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ABSTRACT Many organelles inside and outside a living cell depend on the perfect behavior of Golgi
apparatus for smooth and normal functioning. Its poor performance may lead to many inheritable diseases
like diabetes and cancer. Therefore, it is highly crucial to detect any strange behavior of Golgi apparatus in
advance. Accurate discrimination of cis-Golgi from trans-Golgi proteins surely helps researchers identify
the role of Golgi proteins in various diseases and assist pharmacists in drug development. In this work,
various hybrid models of Bi-Profile Bayes, Bigram PSSM, Di-Peptide Composition, and Split Amphiphilic
Pseudo Amino Acid Composition with SMOTE oversampling technique have been employed to discriminate
Golgi protein types. Multiple linear Support Vector Machines have been used to exploit the discrimination
power of these models. The proposed prediction system: Golgi-predictor has shown significant performance
and achieved promising results compared to other existing state-of-the-art techniques. Through the 10-fold
cross-validation, the proposed system achieved an accuracy value of 97.6%, sensitivity value of 98.8%,
specificity value of 96.5%, G-mean value of 97.6%, MCC value of 0.95, and F-score value of 0.97. Similarly,
through the jackknife cross-validation, the achieved values for accuracy, sensitivity, specificity, G-mean,
MCC, and F-score are respectively, 96.5%, 97.8%, 95.2%, 96.4%, 0.93, and 0.96. Moreover, through
the independent dataset testing, Golgi-predictor demonstrated significant enhancement in performance
over other techniques. The proposed methodology aims at supporting drug designers in pharmaceutical
industry and assisting researchers from the fields of bioinformatics and computational biology towards better
innovation in predicting the behavior of Golgi proteins.

INDEX TERMS Amphiphilic pseudo amino acid composition, bigram features, bi-profile Bayes, Golgi

proteins, support vector machine, synthetic minority oversampling technique.

