connect two entities.

Linux bridge is a virfual switch implemented in
Linux.

Openvswitch is a more complicated virtual
switch implemented in Linux. It allows
openflow rules to be applied to traffic at layer 2
such that decisions are made on MAC
addresses, VLAN ID of the traffic flow.
Openvswitch provides native support for
VXLAN tunnels.

A special kind of interface thatis used to
connect two openvswitch switches.

veth pair

Linux bridge

Openvswitch

Patch interfaces in openvswitch

o Linux-Bridge: OpenVSwitch (OVS) cannot directly
attach a tap device where IP-table rules are applied; the
bridge device offers a route to the kernel for filtering.

o OpenVSwitch (OVS): OVS is an interaction component
to connect virtual ports with other network components
such as Linux bridges and underlying interfaces. OVS
consists of two bridges, integration bridge (Br-int) and
tunnel bridge (Br-tun). The integration bridge enables
communications between VMs on the same compute
host, whereas the tunnel bridge connect VMs to an
external network.

When VMs are deployed on the same compute host, the
network traffic is handled using Br-int since each network
has a VLAN-ID which enables traffic isolation. On the
other hand, deploying VMs on different compute hosts needs
another technique and network traffic flows between com-
pute hosts via an overlay network by converting the network
VLAN-ID to tunnel using VXLAN or GRE key depending
on the configuration choice.

Building Virtual Cluster (VC) on OpenStack which con-
sists of two VMs at least, needs awareness of network traffic
flow for all cases of VMs deployment since performance
of VMs communication depends on the hosting of VMs on
compute hosts (the same or different compute host(s)) as
well as IP of VMs (the same or different network(s)). Thus,
deploying two VMs on Opensatck can fall into one of four
cases depending on VM hosting and its IP [46].

1. Casel, the same compute host and the same network.

ii. Case?2, the same compute host and different networks as
shown in Fig. 14.

iii. Case3, different compute hosts and the same network.

iv. Cased, different compute hosts and different networks
as shown in Fig. 15.

212290

Compute03

Bl
i

Compute#

Patch-int

Br-tun
[1=
R =5 MR
% 1r tun )
; — "Patch.int . Case1
E = = [0 Case2
E N B -int
‘@ i 1
-—
FIGURE 14. Traffic flow for Casel and Case2 [46].
Compute03 Compute05

B Case3
[0 Cased

Network Node

FIGURE 15. Traffic flow for Case3 and Case4 [46].

VIl. EXPERIMENTAL SETUP AND PLATFORMS

Since our implementations are based on distributed and
shared memory platforms, the following subsections present
the details of the two experimental platforms.

A. DISTRIBUTED MEMORY PLATFORM

A private OpenStack Cloud is used as an IaaS platform. Our
OpenStack environment consists of one controller node and
five OpenStack compute-nodes with hardware specifications

VOLUME 8, 2020



A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

TABLE 3. Hardware specifications for private OpenStack Cloud.

1X Controller Node
Dell PowerEdge R720

5X Compute Nodes

Dell Powerkidge M620 Blade
Server

Processors/nodel 2X Intel(R) Xeon(R) CPU | 2X Intel (R) Xeon (R) CPU
E5-2640 ( 2.4 GHz,25 MB, 10 | E5-2670 (2.6 GHz, 20MB
cores, 20 threads) cache, 8 cores, 16 threads)
128GB DDR3 with NUMA ar- | 128GB DDR3 with NUMA ar-
chitecture
2x 10 Ghps

System Model

Memory/node
chitecture
1x 10 Ghps

NICs /node

TABLE 4. Deployment parameters for ERI-OpenStack Cloud.

Distribution OpenStack Liberty 1.7.3

Operating System CentosT.0

Hypervisor KVM

Storage Backend I5CST (500TB)

Network (Nova FlatDHCP) | Network #1: Public, Storage, VM
Network #2: Admin, Management

as shown in Table 3. The used release of OpenStack is Liberty
version [47] and the hypervisor layer is KVM. Table 4 shows
the other deployment parameters of the Electronics Research
Institute (ERI) HPC Center of Excellence environment.

Building efficient virtual cluster platform needs under-
standing of the traffic flow of virtual network so our study is
carried out in two phases. The first phase of the experiments
is to investigate traffic flow patterns among the VMs and
the second is to build Virtual Cluster (VC) to use all capa-
bilities of our OpenStack infrastructure. The investigation
of network traffic flow is conducted by deploying virtual
machines (VMs) on the same and/or different compute nodes.
All VMs use the Centos7.0 operating system as their base
OS. For the first phase experiments, we test the four cases of
VMs deployment to demonstrate the behavior of our parallel
implementation on the OpenStack virtual platform.

