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ABSTRACT Music source separation is one of the old and challenging problems in music information
retrieval society. Improvements in deep learning lead to big progress in decomposing music into its consti-
tutive components with a variety of music. This research uses three types of datasets for source separation
namely; Korean traditional music Pansori dataset, MIR-1K dataset, and DSD100 dataset. DSD100 dataset
includes multiple sound sources and other two datasets has relatively smaller number of sound sources.
We synthetically constructed a novel dataset for Pansorimusic and trained a novel parallel stacked hourglass
network (PSHN) with multiple band spectrograms. In comparison with past study, proposed architecture
performs the best results in real-world test samples of Pansorimusic of any length. The network performance
was also tested for the public DSD100 and MIR-1K dataset for strength comparison in multiple source
data and found comparable quantitative and qualitative outcomes. System performance is evaluated using
median value of signal-to-distortion ratio (SDR), source-to-interference ratio (SIR), and source-to-artifacts
ratio (SAR) measured in decibels (dB) and visual comparison of prediction results with ground truth.
We report better performance in the Pansori dataset and MIR-1K dataset and perform detailed ablation
studies based on architecture variation. The proposed system is better applicable for separating the music
source with voices and single or fewer musical instruments.

INDEX TERMS Music source separation, parallel stacked hourglass network, multiband spectrogram,
Pansori.

I. INTRODUCTION
Music is a mingling of several signals to form one combined
signal. The goal of music source separation is to isolate orig-
inal music components from the combined signals to better
understand music theory.

Music source separation has several useful applications
including automatic speech recognition for bilateral cochlear
implant patients [1], fundamental frequency estimation for
music transcription [2], beat tracking despite the presence
of highly predominant vocals [3], the generation of karaoke
music, instrument detection, lyrics recognition and chord
estimation. Another application is singer identification in the
music management system by separating the singing voice
from music accompaniment. The source separation also can
be useful for education propose, for example teaching the
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way of playing or singing any rare/traditional song or musical
instruments. This research focus to isolate sound sources of
Korean traditional music called Pansori, one of the intangible
heritages registered in UNESCO. The separation is helpful
for traditional music automatic transcription or education for
preserving. Most of the traditional music including western
and Asian music is similar to nature with fewer music instru-
ment sources. Therefore, this study can be beneficial for most
of the transcription systems or traditional music learners.

Music separation has a long history of scientific activity as
it is known to be a very challenging problem. The data-driven
machine learning approach for music source separation has
been of great interest to researchers in recent years, and most
of the studies have been conducted on western music [4]–[6]
and a study [7] is intended in the application of music and
speech isolation. To the best of our knowledge, there is no
such study for traditional music with few sources. Another
problem in this area is the scarcity of labeled datasets. This
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FIGURE 1. Overview of our source separation.

research focuses on solving these two problems by construct-
ing a new dataset using Korean traditional music, called
Pansori dataset and introducing a novel network architecture.

A basic overview of our proposed source separation
method is shown in Figure 1, where the result of separation
is masked to extract music sources. In the method, a parallel
stacked hourglass network (PSHN) is proposed for the sep-
aration inspired by [8]. The PSHN is a fully convolutional
multi-scale network that learns the features of a multiband
spectrogram to generate a time-frequency masks. Multiband
spectrogram divides the input based on frequency ranges
(low to high). This procedure is helpful to isolate musical
sources masked by other frequencies. The PSHN was trained
and tested on the Pansori dataset and publicly available
DSD100 and MIR-1K dataset. The main contribution of this
study can be summarized as:

1) A new dataset is introduced using Korean traditional
music ‘‘Pansori’’ with fewer numbers of instrument
sounds.

2) A Parallel stacked hourglass network is introduced and
tested its capability on various music. The experiment
shows that the proposed architecture is beneficial for
music with the fewer number of instrument sounds
like traditional music or classical music. We compared
the proposed method for the various datasets with
multiband time-frequency representation. Comparison
is made based on the number of hourglasses stacked in
network architecture, the number of musical sources in
the datasets, and the robustness of the proposed system
than the previous work.

The rest of this paper is organized as follows. Section II
describes the related work, and some specific results obtained
by other researchers seeking to improve the quality of audio
source separation. Section III introduces the Pansori dataset
and its construction. The proposed PSHN is provided in
Section IV. Section V provides detailed results of our experi-
ments, comparison with previous research and detailed abla-
tion studies based on the architectural variation of PSHN.
Finally, in Section VI we offer our concluding thoughts.

II. RELATED WORK
The past decade has witnessed the creation of several new
approaches to the problem of separating individual audio
sources from the mixture. Independent Component Analysis
(ICA) [9], non-negative matrix factorization (NMF) [10], and

sparse component analysis (SCA) [11] are some of the statis-
tical techniques that have been developed for blind Source
Separation [12], [13]. The essential thought behind these
methods is to project the data from a time series into a new
set of axes that depend on some statistical approach.

More recently, deep learning strategies have demonstrated
their superiority over these methods and allowed for a sig-
nificant improvement in source separation. In general, neu-
ral networks adopt a hierarchical architecture to read latent
information from the audio data. It can be developed as a
non-linear approximation function to estimate the indepen-
dent music source from the combined signals. In [14], a fully
connected network was used to separate the spectra of the
source using 2D Mel-Spectrogram. A fully convolutional
denoising auto-encoder (CDAE) was proposed in [15] to
do single-channel source separation. Their goal was to see
if the CDAE could learn the spectral-temporal filters and
features to its corresponding source. In [16] a deep neural
network (DNN) with five fully connected layers and ReLU
nodes was designed for instrumental source separation. Sim-
ilarly, the work in [17] also trained a DNN for source separa-
tion using multichannel audio input by focusing entirely on
spectral characteristics of a single frame.