I. INTRODUCTION

Cells in different organisms, as well as in different parts of
the same organism, perform unique functions, and possess
distinctive features. However, most of the cellular processes
are identical almost in all organisms, namely reproduction,
energy conversion, and molecule transportation. The eukary-
otic cell holds a defined nucleus, genetic material in the form
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of DNA, and several other organelles, including cytoplasm,
mitochondria, lysosome, endoplasmic reticulum, and Golgi
apparatus that help it to carry out different activities such as
digestion, movement, and reproduction [1]. Golgi apparatus
is among the essential proteins that is composed of flattened
sacs [2]. It further processes proteins and lipids received from
endoplasmic reticulum [3] and package them for transporta-
tion to the exterior of cell or other locations in the same cell
through secretory vesicles. Further processing of proteins and
lipids inside Golgi apparatus happens systematically. There
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are two faces of a Golgi apparatus: the cis face and trans
face. The part in-between cis and trans faces is referred to
as medial. Golgi apparatus receives proteins and lipids from
endoplasmic reticulum at the cis face, whereas at the trans
face, it ships its products towards various destinations [4].
Many inheritable diseases, such as cancer and diabetes, are
due to the poor functionality of Golgi apparatus. Moreover,
Golgi apparatus is considered an early target of Parkinson’s
and Alzheimer’s diseases. Currently, anti-inflammatory and
neuroprotective therapies exist that involve the usage of
chemical drugs. However, they do not guarantee a permanent
solution to these diseases [4]. Therefore, detection of any
dysfunction or aberrant behavior in Golgi apparatus is needed
ahead of time so that researchers may identify its role in the
aforementioned diseases. Solutions, inspired from machine
learning, have been proposed in recent years for solving a
wide range of problems related to bioinformatics and compu-
tational biology domains [5], [6]. However, only a few have
focused on Golgi proteins to classify them in cis-Golgi and
trans-Golgi. In this connection, Ding et al. [7] proposed a
modification of Pseudo Amino Acid Composition (PseAAC)
coupled with modified Mahalanobis discriminant achieving
74.7% accuracy through jackknife testing. In another of their
work, they used Di-Peptide Composition (DPC) features with
Support Vector Machine (SVM) [8] that achieved 85.4%
accuracy. In 2016, Yang et al. [9] suggested the utilization
of Common Spatial Pattern features coupled with Random
Forest based Recursive Feature Elimination. The resultant
selected features are further exploited by Random Forest clas-
sifier to predict the two classes from Golgi proteins. The accu-
racies obtained are 90.1%, 88.5%, and 93.8% using 10-fold
cross-validation, jackknife cross-validation, and independent
dataset testing, respectively. In 2017, Ahmad et al. [4] have
employed Bigram PSSM, split Pse AAC, and DPC features in
conjunction with SMOTE oversampling and Fisher’s feature
selection that achieved 94.9% accuracy through jackknife
and 10-fold cross-validation testing. In continuation of their
previous work, Ahmad and Hayat [10] proposed to use DPC
with gap 3, SAAC, and PSSM based features in conjunc-
tion with SMOTE oversampling technique. Following this,
Majority-Voting based Feature Selection (MVFES) is applied
that selects high ranked features from the integrated space
of selected features with 11 different feature selection tech-
niques. The high-ranked features have been exploited by
kNN classifier for their discriminative power that achieved
95.85% performance accuracy with 10-fold cross-validation.
Cui et al. [11] have come up with a new idea of using part
of the Golgi protein sequence instead of using the com-
plete sequence. They used Enhanced Amino Acid Content
Encoding [12] to encode the Golgi protein sequences in
parts. In this way, they obtained 529 protein sequences in
their dataset, which are exploited by Random Forest classi-
fier with 1000 trees. The achieved performance accuracy is
80.0% by their proposed method. Recently, Zhou et al. [13]
developed their prediction model by constructing the fused
feature space of PseAAC, DPC, PsePSSM, and Encoding
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Based on Grouped Weight (EBGW) that are passed through
feature reduction technique namely conditional co-variance
minimization. The feature space is oversampled with SMOTE
technique to produce a balanced set, which is classified using
XGBoost algorithm with performance accuracy of 92.1%
through Jackknife testing protocol.

The literature review suggests the development of a more
accurate and reliable model that could classify sub-Golgi
proteins with higher success rates to meet the needs of the
bioinformatics community. This paper presents a majority
voting based ensemble of multiple SVMs that exploits the
discriminative power of various hybrid models constructed
from Bi-Profile Bayes (BPB), Bigram PSSM, DPC, and split
Amphiphilic PseAAC (Amph-PseAAC) features. SMOTE
oversampling technique is utilized to curb the imbalance
present in the dataset. Our key contributions are:

1) We investigated the effect of different feature extrac-
tion strategies individually and collectively under the
influence of SMOTE oversampling technique.

2) We computed Amph-PseAAC on C-terminus,
N-terminus, and middle part of the sequence separately
thus obtaining Amph-Pse AAC for three subsequences.

3) We provide sufficient evaluations to demonstrate the
improved performance of Linear-SVM.

4) We constructed an enhanced ensemble of better per-
forming classifications.

The organization of this article is planned as follows.
Section II describes the utilized datasets, proposes the Golgi-
predictor system, explains the SMOTE oversampling, and
closes the section with brief introduction of Support Vec-
tor Machines. Section III highlights the performance mea-
sures. Section IV presents simulation results and evaluates
the performance of Golgi-predictor on benchmark datasets.
Section V analyzes the comparative performance of Golgi-
predictor and state-of-the-art techniques from the existing lit-
erature. Section VI concludes the article with final comments.

Il. MATERIAL AND METHODS

In this section, we first present a brief description of the
utilized datasets. Next, we discuss the proposed system. Then,
we provide details about SMOTE oversampling. Finally,
SVM based classification is presented towards the end of this
section.