Table 5 recaps the locus of VMs on compute host and their
IP addresses for the different cases as mentioned in VI-A.
VM-1 and VM-2 are deployed on the same compute host and
are assigned to the same network and this is considered as
Casel. VM-3 and VM-4 are assigned to different networks
but they occupy the same compute host which we refer to
as Case2. VM-5 and VM-6 are located on different compute
hosts but have the same network, which is Case3. Finally
VM-7 and VM-8 reside on different compute hosts and dif-
ferent networks and this is Case4.

For experiments of the second phase, we create a cluster
with five VMs on the same tenant. Each VM has 32 VCPUs,
8GB RAM and 500GB disk with Centos7.0 operating system.
The topology of VC network is shown in Figure 16. The five
VMs are connected through the same virtual network which
is connected to the public internet via virtual tenant-router.

VOLUME 8, 2020

TABLE 5. Experimental setup for four deployment scenarios.

Name of scenario | Name of VM Private IP address Compute node name

Casel VMI and VM2 192.168.1.2 Compute03
and
192.168.14

Case2 VM3 and VM4 10.0.3.8 Compute03
and
172.16.0.2

Case3 VM3 and VM6 10038 Compute03
and and
10039 Compute05

Cased VM7 and VM8 10032 Compute03
and and
172.16.0.2 Compute03

FIGURE 16. Virtual cluster network topology.

B. SHARED MEMORY PLATFORM

We test our multi-threaded implementations on one of the
VM with as many as 32 threads. For the two platforms
(Distributed/ shared memory), we use GCC compiler version
5.2 [48] and MPICC compiler version mpich-3.2.0 which is
freely available on all Linux platforms [49].

The number of processing elements is not the only param-
eter to test our implementations but we used three different
grid block sizes which are comparable in size to those in
several researches [S0]-[53], to test the performance of our
implementations on Intel Xeon CPU:

o Small Grid Size;for grid sizes 10 x 10 x 8 and
20 x 20 x 20.

o Medium Grid Size; for grid sizes 40 x 40 x 40 and
200 x 200 x 6.

212291



IEEE Access

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

3.5

w

N
w

N

W 2nodes_HPC

Casel

=
w

M Case2

M Case3

-

Relative Execution Time

Case4

e
w
\

20X20X20 200X200X6 Gridsize

No. of Nodes

FIGURE 17. HPC [8] versus virtual cluster scenarios relative execution
time.

o Large Grid Size; for grid sizes 10 x 80 x 8, 20 x 400 x 20
and 40 x 1600 x 40.

VIIl. RESULTS AND ANALYSIS

Parallel implementations of the oil reservoir data visualiza-
tion tool are analyzed by evaluating the execution times and
speedups with respect to the serial implementation. The setup
time is negligible for all parallel implementations as the setup
time is for just a few straightforward equations to determine
the data border for each processing element (node/ thread).
The computation time is the time for calculating the lighting
model and transformation of grid vertices. The communica-
tion time for MPI coarse grain data decomposition is the time
for Model_View matrix broadcasting and time for master
node data gathering. In contrast, the MPI fine grain data
decomposition communication time is the sum of the time
spent broadcasting the Model_View matrix, creating sub-
communicators, collecting the data of the same plane and
collecting the data of the whole grid at the master node.
Analysis of small grid data size is performed by studying the
behavior of 20 x 20 x 20 grid size, while the 200 x 200 x 6
grid size is used for the analysis of medium grid data
sizes.

A. DIFFERENT MPI DEPLOYMENT SCENARIOS ON CLOUD
Deep investigation is required to demonstrate the major fac-
tors which can affect the Virtual Cluster throughput. Fig-
ure 17 shows the relative execution time of coarse grain
MPI implementation using four cases of VM deployment
and two nodes of HPC with respect to serial running on
virtual machine. The relative execution time shrinks by 4%
only when running on two nodes of HPC compared to
running on Casel of VMs deployment since the two VMs
are on the same compute host and on the same network.
The traffic does not flow through network node or physi-
cal switch between the compute nodes. For the case2, 44%
is the increase in execution time compared to HPC since

212292

1.2
) 1
£
=
c 038
0
5
2 06
&
] 0.4 Synchronization
£ || mComputation
& 0.2 I I I m SetUp