Additionally, recurrent neural networks (RNN) were used
to separate singing voices in single-channel musical record-
ings in [18]–[21] to preserve temporal information. The most
accurate method so far has been that applied by [22], which
involved blending a feed-forward neural network and bidi-
rectional long-short term memory (BLSTM) approach. This
two-network blending technique suggests that even where the
network structure and training method are different, combin-
ing the two is beneficial formusic source separation purposes.

Some studies use waveform music representation for
source separation to preserve the phase information of the
audio signal. The work in [23] used U-Net based architecture,
which resamples the features at different time scales. A mod-
ified U-Net architecture improved performance by includ-
ing source additivity in the output layer, upsampling, and
employing context-aware prediction. Similarly, [24], and [25]
used an encoder-decoder model that addressed the source
separation problems of multiple speakers with multiple audio
channels. The waveform representation is also applied for
isolation of speech from noisy signals [26]–[28]. The major
challenges using waveform audio representation is to pre-
serve sinusoid audio information [29] and management of
memory required using a data driven-approach.

Multiband time-frequency audio representation is popular
for source separation and achieved state-of-the-art results on
the DSD100 dataset. The idea behind this representation is a
division of spectrogram based onmultiple frequency bands as
the spectrogram contains high energies in the lower band and
low energies in the higher band. Applying different convo-
lution in the spectrogram band containing higher and lower
energies, the network could efficiently model both global
and local features. Researches in [4], [5], and [7] adopted
DenseNet architecture [30] for music source separation using
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multiband spectrogram. This type of representation is also
found effective for sound classification [31]. Motivated by
these past studies, we split the spectrogram into multiple sub-
bands along the frequency axis and the sub-bands and full
band were passed into our PSHN. This representation was
found effective for this Pansori source separation.
In conclusion to these past research, the music source sep-

aration is limited to little dataset and music variety. To boost
this research area, first, we construct a labeled dataset for
source separation of Korean traditional music. The length
of sources for drum and drummer voice is very short and
consistent throughout the whole music which challenges the
music source separation community to separate the short time
sources of music. Similarly, the source for singer’s voice
has a different frequency range as both the storytelling part
and singing part is performed by single artist. This makes
the Pansori dataset unique and challenging over the current
music source separation dataset. The dataset is synthetic but
it well preserves the real-world music pattern and hence
our network performance does not bias in real test samples.
The network architecture is data-dependent and it should be
compared with multiple dataset. So, to validate the network
architecture, the two publicly available DSD100 and MIR-
1K datasets are compared to the past state-of-the-art network.
PSHN achieves the best performance for the MIR-1K dataset
and singing voice separation task of the DSD100 dataset.
These two experiments only contain two sources singing
voice and accompaniments. The only two sources onMIR-1K
and singing voice separation task of DSD100 dataset achieves
better results than the multiple music source separation task
of the DSD100 dataset. Therefore, the statement clarifies that
the proposed PSHN is better for music with a fewer number
of sources.

III. PANSORI DATASET
Pansori music is emerged in South Korea in the late seven-
teenth century and has become popular amongst the privi-
leged class by the middle of the eighteenth century. Now,
it has been registered as intangible heritage by UNESCO,
which should be preserved and transferred to the next genera-
tion in the future. Pansorimusic consists of two performers; a
singer and a drummer. The drummer keeps time and provides
appropriate rhythmic accompaniment taking cues from the
singer, while the singer tells a melodic story and takes cues
from the drummer. Pansori is divided into two portions: a
storytelling time wherein the singer explains various charac-
ters and expresses the feelings of a story. In the second part,
the singer projects his or her voice from their stomach. The
power thus generated resonates with the audience in a pow-
erful way. Therefore, there are fundamentally three sources
in Pansori music; drum, drummer voice, and singer’s voice.
The drum and drummer voice are repeated throughout the
song, but both are played in a short timeframe; the drummer’s
voice is under one second while the drum may last from one
to three seconds. Drum sounds may be one of three distinct
kinds or a blend of these. While a drummer’s primary job is

TABLE 1. Data statistics of Korean traditional Pansori song.

to energize the vocalist and account for the vocalist’s physical
rhythm to elicit the best possible performance from the singer,
their second job is to carefully observe the singer’s mouth to
anticipate their next breath or sound.
Pansori is a Korean genre of musical storytelling per-

formed by a singer and a drummer. Generally, Pansori is
performed by a female singer with a male drummer. So,
our Pansori dataset included only the female singer with
male drummer. The drummer also produces sound during
the singer’s performance which we denote as the drum-
mer’s voice source. To achieve source separation in Pansori,
a dataset was constructed from numerous performers from
YouTube videos and compact disc (CD) recordings. The
YouTube videos are recorded during the stage performance of
the artist and music on CD is studio recorded. Even the music
is recorded in stage performance, there is nomuch noise in the
audio. The music is recorded at the sampling rate of 44.1kHz
and the number of microphone channels is equal to 2.