A. DATASETS

In this study, we utilized a highly imbalanced dataset com-
prising of 87 cis-Golgi and 217 trans-Golgi protein sequences
originally constructed by Yang ef al. [9]. Additionally,
we used another dataset for independent testing that was pro-
posed by Ding et al. [7] and employed by other investigators
[4], [8], [9]. The independent dataset is also imbalanced con-
sisting of 13 cis-Golgi and 51 trans-Golgi protein sequences.
Both the datasets are publicly available at':

1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783950/
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FIGURE 1. The proposed Golgi-predictor Schema.

B. THE PROPOSED SYSTEM

We propose the utilization of majority voting based ensemble
strategy for enhanced prediction of Golgi sub-classes. Fig. 1
depicts the proposed prediction scheme: Golgi-predictor.
In this work, multiple SVMs with linear kernel are first tuned
using SMOTE based hybrid feature spaces of BPB, DPC,
Bigram PSSM, and Amph-PseAAC. Then, majority voting
based approach is adopted to combine the predictions from
individual SVMs that leads to higher prediction performance.
The details of different components of Golgi-predictor are
presented as follows.”

1) FEATURE EXTRACTION STRATEGY

The protein sequences are represented by a fixed-length
feature vector that is off course an essential entity of the
computation model development. Therefore, the extraction
of discriminative information from protein sequences greatly
depends upon the underlying feature extraction technique.
To build an efficient and accurate computational model,
we need to extract discriminative features from protein
sequences that could truly imitate the target class. In the
current work, split Amph-PseAAC, DPC, BPB, and PSSM
based bigram features have been utilized.

Amphiphilic Pseudo Amino Acid Composition (Amph-
PseAAC), proposed in [14] and later utilized in [15], [16] not
only keeps the record of frequency information but also traces
the correlation information associated with physicochemi-
cal characteristics of two residues in a protein sequence.

2The implementation code for replicating the experiments presented in
this paper is available upon request.
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Hydrophobicity and hydrophilicity of amino acids in a
protein sequence are the key physicochemical properties
that efficiently reflect Amphiphilic features of a protein
sequence. Therefore, they are very effective in formulating
the sequence-order correlation factors of protein sequences
[14]. Hydrophobicity and hydrophilicity based physicochem-
ical patterns can generate Amph-PseAAC features that are
capable of discriminating protein sequences accurately. Gen-
erally, the Amph-PseAAC method is applied to the entire
sequence, and a fixed-length feature descriptor is obtained
for each sequence. The length of the feature vector is
20 4 21 where 20 is the amino acids frequency in a pro-
tein sequence, and 2\ represents the Amphiphilic correlation
factors reflecting the distribution of different hydrophobicity
and hydrophilicity patterns in a protein sequence. In the
current study, the input protein sequence is first split into
three parts, where 20 residues are extracted from each of
N and C termini, thus resulting in N-part, C-part, and the
middle part. Amph-PseAAC is then applied to each of the
three sub-sequences separately. The three feature vectors cor-
responding to three sub-sequences are then concatenated to
construct a single feature vector of dimensionality 90-D that
represents the entire sequence. This point forward, we will
use Amph-PseAAC to refer to the split Amph-PseAAC.

Amino Acid Composition (AAC) is considered among the
most primitive feature extraction techniques [17]. However,
its capabilities are minimal and are capable of only extracting
the occurrence frequency information of amino acid residues
in a given protein sequence [18]. AAC may be useful in
situations where protein sequences of different categories
are diverse enough that could be discriminated on the basis
of frequency information only. However, it may fail where
the protein sequences belong to different classes and fre-
quency information is not sufficient for discrimination [19].
As a remedy, Di-Peptide Composition (DPC) is used that not
only extracts the occurrence frequency information but also
exploits the structural information of amino acid residues in
a protein sequence. DPC considers amino acid residues in
pairs with some specified gap [20]. Dipeptide D; is calculated
using (1).