0 T T T . . 1

1 2 4 10 20 | 40 60
Coarse-grain data Fine-grain fj?ta
decomposition decomposition
No. of Threads
(a) Relative execution time for 20x20x20 grid size

10
o
=]
T
[
(V]
Q.
wv

m Computation
OverAll

O P N W H U O N 0 L
I

1 2 4 10 20| 40 60
Coarse-grain data Fine-grain data
decomposition decomposition

No. of Threads

(b) Speedup for 20x20x20 grid size

FIGURE 18. Small grid size performance on shared memory model.

the two VMs are on the same compute node but on dif-
ferent networks. The traffic has to pass through network
node bridges through the physical switch. The increase in
execution time shrinks to 12% for case3 when tasks are
running on different compute nodes but on the same net-
work. Hence, the traffic flows through the virtual switches
of the same host node. On the other hand, case4 shoots
the execution time as high as 25X compared to HPC since
the two VMs are on different compute nodes and different
networks.

According to the aforementioned investigations for inter-
nal traffic flow between VMs through compute and network
nodes, it can be confirmed that when Virtual machines (VMs)
with private IPs are located on the same network, then they
only use switches in order to communicate with each other
independently of their location on the compute nodes. Thus
Casel and Case3 consume smaller times than Case2 and
Case4 as shown in Figure 17. The results show that the locus
of machines in terms of compute node and network address
matters for the performance. Thus, when VMs are on the
same compute node and the same network, they perform

VOLUME 8, 2020



A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

=
N

[y
I

o
)
|

Synchronization

I
>
|

H Computation
. M SetUp

Relative Execution Time
o
[e)]
|

o
N}
|

o
I

1 2 3 6 (|12 24 48 60
Fine-grain data
decomposition

Coarse-grain data
decomposition

No. of Threads

(a) Relative execution time for 200x200x6 grid size

m Computation
OverAll

1 2 3 6
Coarse-grain data
decomposition

12 24 48 60
Fine-grain data
decomposition

No. of Threads

(b) Speedup for 200x200x6 grid size

FIGURE 19. Medium grid size performance on shared memory model.

better than other scenarios. This is because the transmission
path is shorter (in term of delay) than the other scenarios.
In the next set of experiments we will adopt the best per-
forming configuration for the Cloud out of the four scenarios
tested.

B. SHARED MEMORY (MULTI-THREADING) EXPERIMENTS
Our results for shared memory experiments are performed
on one VM hosted on one compute node. For medium and
small grid data sizes, computation speedup rises almost sub-
linearly with more handling threads for the data grid due
to resource sharing (particularly caches and cores) among
operating threads. as shown in Figs 18(a) and 19(a).

For small grid data sizes, the synchronization time is nearly
fixed and represents about 0.2% of the entire time provided
that the operating threads number is equal to or less than four
threads running. When the number of threads is greater than
four, the synchronization time is gradually increased since
the work partitioning among so many slave threads provides
little work for each thread. In this case the start and finish
thread overhead exceeds the speedup advantages as shown in

VOLUME 8, 2020

1.2
o 1
E
T os
2
=)
20
X
Y Communication
‘oE 04 — m Computation
K]
€ oo m SetUp
0 AENEEE]
1 2 4 10 20|40 80 120
Coarse-grain data Fine-grain data
decomposition decomposition
No. of Nodes
(a) Relative execution time for 20x20x20 grid size
90

SpeedUp

m Computation
OverAll

1 2 4 10 20 | 40

80 120

Fine-grain data
decomposition

Coarse-grain data
decomposition

No. of Nodes
(b) Speedup for 20x20x20 grid size

FIGURE 20. Small grid size performance on distributed memory model.

Figure 18(b). Due to the overhead synchronization of threads,
the general speedup is 90% smaller than the computation
speedup.

For medium grid data sizes, the synchronization time is
almost steady and about 0.1% of the overall time provided
that the operating threads number is equal to or less than
twelve running threads. For thread numbers higher than
twelve threads, the synchronization time is slightly increased
as each slave thread has enough work to compensate for the
start and finish threads overhead as shown in Figure 19(b).

Even though the high efficiency scaling of the performance
for shared memory implementation, the restricted integration
of more cores per node and the restricted size of used data set
are the primary drawback of this parallel paradigm.