Ground truth of each Pansori source is needed to sepa-
rate them from the mixture. We obtained this by physically
removing the drum and drummer voice from the original
song and saved it separately in our singer-voice track. The
resulting short sample of the drum and drummer voice was
cut and saved in such a way that it contained as little singer
voice as possible. Samples of drum and drummer voice were
removed if the signal for the singer’s voice appeared on it.
After the removal of the drum and drummer voice, the signal
was saved as the ground truth for the singer’s voice. For
making the ground-truth signal for the drum and drummer
voice, we built a silence signal of equivalent length to the
ground truth singer voice signal and embedded the short clip
of drum and drummer voice into the silent for an arbitrary
span. Then blended these three ground truth sources, resulting
in mixed sources. In total, fifty training audio data files were
created for each source and mixture, while fifteen files of test
audio data were created. The duration of each data samples is
in the varying length of ranged from five-seconds to five min-
utes, with an average duration of fifty-one seconds. Statistics
related to this Pansori dataset are shown in Table 1. The log
spectrogram visualization of three ground truth sources along
with their mixture is shown in Figure 2. The Pansori dataset
and experimental results are publicly available on GitHub.1

IV. METHOD
This section first reviews the basics of the stacked hourglass
network (SHN). It then extends an SHN to our proposed
parallel stacked hourglass network (PSHN) with intermediate

1https://github.com/pratikshaya/pansori_source_separation
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FIGURE 2. Log spectrogram visualization of Pansori (a) Mixture, (b) Drum,
(c) Drummer voice and d) Singer voice.

predictions. Finally, we provide details about the loss function
for training PSHN for music source separation.

A. STACKED HOURGLASS NETWORK
Hourglass modules (HMs) were first introduced as a means
of estimating human poses in color images [1]. They are
fully convolutional networks which extract the multi-scale
features using a top-down and bottom-up approach. The
multi-scale features of HMs capture the relevant information
at various scales and resolutions. The input spectrogram is
first passing into the series of five initial convolutions. The
first convolution layer has a filter size of 7∗7 to obtain the
larger receptive field from the input spectrogram followed
by four 3∗3 convolutional layers. The output feature map
for each layer is 64, 128, 128, 128, and 256 respectively.
As applied to music sources, local evidence is essential to
map the short period relationship while the global context is
essential to determining the long-term dependency. Coarse
resolution feature maps were obtained through a series of
convolution and pooling operations. Next, the coarse reso-
lution feature maps are upsampled using nearest-neighbor
interpolation. The original HM had four downsampling and
upsampling operations, but this paper used HM with five
downsampling and upsampling operations to obtain the fine
resolution feature map.

HMs has a symmetric topology and are stacked together
to form a stacked hourglass network (SHN). In this way,
the HMs will produce a mask for prediction, with subse-
quent HMs refining their mask after learning the predictions
from the earlier HMs. To demonstrate this, in the experiment
section we compared the ground truth spectrograms with the
predicted spectrograms and shows the measures using the
evaluation metrics. The architecture of a single HM is shown
in Figure 3.

Our hourglass module is similar to the one used in [6],
which relied on a light-weight version that replaced the
residual blocks [32] with a single convolutional layer. This

FIGURE 3. Overview of our hourglass module.

light-weight architecture was competitive with the original
stacked hourglass network, with a much smaller number of
parameters [33]. Our HM is different only in that we added
onemore upsampling and downsampling step to obtain a finer
resolution.

B. PSHN AND FEATURE CONCATENTATION FROM
MULTI-BAND SPECTROGRAM
A multiband spectrogram is used as input to PSHN. As dis-
cussed earlier, spectrograms represent similar patterns in
different frequency bands. Especially, low frequencies are
bounded by high energies, while, higher frequencies contain
low energies and noise. In consequence, the spectrogram is
divided into equal halves along the frequency axis to form
two sub-band spectrograms and a different convolution filter
is applied in each band.

Consider the mixed magnitude spectrogram X of the size
F×T ×1 where F represents the frequency axis, T represent
the time axis, and 1 is the spectral channel. We divided the
full spectrogram into two halves, and labeled one the upper
band spectrogram and another the lower band spectrogram.
First, the initial convolutions are applied for each of the bands
separately and passed into the PSHN. The size of each divided
band was equal to F

/
2× T × 1.

The parts of the stacked hourglass network (SHN) that
receive the input from the upper band, lower band, and full
band, and those are passing through an upper band stacked
hourglass network (UBSHN), lower band stacked hourglass
network (LBSHN), and full band stacked hourglass network
(FBSHN), respectively. The combination of all three is a
PSHN. Each of the UBSHN, LBSHN, and FBSHN contains
four stacked hourglass modules in total. The hourglass mod-
ules of UBSHN and LBSHN output feature maps of size
F/

2 × T × C , where, in our case, C = 256 is the channel
number. To obtain the full feature map of size F × T × C in
all stack of hourglass modules, we concatenated the output
feature map in the frequency axis of UBSHN and LBSHN.
Likewise, each hourglass module from the FBSHN output
a feature map of size F × T × C . The full feature map
from UBSHN and LBSHN is then again concatenated, now
with the feature map obtained from FBSHN, to get the final
feature map of size F × T × 2C . After getting the feature
map of size 2C , two consecutive 1 × 1 convolutions are
applied to reduce the dimensions of the feature map and
estimate the masks of each music source. The prediction of
each mask is multiplied with the input to obtain the predicted
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FIGURE 4. Proposed parallel stacked hourglass network for multi band
spectrogram.

FIGURE 5. Intermediate predictions between previous HMs and the
subsequent HMs.

spectrogram. The loss between the predicted spectrogram
and the ground truth spectrogram was then calculated. The
proposed architecture for PSHN for a multiband spectrogram
is shown in Figure 4.