TotaloccurrencesofD;

bi= Totalnumberofallpossibledipeptides M
Since DPC will look for all possible pairs, it will result into a
400-D feature vector. Inherently, DPC considers the adjacent
dipeptides, however, DPC with extended capabilities consid-
ering the variable gaps between pair of amino acid residues
have also been introduced [9]. Given a protein sequence P,
DPC with variable gap can be computed using (2).

ZNi,j x 100
2 Ni YN

where i and j locate the amino acid residues at positions i and

i+1, respectively. N; j shows the frequency of i-type residue

followed by j-type residue. The term in the denominator of
(2) represents the total frequency of type i and type j residues.

P j = (2)
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In this work, we are utilizing DPC with gap 3 as discussed
in [4].

Another feature extraction technique used in this study
is Bi-Profile Bayes (BPB) that was first proposed by
Shao et al. [21] for the classification of methylation sites pro-
teins. It has also been employed for the identification of Pro-
tein Puplytation sites [22]. BPB feature extraction technique
can be stated briefly as: Let S = s1, 52, 53, .. ., s, represents
a protein sequence where s; is one amino acid and » is the
length of protein sequence. S either belongs to C; or C_;
where Cy and C_; represent cis-Golgi and trans-Golgi pro-
teins, respectively. The feature vector is formulated as given
in (3).

P=(1,p2-.. ,P2n) 3

where p1, p2, ..., py represent the posterior probabilities of
each amino acid at each position in protein sequence from
category C (cis-Golgi proteins) and p,11, . . ., pa, represent
the posterior probabilities of each amino acid at each position
in protein sequence from category C_; (trans-Golgi proteins)
that is known as Bi-Profile of a protein sequence. In the cur-
rent study, the posterior probabilities are calculated using the
occurrence of each amino acid at each position in the training
dataset. The dimensionality of the feature vector is 50-D.
Position Specific Scoring Matrix (PSSM) represents the
evolutionary information about a protein sequence. PSSMs
are calculated using the steps mentioned in [4]. The size
of a PSSM matrix depends on the length L of a protein
sequence in a given dataset. For example, the size of PSSM
will be L-by-20 for a protein sequence of length L. Since
each protein sequence is of different length, each PSSM thus
formed will also be of different size making it impossible for
any predictor to process it. In order to have equal length repre-
sentations of variable length protein sequences, phenomenon
of Bigram PSSM is adopted. Bigram features of each protein
sequence are calculated from linear probabilities of PSSM,
which results in a Bigram probability matrix B of size 20-
by-20 and hence the feature vector is of 400-D. The Bigram
probability matrix B can be defined as given in (4).

> Pns P41, - - -

L—1
By = Zpi,mpm,,,, where 1 <m <20and 1 <n <20
i=1

“

Here L is the length of primary protein sequence, whereas m
and n show the 20 amino acids. The Bigram feature vector is
constructed according to (5).

B0 ..
- Baol"  (5)

F =1[By,1,B12,...,B120; B2,1,B22, ..

Bjo,1, B20,2, - -

2) SMOTE OVERSAMPLING

Imbalance data may affect the learning capability of a clas-
sifier and degrade its classification performance. Due to the
imbalance, the classifier is always biased towards the major-
ity class. However, we should keep in mind that when the
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minority class samples are increased synthetically, the classi-
fier learning bias may be shifted towards the minority class.
In this work, the utilized dataset is highly imbalanced. The
minority class comprises merely 28.6% of the total instances
in the dataset as mentioned in section II-A where 87 instances
belong to cis-Golgi class out of the total 304 instances. As a
result, the decisions of the classifier might be more biased
towards the majority class samples. Due to the increased
affinity towards the majority class, the minority class samples
may completely be ignored in the decision-making process,
and ultimately the overall performance may be degraded.
The higher accuracy values obtained may be the result of
higher specificity values that is not an acceptable situation
in machine learning and pattern recognition.