C. DISTRIBUTED MEMORY (MPI) EXPERIMENTS

For small grid data sizes as shown in Fig. 20(a), the com-
munication time of coarse grain data decomposition reduces
as the number of operating nodes increases due to the small
data bulk gathered from each node as well as the MPI-task
numbers. Despite the fact that the communication time for

212293



IEEE Access

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

=
N

[y

o
%

Communication
m Computation
m SetUp

o
>

Relative Execution Time
<} o
N (o)}

o

| SERES
1 2 3 6

24 48
Fine-grain data

Coarse-grain data ue
decomposition

decomposition

No. of Nodes

(a) Relative execution time for 200x200x6 grid size
45
40
35
30

edUp

220 B Computation
v 15 OverAll

10

: 1
0 | o e W
12 3 6 | 24 48

Coarse-grain data
decomposition

Fine-grain data
decomposition

No. of Nodes
(b) Speedup for 200x200x6 grid size

FIGURE 21. Medium grid size performance on distributed memory model.

fine grain data decomposition rises as the number of operat-
ing tasks increases (because more communication is required,
especially the time to create sub_communicators, which
accounts for about 70% of the total communication time).
The decrease in computation time, however, falls short of
the heavy communication overhead between slave nodes and
master node.

For medium grid data sizes as shown in Figure 21(a),
coarse grain data decomposition communication time is
almost fixed across a variety of running nodes as the data
volume gathered from each node is significant. From the
results, we can observe that the implementation of distributed
memory can only enhance the execution time with large data
footstep for the coarse grain data decomposition.

For small and medium grid data sizes, the speedup of
computation grows linearly as the number of MPI tasks
increases to reach the number of planes of the data grid
(Maximum coarse grain data decomposition) as shown in
Figures 20(b) and 21(b) respectively. For fine grain (2D
data decomposition), the speedup of computation rises sub-
linearly. Increasing the number of MPI-tasks on the same

212294

80

70 —

50 —

' m Grid Size 10x80x8
30 - —— Grid Size 20x400X20
Grid Size 40X1600X40

Speedup
N
<)

20 —

8*16 20*40 40*40

No. of Nodes * No. of Threads

FIGURE 22. Speedup on hybrid memory model.

physical node while each node works on a subset of data
causes the memory-overhead to outfit more tasks than dis-
tributing the computational job among them. Even though
the computation time scales gradually with incrementing the
MPI-tasks, the overhead noticeably affects the performance
scaling. Furthermore, the overhead communication for coarse
grain decomposition is restricted due to infrequent commu-
nication of nodes. Accordingly, the aggregate speedup is
satisfactory when using the coarse grain (plane-level/ 1D)
decomposition. For twenty MPI-tasks, where one complete
plane is processed by each node, more than 10X speedup is
accomplished as shown in Figure 20(b).

D. HYBRID MEMORY EXPERIMENTS

Hybrid development is the best option for large data sets.
Although, the primary advantage of using MPI is the scalabil-
ity of running node numbers, only coarse grain parallel imple-
mentation can be used effectively for this parallel paradigm.
Whereas, MPI fine grain data decomposition technique is not
efficient because the communication overhead is very high
with respect to computation speedup benefit. On the other
hand, the fine grain data decomposition technique can be used
effectively in the shared memory paradigm.

In this study, the combination of both paradigms in one
hybrid approach is a significant contribution that customizes
the parallelization to the need of the data visualization tool
and effectively exploits both paradigm advantages concur-
rently. On average, the execution time of hybrid parallel
paradigms for big grid data sizes can accelerate 59X over
serial execution using single Power Processor Unit (PPU) of
IBM Cell BE [54] as shown in Figure 22.

E. COMPARISON OF REAL AND VIRTUAL PLATFORMS

In this section, we evaluate the performance of the virtual
platform on OpenStack private Cloud, as the most popular
open source Cloud platform, by providing a comparison with
respect to traditional real platform which is proposed in [8].
The authors in [8] provide a good comparison with CUDA

VOLUME 8, 2020



A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

12

0.8

H Virtual Cluster

I
»
|

HPC

Relative Execution Time
o
o

o
N
|

o L -
1 8 1 20 1 40 1 6
10X10X8  20X20X20  40X40X40  200X200X6 Grid size
No. of Nodes

FIGURE 23. HPC [8] versus VC relative execution time using distributed
memory implementations.

implementation in [34]. CUDA falls short in scalability for
large data-sets hence, we limit our comparison to the per-
formance of a virtual cluster of multiple VMs running MPI
implementation with respect to the HPC system described in
[8] to better understand the effect of network bandwidth and
latency.