C. INTERMEDIATE PREDICTIONS
The process of estimating the masks and predicting the spec-
trograms between an earlier and a subsequent parallel hour-
glass module is referred to as intermediate predictions. There
are four stacks of hourglassmodules for the upper band, lower
band, and full band spectrograms. Accordingly, we needed
to calculate four losses: three for the intermediate predictions
and one for the final prediction. All predictions result predicts
the full-size spectrogram of size F × T × S, from the full
mask (FM) where S represents the number of sources to
separate. Recall also that the FM is divided into an upper
mask (UM) and a lower mask (LM). The 1 × 1 convoluted
UM final feature map obtained from the previous HM and
the input of the previous hourglass module is added together
and passed to the next hourglass module of the UBSHN.
This operation is repeated for the HM of the FBSHN and
the LBSHN, with FBSHN receiving the FM and the LBSHN
receiving the LM. Prior to adding the mask feature for the
next hourglass module, 1× 1 convolution is applied to make
the feature dimension equal to that of the final feature map
obtained from the previous HM. The intermediate predictions
step, which takes place between the previous and next parallel
HMs is shown in Figure 5.

D. LOSS FUNCTION
The objective of our study was to isolate the three indepen-
dent sources of Pansori. First, the magnitude spectrogram of
the mixed source was divided along the frequency axis and
passed into the PSHN. As Pansori contains three sources,
the size of the output masks in each prediction of PSHN
was F × T × 3. The generated masks were multiplied sep-
arately with the ground truth spectrograms of the singer’s
voice, drummer voice, and drum to generate the predicted
spectrograms. The experimental result shows that stacking
parallel HMs produced more refined masks of estimated
spectrograms from each prediction.

The loss function used in this work is the L1,1 norm, which
is used to minimize the absolute difference between the target
spectrogram and the estimated spectrogram. The FM output
of PSHN for the ith source spectrogram in jth prediction is
represented as Mij. The input spectrogram X is multiplied
with Mij to obtain the estimated spectrogram. The PSHN is
trained to minimize the absolute difference between the ith

target spectrogram of the music source Yi and the generated
spectrogram. The L1,1 norm loss function for the ith source
spectrogram in the jth prediction is defined as:

Loss (i, j) =‖ Yi − X �Mij ‖1,1 (1)

where � represents an element-wise matrix multiplication
and ‖ . ‖1,1 represents 1-norm, which is the sum of absolute
values of each element of the matrix. There are four hour-
glass modules stacked together in each parallel network of
the PSHN architecture. So, the total loss of the network is
calculated by summing up these four predictions.

Totalloss =
S∑
i=1

4∑
j=1

Loss (i, j) (2)

Here, S represent the number of sources to separate. So, for
the Pansori dataset S = 3, for music source separation task
of DSD100 dataset S = 4, and for singing voice separation
task of DSD100 dataset and MIR-1K dataset S = 2.

V. EXPERIMENTS
We performed our first PSHN experiment on our Pansori
dataset. We evaluated the performance of the system by
using the median of Signal-to-distortion ratio (SDR) value,
source-to-interference ratio (SIR), and source-to-artifacts
ratio (SAR) measured in decibels (dB), and based on
BSS-Eval metrics [36]. We then report the performance
in two publicly available DSD100 and MIR-1K datasets.
DSD100 dataset was prepared for SiSEC 2016 [37]. The
median (SDR) value is calculated from Pansori and DSD100
datasets. Whereas, global normalized SDR (GNSDR),
global SIR (GSIR), and global SAR (GSAR) is calcu-
lated as a weighted mean of NSDR, SIR, and SAR
respectively by following [6] for the MIR-1K dataset. All
three datasets test results are measured from the PSHN
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(1-Stack), PSHN (2-Stack), PSHN (3-Stack), and finally from
the PSHN (4-Stack).

A. EXPERIMENTAL CONFIGURATION
The audio file from the datasets was preprocessed with the
Librosa library [34], whichwe used to generate themagnitude
spectrogram at a sampling rate of 8kHz. The duration of our
music sources are varied in length for the Pansori, MIR-1K
and DSD100 datasets. From these varying lengths of audio,
magnitude spectrograms were calculated with a window size
of 1024 and a hop length of 256. The average spectrogram
size from the two datasets was 512 × 1593 (Pansori) and
512×7812 (DSD100). The average length ofMIR-1K dataset
is not given. So, it is not possible to calculate the average
sized spectrogram. Tomake a fixed size input for the network,
we split longer segments into series of 64 (spectral time) by
512 (frequency bins) fixed-length sub segments that inherit
their respective spectral representation for training [6]. This
way, we retain more training data. Sub segments are non-
overlapping, except for the last one which might overlap
with the penultimate when it does not match the network
input size. Accordingly, the number of spectrogram samples
obtained from the average-sized of spectrograms was equaled
to 25 (Pansori) and 123 (DSD100).

The training was conducted with Adam optimizer [35]
with an initial learning rate of 0.0001. The network was
trained through 200000 iterations for all Pansori, MIR-1K,
and DSD100 datasets, and the learning rate was decreased to
0.00001 when 75% of the training was complete. The GPU
used to train the network was an NVIDIA TITANXP. During
testing, we visualized the predicted spectrograms from each
of the four predictions of Pansori and DSD100 datasets and
report the performance from all four predictions in Section V.

B. RESULTS FROM PANSORI DATASET
The Pansori dataset had three ground truth sources; drum,
drummer voice, and singer’s voice. The experiment was per-
formed by single-channel source separation and the median
SDR value from the test data is reported from four predictions
of PSHN. The median SDR performance of the system from
each of the predictions is shown in Table 2.

All four predictions of the PSHN have better separation
results in the Pansori dataset. There was a 0.32dB, 0.46dB,
and 0.36dB SDR difference between the 1-Stack and the
4-Stack PSHN for the drum, drummer voice, and singer’s
voice respectively. The final predictions PSHN (4-Stack)
performed well for all three sources. The SDR values from
these predictions reached as high as 15.97dB, 12.86dB,
and 16.12dB respectively for drum, drummer voice, and
singer’s voice. The length of the drummer’s voice is less than
one second. These short and unique sounds sometimes do not
become part of the training set. Therefore, the SDR for the
drummer’s voice limits the performance in comparison with
drum and singer voice.

Figure 6 shows the qualitative result for one of the audio
samples of the drummer’s voice in our test set. The vertical

TABLE 2. Median SDR values for Pansori source separation dataset.

FIGURE 6. Results of comparison between ground truth and predicted
spectrograms for one drummer voice audio sample in our test set.
(a) GT spectrogram, (b) Predicted spectrogram PSHN (1-Stack),
(c) Predicted spectrogram PSHN (2-Stack), (d) Predicted spectrogram
PSHN (3-Stack), (e) Predicted spectrogram PSHN (4-Stack).

line in the log spectrogram represents the drummer voice over
a short period of time. The PSHN can accurately separate
the sources of Pansori, which can be seen by observing
the ground truth (GT) log spectrogram and predicted log
spectrogram in Figure 6. It is particularly noteworthy that the
log spectrograms predicted by PSHN (3-Stack) and PSHN
(4-Stack) captured fine details and recovered more at the
frequency range above 4096 Hz. The sources for drum and
drummer voice were short and consistent across all samples,
which helped the network to learn and predict the target
sources accurately.

C. RESULTS FROM DSD100 DATASET
The DSD100 (demixing secret database) dataset initially
introduced by SiSEC in 2015 [41] consists of 100 full-track
songs of different musical styles and genres and is
divided into development and test subsets. Later on,
the DSD100 dataset, prepared for SiSEC 2016 [37], improved
the sound quality, so that for each track, it consists of four
semi-professionally engineered stereo source. The dataset
contains the music tracks of various styles, along with their
isolated bass, drum, vocal, and other sources. The duration of
the songs ranges from 2 minutes and 22 seconds to 7 minutes
and 20 seconds, with an average duration of 4 minutes and
10 seconds. The four sources are added together to form
mixed sources. The dataset is divided into fifty training sets
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TABLE 3. Median SDR values for music source separation for
DSD100 dataset.

and fifty test sets. All signals are stereophonic and encoded at
a sampling rate of 44.1kHz. The experiment was performed
by single-channel source separation and the median of SDR
value from the test data was reported from each prediction of
PSHN.

The task for the DSD100 dataset was twofold: (1) music
source separation for a sample with four independent sources
of bass, drums, other, and vocals, and (2) singing voice sep-
aration for a sample with two independent sources of vocals
and accompaniments.

The performance (median SDR value) of PSHN and base-
line SH-4stack [6] at music source separation from the sample
with four different independent sources is shown in Table 3.
Our tests revealed that SDR value increases as HMs across
parallel hourglass network are stacked together. Among all
four predictions, PSHN (4-Stack) had the best source sep-
aration results, with bass seeing the greatest difference in
SDR between the PSHN (1-Stack) and the PSHN (4-Stack)
(a difference of 0.50dB). The drum and other categories saw
an increase in SDR of 0.16dB between PSHN (1-Stack) and
PSHN (4-Stack), while, Vocals also increased by 0.30dB. The
smallest difference in SDR is between the PSHN (2-Stack)
and the PSHN (3-Stack), which was only 0.05dB for bass,
0.01dB for drum, 0.03dB for other, and 0.10dB for a vocal.

We also used the DSD100 dataset to determine SDR values
associated with a singing voice separation task. To perform
this experiment, three sources of DSD100 (excluding vocals)
are blended together to obtain an accompaniment source.
The result was that a PSHN architecture trained with the
sources of vocals and accompaniments saw improvements in
its performance at vocal separation. The performance of the
PSHN and baseline SH-4stack [6] during the singing voice
separation experiment is shown in Table 4. It should be noted
that the PSHN (4-stack) in this task achieved even better result
which is 0.31dB more in comparison with the music source
separation task.

The change in performance with vocals in two differ-
ent tasks of DSD100 illustrates that our PSHN architecture
improved as the number of sources to separate decreased.
This finding indicates that the hourglass configuration is
superior for identifying three sources of Pansori.
The qualitative results from one of the test set of audio

examples in the DSD100 dataset for the source bass are
shown in Figure 7. The ground truth and PSHN predicted
log spectrograms from all predictions are provided. The most

TABLE 4. Median SDR values for singing voice separation for
DSD100 dataset.

FIGURE 7. Results of comparison between ground truth and predicted
spectrograms for one bass audio sample from the DSD100 dataset.
(a) GT spectrogram, (b) Predicted spectrogram PSHN (1-Stack),
(c) Predicted spectrogram PSHN (2-Stack), (d) Predicted spectrogram
PSHN (3-Stack), (e) Predicted spectrogram PSHN (4-Stack).

remarkable difference observed between the predicted spec-
trogram of PSHN (1-Stack) and PSHN (4-Stack). As the
mask was refined after stacking HMs in the parallel stacked
network, succeeding HMs were able to capture fine details of
formants and harmonics from the predicted spectrogram.