By using MPI implementation with coarse grain data
decomposition since it gives the best throughput according
to the previous analysis, the execution time shrinks by 70%
for HPC compared to Virtual Cluster for all grid sizes. This
overhead of Virtual Cluster is due to mainly two reasons, first
multiple compute node deployment for VMs since each VM
is located on different physical compute node. The second
reason is due to network virtualization as shown in Figure 23.

IX. CONCLUSION AND FUTURE WORK

In this article, we propose new parallel techniques for imple-
menting the 3-D oil reservoir data visualization tool using
Multi-threading, MPI, and hybrid (MPI/ Multi-threading)
implementations. The Distributed Memory (MPI) approach
is more suitable for coarse grain data decomposition to avoid
frequent and small data transform among the tasks. How-
ever, it has the ability to scale well with the grid scaling.
On the other hand, the Shared Memory approach achieves
high performance for fine grain data decomposition while
its hardware systems scalability is limited due to its resource
sharing nature.

Hybrid shared/distributed memory parallelism that utilizes
coarse grain and fine grain data decomposition simultane-
ously is the best customed approach that better fits the 3-D
grid data set nature while utilizing the heterogeneous systems
composed of a mix of parallel processing units. Deploying
Virtual Cluster for running real parallel applications needs
awareness with respect to the real infrastructure of the cloud
to reduce network communication among VMs and overcome
the causes of this overhead. Running our proposed hybrid par-
allelization technique on Virtual Cluster can achieve speedup
reaching to 70X over the single processing implementation.

VOLUME 8, 2020

As future work for this study, we plan to pursue a MPI-CUDA
Implementation to enhance the performance of the Oil Reser-
voir Data Visualization tool using a multi-GPU Cluster.

REFERENCES

[1] R. Jothikumar, K. Subramaniam, S. G. Shanmugam, and S. Susi, “Elec-
tronic voting system with cloud based high performance computing,”
J. Comput. Theor. Nanosci., vol. 16, no. 2, pp. 768772, Feb. 2019.

[2] P. M. Mell and T. Grance, “The NIST definition of cloud computing,”
Nat. Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep. Special
Publication 800-145, 2011.

[3] M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda, ‘““Cloud
paradigms and practices for computational and data-enabled science and
engineering,” Comput. Sci. Eng., vol. 15, no. 4, pp. 10-18, Jul. 2013.

[4] M. R. Abid, “HPC (High-performance the Computing) for big data on
cloud: Opportunities and challenges,” Int. J. Comput. Theory Eng., vol. 8,
no. 5, pp. 423-428, Oct. 2016.

[S] A. A. El-Moursy, W. S. Afifi, F. N. Sibai, and S. M. Nassar, “Parallel
PPI prediction performance study on HPC platforms,” J. Circuits, Syst.
Comput., vol. 24, no. 05, Jun. 2015, Art. no. 1550074.

[6] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,

H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey

and evaluation of FPGA high-level synthesis tools,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591-1604,

Oct. 2016.

S. Prema, R. Jehadeesan, and B. K. Panigrahi, “Identifying pitfalls in

automatic parallelization of NAS parallel benchmarks,” in Proc. Nat. Conf.

Parallel Comput. Technol., Feb. 2017, pp. 1-6.

H. Khaled, A. A. El-Moursy, S. M. Nassar, M. Taher, and

F. N. Sibai, “Parallel study of 3-D oil reservoir data visualization

tool using hybrid distributed/shared-memory models,” in Proc. IEEE

16th Intl Conf Dependable, Autonomic Secure Comput., Aug. 2018,

pp. 1016-1021.

[9] A. Saad, A. El-Mahdy, and H. El-Shishiny, ‘“‘Performance modeling of
MPI-based applications on cloud multicore servers,” in Proc. Rapid Sim-
ulation Perform. Eval., 2019, p. 5.

[10] (SPEC). (2010). Spec MPI 2007 Benchmark Suite Documentation.
[Online]. Available: https://www.spec.org/auto/mpi2007/Docs/

[11] (2019). Nasa Advanced Supercomputing Division. [Online]. Available:
https://www.nas.nasa.gov/publications/npb.html/

[12] S. Jamaliannasrabadi, ‘““High performance computing as a service in the
cloud using software-defined networking,” Ph.D. dissertation, Dept. Com-
put. Sci., Bowling Green State Univ., Green, OH, USA, 2015.