D. RESULTS FROM MIR-1K DATASET
The MIR-1K dataset is designed for singing voice separa-
tion tasks. It contains 1000 song clips in which the musical
accompaniment and the singing voice are recorded at the left
and right channels, respectively at a sampling rate of 16kHz.
Manual annotation of the dataset includes pitch contours in
semitone, indices, and types for unvoiced frames, lyrics, and
vocal/non-vocal segment. The song clip is named in the form
‘‘SingerId_SongId_ClipId. The duration of each clip ranges
from 4 to 13 seconds, and the total length of the dataset is
133 minutes. These clips are extracted from 110 Karaoke
songs which contain a mixture track and a music accompani-
ment track. The songs are sung by 8 females and 11males and
most of the singers are amateur and do not have professional
music training. Following the work [6], we used one male and
one female (abjones and amy) as a training set which contains
175 clips in total. The remaining 825 clips are used for testing.

The performance (GNSDR, GSIR, and GSAR) of PSHN
and baseline SH-4stack [6] at singing voice separation from
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TABLE 5. GNSDR, GSIR, and GSAR values for singing voice separation on
MIR-1K dataset.

the sample with two sources singing voice and accompa-
niments is shown in Table 5. As in the DSD100 dataset,
the test results on the MIR-1K dataset also revealed that
the performance increases as HMs across parallel hourglass
networks are stacked together. It should be noted that, among
all four predictions, PSHN (4-Stack) had the best separation
performance in all evaluation criteria except GSIR of accom-
paniments. PSHN (4-Stack) in singing voice gains 0.48dB in
GNSDR, 0.60dB in GSIR, and 0.37dB in GSAR compared
to the results of PSHN (1-Stack). Whereas, it gains 0.35dB
in GNSDR, 0.34dB in GSIR, and 0.32dB in GSAR for the
accompaniments.

E. BASELINE COMPARISON
We compared our PSHN architecture with the baseline archi-
tecture of SH-4stack [6] in MIR-1K dataset and both music
source separation and singing voice separation tasks of the
DSD100 dataset. The baseline, which uses a single full band
spectrogram and no parallel hourglass modules performed
worse than the PSHN. While the same convolutional ker-
nel was applied to the baseline architecture of SH-4stack,
the PSHN, which used a different convolutional kernel for the
multiband spectrogram, tended to improve the performance.
The results obtained from the first test of our PSHN at
music source separation on DSD100 dataset are provided
in Table 3. The PSHN (1-Stack) performed better than even
the fourth stacked of the baseline SH-4stack. The baseline
achieved 1.77dB, 4.11dB, 2.36dB, and 5.16dB SDR for bass,
drums, other, and vocals respectively. These SDR values
are less than all four predictions results obtained from the
PSHN. The PSHN (1-Stack) achieved 1.85dB and the PSHN
(4-Stack) achieved 2.35dB for bass, which are 0.08dB and
0.58dB more than the SH-4stack. Similarly, PSHN (4-Stack)
showed its superior performance in identifying the sources
of drums, other, and vocals, with drums achieving 0.41dB,

other achieving 0.19dB, and vocals achieving 0.58dB gains
in comparison with the baseline.

The task for the DSD100 dataset can be broken into two-
fold. One is for music source separation task with four inde-
pendent sources and another is for singing voice separation
task with two independent sources of vocal and accompani-
ments. For the task of singing voice separation, three sources
of DSD100 except vocals are mixed to get an accompaniment
source. A comparison between the PSHN architecture and the
baseline SH-4stack at singing voice separation task using the
DSD100 dataset are provided in Table 4. The PSHN archi-
tecture demonstrated that it significantly improved perfor-
mance for both vocals and accompaniments. This shows the
advantage of a multiband spectrogram over the baseline by
significantly increasing the SDR values across all predictions
of PSHNs. The baseline with no parallel hourglass modules
achieved 5.45dB for vocals and 12.14dB for accompani-
ments. Compare with PSHN (4-stack), the baseline achieved
0.56dB less for vocals and 0.28dB less for accompaniments.
The PSHN (2-stack) and PSHN (3-stack) also outperformed
the baseline results, showing increased SDR for vocals by
0.31dB and 0.42dB and for accompaniments by 0.13dB and
0.24dB respectively.

Similarly, the results obtained from the MIR-1K dataset
of our PSHN and baseline SH-4stack [6] at singing voice
separation are provided in Table 5. PSHN (2-Stack), PSHN
(3-Stack), and PSHN (4-Stack) achieve better results than
the baseline while, PSHN (1-Stack) slightly decreases the
performance in all evaluation measures in comparison with
baseline by 0.16dB in GNSDR, 0.07dB in GSIR, and 0.23dB
in GSAR for singing voice. Besides, for accompaniments,
the performance by PSHN (4-Stack) is higher than the
baseline in GNSDR and GSAR. However, the performance
is decreased by 0.23dB in GSIR using PSHN (4-Stack).
It also noted that there is less difference in performance
between PSHN (3-Stack) and PSHN (4-Stack) in both singing
voice and accompaniments. The experimental results on the
MIR-1K dataset also support that the multiband spectro-
gram using a parallel stack hourglass network improves the
performance.

F. COMPARISON WITH STATE-OF-THE-ART
The performance of our PSHN (4-stack) in the MIR-1K
dataset and both tasks of the DSD100 dataset was compared
with previous state-of-the-art method:

1) DeepNMF [38]: This method utilizes non-negative
deep network architecture which results from unfolding
the NMF iterations by untying its parameter.