[13] S. Jamalian and H. Rajaei, “ASETS: A SDN empowered task scheduling
system for HPCaa$S on the cloud,” in Proc. IEEE Int. Conf. Cloud Eng.,
Mar. 2015, pp. 329-334.

[14] S. Jamalian and H. Rajaei, “Data-intensive HPC tasks scheduling with
SDN to enable HPC-as-a-Service,” in Proc. IEEE 8th Int. Conf. Cloud
Comput., Jun. 2015, pp. 596-603.

[15] S.R.Basnet, R. S. Chaulagain, S. Pandey, and S. Shakya, ‘“Distributed high
performance computing in OpenStack cloud over SDN infrastructure,” in
Proc. IEEE Int. Conf. Smart Cloud (SmartCloud), Nov. 2017, pp. 144-148.

[16] H. Yuan, J. Bi, M. Zhou, and K. Sedraoui, “WARM: Workload-aware
multi-application task scheduling for revenue maximization in SDN-based
cloud data center,” IEEE Access, vol. 6, pp. 645-657, 2018.

[17] S. Date, “SDN-accelerated hpc infrastructure for scientific research,” Int.
J. Inf. Technol., vol. 22, no. 1, 2016.

[18] S. Date, H. Abe, D. Khureltulga, K. Takahashi, Y. Kido, Y. Watashiba,
P. U-Chupala, K. Ichikawa, H. Yamanaka, E. Kawai, and S. Shimojo,
“An empirical study of SDN-accelerated HPC infrastructure for scien-
tific research,” in Proc. Int. Conf. Cloud Comput. Res. Innov. (ICCCRI),
Oct. 2015, pp. 89-96.

[19] S. Kehrer and W. Blochinger, “Migrating parallel applications to the
cloud: Assessing cloud readiness based on parallel design decisions,”
SICS Softw.-Intensive Cyber-Phys. Syst., vol. 34, nos. 2-3, pp. 73-84,
Feb. 2019.

[20] C. Kotas, T. Naughton, and N. Imam, “A comparison of amazon Web
services and microsoft azure cloud platforms for high performance com-
puting,” in Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2018,
pp. 1-4.

[21] S. Ali, “Virtualization with KVM,” in Practical Linux Infrastructure.
Berkeley, CA, USA: Apress, 2015, pp. 53-80.

17

—

[8

—

212295



IEEE Access

A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

[22]

(23]
[24]
[25]
[26]
(27]
(28]
[29]
(30]
(31]
(32]
(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

F. Gomez-Folgar, A. J. Garcia-Loureiro, T. F. Pena, J. 1. Zablah, and
N. Seoane, “Study of the KVM CPU performance of open-source cloud
management platforms,” in Proc. 15th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput., May 2015, pp. 1225-1228.

T. A. S. Foundation. Apache Cloudstack. Accessed: Nov. 2020. [Online].
Available: https://cloudstack.apache.org/

A. Systems. Eucalyptus. Accessed: Nov. 2020. [Online]. Available:
https://www.eucalyptus.cloud/
Openstack. Accessed:
https://www.openstack.org/.
T. Ertekin, J. H. Abou-Kassen, and G. R. King, Basic Pactical Reservoir
Simulations. Richardson, TX, USA: SPE Textbook Series, 2001.

J. de Vries. (2018). Learn Opengl Transformation. [Online]. Available:
https://learnopengl.com/Getting-started/Transformations

J. de Vries. (2018). Learn Opengl Camera. [Online].
https://learnopengl.com/Getting-started/Camera

J. de Vries. (2018). Learn Opengl Basic-Lighting. [Online]. Available:
https://learnopengl.com/Lighting/Basic-Lighting

F. Dunn and I. Parberry, 3D Math Primer for Graphics and Game Devel-
opment. Boca Raton, FL, USA: CRC Press, 2011.

O. Guide. (2016). Opengl Programming Guide Chapter 5 Lighting.
[Online]. Available: http://www.glprogramming.com/red/chapter05.html
T. Mcreynolds and D. Blythe, “Using OpenGL extensions,” in Proc. Adv.
Graph. Program. Using, 2005, pp. 593-604.

N. Baek, “Design of OpenGL SC 2.0 shader language features,”
Mobile Wireless Technol., 2017, pp. 248-252.

F. N. Siba, S. Mohammad, H. K. Kidwai, B. Qamar, and F. Awwad,
“Parallel implementation and performance analysis of a 3D oil reservoir
data visualization tool on the cell broadband engine and CUDA GPU,” in
Proc. IEEE 14th Int. Conf. High Perform. Comput. Commun. IEEE 9th Int.
Conf. Embedded Softw. Syst., Jun. 2012, pp. 970-975.