2) NUG [14]: This method estimated the source spec-
tra using deep neural networks combined with spa-
tial covariance matrices to encode the source spatial
characteristics.

3) BLEND [22]: This approach blended a feed-forward
neural network and a recurrent neural network by com-
bining their raw outputs using multi-channel Wiener
filtering. We compared single-channel methods of
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TABLE 6. Comparison of SDR between various state-of-the-art methods
for music source separation for DSD100 dataset.

BLEND for the music source separation task and
multi-channel methods for the singing voice separation
task.

4) MMDenseNet [4]: This method built a parallel
DenseNets for full band spectrogram and sub-band
spectrogram.

5) MMDenseLSTM [5]: This method enhances
MMDenseNet [4] by integrating long short-term mem-
ory (LSTM) in multiple scales with skip connections.

6) MLRR [39]: This method uses online dictionary learn-
ing to learn the subspaces and propose an algorithm
called multiple low-rank representations (MLRR) to
decompose amagnitude spectrogram into two low-rank
matrices.

7) U-Net [40]: This method adapts the U-net architecture
to the task of singing voice separation by comparing
the benefits of low-level skip connections with a plain
convolutional encoder-decoder model.

8) SH-4stack [6]: This is the baseline of our PSHNmethod
which uses a stacked of four hourglass network.

Tables 6 and 7 and 8 compare our PSHN (4-stack) with
the eight other state-of-the-art methods described above. It is
proven that our PSHN architecture significantly outperforms
the existing methods MLRR [39], U-Net [40], and all stack
hourglass networks [6] in all evaluation criteria except GSIR
of accompaniments in theMIR-1K dataset. Our method gains
by a large margin which is 3.4dB in GNSDR, 4.75dB in
GSIR, and 2.25dB in GSAR for singing voice and 2.44dB in
GNSDR, 2.58dB in GSIR, and 2.24dB in GSAR for accom-
paniments in compare with U-Net [40]. Similarly, MLRR
which uses the low-rank representation of singing voice and
accompaniments also performs worse than our PSHN.

Our PSHN architecture achieved the second-best perfor-
mance among the current state-of-the-art methods for both
vocals and accompaniments at the singing voice separation
task (Table 7) on the DSD100 dataset. It was, however, only
the third-best performer at the music source separation task
(Table 6) of separating drums and vocals, and it showed
poor comparative performance at separating bass and other
sources. The reason for this is the similarity between bass and
other sounds, which confused the PSHN network when it was
trained on those sounds together. The sounds of drums and
vocals, in contrast, are easier to differentiate from each other.

TABLE 7. Comparison of SDR between various state-of-the-art methods
for singing voice separation for DSD100 dataset.

TABLE 8. Comparison of GNSDR, GSIR, and GSAR between various
state-of-the-art methods for singing voice separation for MIR-1K dataset.

So it improves the performance as the losses for all sources
in PSHN from all predictions are summed up with equal
weights. From this, we can conclude that PSHN architecture
is most accurate when the number of sources to separate
is small. This is also shown through the superior results
that were achieved at the singing voice separation task of
DSD100 dataset in Table 7 and MIR-1K dataset in Table 8
which involved the separation of only two sources.

The performance of the MMDenseLSTM is better than our
PSHN because it blends two networks MMDenseNet [4] and
LSTM. The combination of two networks with differ in net-
work structure and materials is beneficial because the errors
of individual system are uncorrelated [5], [22]. Whereas,
the proposed PSHN uses a single unified network with a high
correlation on losses.

G. ABLATION STUDY
We now analyze the components of our PSHN method and
demonstrate its impact. The ablation study is performed on
music source separation of the DSD100 dataset, as it is highly
popular in the music source separation community. The
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performance of the system is evaluated by using themedian of
Signal-to-distortion ratio (SDR) value. The ablation study is
performed based on the effect of the number of upsampling
and downsampling steps on the hourglass module, with or
without intermediate predictions in the loss function, the
effect of the number of stacks more or less than 4, and the
effect of the number of spectrogram bands. The letter and
symbol for the architectural variation in Table 9 are repre-
sented as S= number of the stack, U= number of upsampling
and downsampling steps in hourglass module, B= number of
spectrogram band, WD = without intermediate predictions,
W = with intermediate predictions; the symbol +, ++, and
+ + + indicate the network with those symbols have same
architecture. All ablation studies are presented in Table 9.

TABLE 9. Ablation study on DSD100 dataset measured by
Signal-to-distortion ratio (SDR) value based on the effect of architectural
variation on PSHN.

1) THE IMPACT OF THE NUMBER OF UPSAMPLING AND
DOWNSAMPLING STEPS
We compared the experiment of our PSHN and SH_4S_
4U_1B+ [6] method with four and five downsampling and
upsampling steps of the hourglass module. To do this,
the experiment on the baseline SH_4S_4U_1B+ [6] is
extended by increasing one more upsampling and down-
sampling steps which we called it SH_4S_5U_1B+++. The
SH_4S_5U_1B+++ which receives full band spectrogram
of size F × T × 1 as input decreases the feature map
size in the fifth downsampling layer by 50% than that
of SH_4S_4U_1B+ [6]. The fine resolution feature maps
of size F/

25 ×
T/
25 × C after the fifth downsampling

steps for SH_4S_5U_1B+++ tends to increase the perfor-
mance in comparison with SH_4S_4U_1B+ [6]. Similarly,
the PSHN_4S_5U_2B++ and the PSHN_4S_4U_2B receives
frequency division spectrogram of size F

/
2× T × 1 as input.

The fine resolution feature maps of PSHN_4S_5U_2B++

after the fifth downsampling steps of sizeF
/
2× 25×

T/
25×C

achieve the greater result in comparison with feature maps

of PSHN_4S_4U_2B after the fourth downsampling steps of
size F

/
2× 24 ×

T/
24 × C . These experiments indicate that

fine resolution feature maps are important than that of coarse
resolution feature maps in music source separation task.

2) WITH/WITHOUT INTERMEDIATE PREDICTIONS IN THE
LOSS FUNCTION
The spectrograms predicted after estimating the mask in
between an earlier and subsequent parallel hourglass mod-
ules are referred to as intermediate predictions (see Figure 5).
To investigate the impact of with/without intermediate pre-
dictions, we next do the two experiments without interme-
diate predictions in the loss function. One for our PSHN
architecture and the other for the baseline [6]. The loss
is calculated only from the final stack of the hourglass
module. Thus, the architectural variations on loss function
only estimate the masks and spectrograms from the final
stack of the hourglass module. The experimental results
show that PSHN using 2 band spectrograms with interme-
diate predictions (PSHN_4S_5U_2B_W++) still achieves
higher accuracy compare with PSHN without intermediate
predictions (PSHN_4S_5U_2B_WD). But the experimen-
tal results without intermediate predictions using 1 band
(SH_4S_4U_1B_WD) is higher than the baseline for drum,
other, and vocal by 0.25dB, 0.08dB, and 0.40dB respectively.

3) THE NUMBER OF SPECTROGRAM BANDS
The effect of spectrogram bands is compared with 1 band,
2 bands, and 4 bands. There is no parallel network for
a single band spectrogram as there is no division in the
frequency axis for a single band. We called these varia-
tions as SHN_4S_5U_1B+++ in Table 9. The architectural
variations for 1 band spectrogram (SHN_4S_5U_1B+++)
are the same as SH_4S_5U_1B+++ which we already did
in the ablation experiment of the number of upsampling
and downsampling steps. PSHN using 2 bands spectrogram
(PSHN_4S_5U_2B++) still achieves the higher result in
compare with SHN using 1 band (SHN_4S_5U_1B+++) and
PSHN using 4 bands (PSHN_4S_5U_4B). This is because
of the huge architectural differences between these bands.
For, PSHN_4S_5U_4B, the full band spectrogram of size
F × T × 1 is divided into four equal bands of size F

/
4 ×

T × 1. The number of parameters and the size of the net-
work increases heavily as five total bands need to pass into
the PSHN network separately. This indicates that four band
PSHN networks (PSHN_4S_5U_4B) overfit when the net-
work gets deeper despite a small amount of training data
for the DSD100 dataset. The experiment is not carried out
for 3 band spectrograms as it is not possible to split the
spectrogram into three equal halves.

4) THE NUMBER OF STACKS
The experimental results in this study are based on the number
of hourglass modules that are stacked together. The SDR
effect is measured with no-stack (PHN_1S_4U_2B), 4 stacks
(PSHN_4S_5U_2B++), 5 stacks (PSHN_5S_5U_2B), and
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6 stacks PSHN (PSHN_6S_5U_2B). All the experimen-
tal results are measured using 2 band spectrograms with
five downsampling and upsampling steps except the
PHN_1S_4U_2B. It can be shown that PSHN with 4 stacks
provides a better result compare with 5 stacks, 6 stacks,
and no-stack. This, again indicates that PSHN with 5 stacks
and 6 stacks overfit when the network gets deeper despite
a small amount of training data for the DSD100 dataset.
Similarly, it can be inferred that PSHNwith no-stack provides
comparable results with the baseline SH_4S_4U_1B_W+ [6]
which uses a 4-stack network.

VI. CONCLUSION
This study investigated music source separation through
a parallel stacked hourglass network. The network was
designed for the ability to effciently model both fine local
and global spectrogram structure. The experiment was per-
formed using three datasets: Korean traditional music (Pan-
sori) dataset, SiSEC 2016 DSD100 dataset and MIR-1K
dataset. We constructed the Pansori dataset using online and
offline resources synthetically and then used with multiband
spectrogram representation. The proposed PSHN architec-
ture received multiband mixed spectrogram representation as
input and predict themasks from all previous and next parallel
hourglass module. The estimated masks thus multiplied with
the input to obtain the predicted spectrogram for each source.
The predicted spectrograms transform back into the signal
using the inverse of short-time Fourier transform. In this pro-
cedure, we isolate the sources of Pansori, DSD100 and MIR-
1K datasets with high quantitative and qualitative results. The
results are compared using the median of Signal-to-distortion
ratio (SDR) value, source-to-interference ratio (SIR), and
source-to-artifacts ratio (SAR) measured in decibels (dB).
The experimental results show that the MIR-1K dataset
achieves the best performance result while the singing voice
separation task of DSD100 achieves the second-best per-
formance in comparison with the current state-of-the-art
method. Similarly, the music source separation task of the
DSD100 dataset also achieves comparable results in com-
parison with the current state-of-the-art method. Our Pansori
dataset carries similar characteristics tomost of the traditional
songs of a different culture because most of the traditional
songs have less number of musical sources. We hope the
proposed dataset will help the new researcher to make a
similar source separation task even there is no ground truth
for each musical component. Similarly, the lessons learned
from multiband spectrogram representation would be useful
for future work to increase the accuracy of music source
separation task. The proposed system for source separation is
applicable in education, Karaoke, and automatic transcription
of Korean traditional music.
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