S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call
graph execution profiler,” ACM SIGPLAN Notices, vol. 39, no. 4, p. 49,
Apr. 2004.

K. E. Parsopoulos, “Parallel cooperative micro-particle swarm opti-
mization: A master—slave model,” Appl. Soft Comput., vol. 12, no. 11,
pp. 3552-3579, Nov. 2012.

H. Eldeeb, H. Elsadek, M. Dessokey, H. Abdallah, and N. Bagherzadeh,
“High performance parallel computing for FDTD numerical technique in
electromagnetic calculations for SAR distribution inside human head,” in
Proc. 14th WSEAS Int. Conf. Comput., 2010, pp. 23-25.

J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Distributed
shared memory based on type-specific memory coherence,” in Proc.
ACM SIGPLAN Symp. Princ. Pract. Parallel Program., vol. 25, 1990,
pp. 168-176.

Y.-Y. Jiao, Q. Zhao, L. Wang, G.-H. Huang, and F. Tan, “A hybrid
MPI/OpenMP parallel computing model for spherical discontinuous defor-
mation analysis,” Comput. Geotechn., vol. 106, pp. 217-227, Feb. 2019.
P. Ouro, B. Fraga, U. Lopez-Novoa, and T. Stoesser, ‘‘Scalability
of an eulerian-lagrangian large-eddy simulation solver with hybrid
MPI/OpenMP parallelisation,” Comput. Fluids, vol. 179, pp. 123-136,
Jan. 2019.

B. Yan and R. A. Regueiro, “Comparison between pure MPI and hybrid
MPI-OpenMP parallelism for discrete element method (DEM) of ellip-
soidal and poly-ellipsoidal particles,” Comput. Part. Mech., vol. 6, no. 2,
pp. 271-295, Apr. 2019.

S. Yadav, “Comparative study on open source software for cloud com-
puting platform: Eucalyptus, openstack and opennebula,” Int. J. Eng. Sci.,
vol. 3, no. 10, pp. 51-54, 2013.

R. Nasim and A. J. Kassler, “Deploying OpenStack: Virtual infrastructure
or dedicated hardware,” in Proc. IEEE 38th Int. Comput. Softw. Appl. Conf.
Workshops, Jul. 2014, pp. 84—89.

S. Lima and A. Rocha, “A view of OpenStack: Toward an open-source
solution for cloud,” in Proc. Adv. Intell. Syst. Comput., 2017, pp. 481-491.
Scenario: Provider Networks With Open Vswitch. Accessed: Nov. 2020.
[Online]. Available: https://docs.openstack.org/kilo/networking-guide/
scenario_provider_ovs.html

M. B. Gebreyohannes, ‘“Network performance study on openstack cloud
computing,” M.S. thesis, Dept. Inform., Univ. Oslo, Oslo, Norway, 2014.
Liberty the Twelfth Release of Openstack. Accessed: Nov. 2020. [Online].
Available: https://www.openstack.org/software/liberty/

GCC. (2018). Gnu Compiler Collection. [Online]. Available: https://gcc.
gnu.org/

MPICH. (1992). High-Performance Portable MPI. [Online]. Available:
http://www.mpich.org/

Nov. 2020. [Online]. Available:

Available:

in Proc.

212296

[50] C.Wang, P. Winterfeld, B. Johnston, and Y.-S. Wu, “An embedded 3D frac-
ture modeling approach for simulating fracture-dominated fluid flow and
heat transfer in geothermal reservoirs,” Geothermics, vol. 86, Jul. 2020,
Art. no. 101831.

[51] Z. L. Jin, Y. Liu, and L. J. Durlofsky, “Deep-learning-based surro-
gate model for reservoir simulation with time-varying well controls,”
J. Petroleum Sci. Eng., vol. 192, Sep. 2020, Art. no. 107273.

[52] L. Yuyang, L. Shiqi, and P. Mao, ‘“Finite element simulation of oil and
gas reservoir in situ stress based on a 3D corner-point grid model,” Math.
Problems Eng., vol. 2020, pp. 1-14, Feb. 2020.

[53] R. P. Batycky, M. R. Thiele, K. Coats, A. Grindheim, and D. Ponting,
“Reservoir simulation,” Trans., AIME, vol. 213, p. 28, Dec. 1958.

[54] S. Koranne, Practical Computing on the Cell Broadband Engine.
New York, NY, USA: Springer, 2009.

ALl A. EL-MOURSY (Senior Member, IEEE)
received the Ph.D. degree in the area of
high-performance computer architecture from the
University of Rochester, Rochester, NY, USA,
in 2005. He has worked with the Software Solution
Group, Intel Corporation, CA, USA, till early
2007. In 2007, he joined the Electronics Research
Institute, Giza, Egypt. He has also participated as
a Visitor Research Scientist with the IBM Cairo
: Technology Development Center, Egypt, from
February 2007 to January 2010. In September 2010, he joined the ECE
Department, University of Sharjah, Sharjah, United Arab Emirates, as an
Assistant Professor. In January 2017, he has been promoted to the Associate
Professor Rank. His research interests include high-performance computer
architecture, multi-core multi-threaded mirco-architecture, power-aware
micro-architecture, simulation and modeling of architecture performance
and power, workload profiling and characterization, cell programming,
high-performance computing, parallel computing, and cloud computing.

FADI N. SIBAI received the B.S. degree from
The University of Texas at Austin and the M.S.
and Ph.D. degrees from Texas A&M University,
all in electrical (computer) engineering. He joined
Prince Mohammad Bin Fahd University, in 2019,
as the Dean of the College of Computer Engineer-
ing and Science. He taught at several Universities
in USA and Middle East. From 2006 to 2011,
he directed the Computer Systems Design Pro-
gram and the IBM Competence Center, United
Arab Emirates University, where he received the IBM’s Highest Research
Award. From 1990 to 1996, he was an Assistant Professor of electrical
engineering with the University of Akron. He also has extensive industrial
experience with Saudi Aramco and Intel Corporation. He has authored or
coauthored over 200 publications and technical reports and served on the
Organizing or Program Committees of over 20 International Conferences.
He is a member of PMI, (ISC)Z, and Eta Kappa Nu. He holds PMP, CISSP,
CCNA, and CQRM certifications.

HANAN KHALED received the B.Sc. degree
(Hons.) in electronics and communication engi-
neering from Al Azhar University, Cairo, Egypt,
in 2012, the Diploma degree in cloud application
from the Information Technology Institute (ITT),
in 2013, and the M.Sc. degree in computer and
systems engineering from Ain Shams University,
in 2019. From 2014 to 2019, she was a Research
Assistant with the Cloud Computing Laboratory,
Electronics Research Institute (ERI), Giza, Egypt,
where she is currently an Associate Researcher. Her research interests
include performance optimization, high-performance computing, and cloud
computing.

VOLUME 8, 2020



A. A. El-Moursy et al.: Deployment and Analysis of a Hybrid Shared/Distributed-Memory Parallel Visualization Tool

IEEE Access

SALWA M. NASSAR (Member, IEEE) received
the Ph.D. degree in the field of parallelism in
programming languages from the Electronics and
Communication Department, Faculty of Engineer-
ing, Cairo University, in 1984. Her professional
experience started, in 1974, by being a Research
Assistant with the Computer and System Depart-
ment, Electronics Research Institute. She became
an Instructor and an Assistant Professor with the
Computer and System Department, Electronics
Research Institute. She taught in the American University in Cairo (AUC),
from 1987 to 1997. In 1991, she became an Associate Professor in 1991 and
a Full Professor in 1996. She was the Head of EU information Point InP. She
is an Ex-ERI President and the PI of the Cloud Center of Excellence and
the Head of the HPCloud Group, ERI. She has 50 publications. Her research
interests include parallel processing, parallel logic languages, modeling and
simulation of parallel programs, distributed systems, computer networks,
parallel applications, parallel virtual machine, grid computing, cluster com-
puting, and cloud computing. She has led a number of European and USA
funded projects. She is a member of the IEEE Computer Society and the
Information Technology Academia Collaboration (ITAC) Steering Commit-
tee, and a Juror in the Egypt. She received the WSIS-Award, organized by
the MCIT, Egypt, in 2006.

VOLUME 8, 2020

MOHAMED TAHER received the B.Sc. (Hons.)
and M.Sc. degrees in computer engineering from
Ain Shams University, Cairo, Egypt, in 1996
and 2001, respectively, and the Ph.D. degree in
electrical and computer engineering from George
Washington University, Washington, DC, USA,
in 2006. He is currently a Professor with the
Department of Computer and Systems Engi-
neering, Ain Shams University. His research
interests include high-performance computing,

reconfigurable computing, embedded systems, and computer architecture.

212297