A number of different techniques can be adopted to
reduce imbalance between class samples in a dataset. Some
researchers proposed to either replicate the minority class
samples or remove the majority class samples [23] that may
either lead to information redundancy or information loss.
Replicating the minority class samples simply by duplication
introduces redundancy in the minority class that may lead
to overfitting, because of the similar regions in the feature
space [24]. SMOTE is yet another technique used to handle
imbalanced datasets. Contradicting to other oversampling
techniques, SMOTE performs its operations in the feature
space. Minority class sample is selected, and new synthetic
samples are introduced along the line segments that connect
some or all the k-nearest neighbors of the minority class under
consideration. Synthetic samples thus produced may increase
the generalization capability of the classifier. Interested read-
ers may find complete details of SMOTE in [25].

3) SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) [26], [27] is a widely
used classification algorithm. Its strengths have been widely
exploited in the fields of computational biology, bioinformat-
ics, and pattern recognition [15], [28], [29]. SVM is basically
a binary classification algorithm that utilizes the structural
risk minimization principle for classification. It exploits the
kernel functions to transform the input feature space into a
high dimensional feature space for efficient classification.
In the current work, Linear-SVM from LIBSVM package
[30] is used to develop the prediction model. First, multi-
ple SVMs have been trained, and then their predictions are
combined through the majority voting scheme. Grid search
approach is followed to optimize the SVM parameter C where
the search space specified by (6).

{0.0001 < C < 20000, step size = 1 6)

Ill. EVALUATION MEASURES

Three testing protocols including jackknife testing, 10-fold
cross-validation testing, and independent dataset testing are
employed to analyze the consistency and reliability of the
proposed technique [16], [31], [32]. Jackknife testing proto-
col always gives unique results that make it widely acceptable
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testing technique in the bioinformatics community for assess-
ing the performance of their proposed models [32]-[37].
In jackknife testing, for N given samples, N-I samples are
used for training and one sample is used for testing [38].
The test is repeatedly performed for each instance in the
dataset; due to this reason, the execution time of jackknife
testing is higher and depends upon the number of samples
in the dataset. In k-fold cross-validation testing, the entire
dataset is first split into k mutually exclusive subsets. Then k-
1 subsets are used for training and one is used for testing [4],
[39]. Although similar in mechanics, k-fold cross-validation
testing is much faster compared to jackknife testing. Usually,
the test is repeatedly performed & times, and the final output
is reported as the average of k testing results.

In the Independent dataset testing protocol, the training and
testing datasets are entirely different from each other. That is
why uncertainty in prediction results is expected to be higher.
It is, therefore, crucial for the testing dataset to be much larger
so that most of the samples from the training dataset are
covered [4]. In situations where training and testing datasets
are not available separately, the training dataset is divided into
two mutually exclusive subsets that are used as training and
testing sets by the classifier. We briefly present descriptions
of some standard performance measures including Accuracy,
Sensitivity, Specificity, Geometric mean, Mathews Correla-
tion Coefficient, and F-score.

A. ACCURACY

Accuracy [40] measure is used to assess the overall per-
formance of Golgi-predictor. It takes into account TP, TN,
FP, and FN that represent true positive, true negative, false
positive, and false negative protein sequences, respectively.
The majority class samples greatly influence accuracy, that
is why it may produce a misleading assessment in case of
imbalanced data. Equation (7) is used to calculate accuracy.

Accuracy = (TP + TN)/(TP + FN + TN + FP)) x 100
@)

B. SENSITIVITY/SPECIFICITY

Sensitivity, as described in [40], [41], assesses the actual
percentage of correctly predicted samples from positive class
whereas specificity [41], [42] examines the actual fraction of
negative samples that are correctly predicted. Equations (8)
and (9) are used to mathematically express sensitivity and
specificity.

Sensitivity = (TP/(TP 4+ FN)) x 100 )
Specificity = (TN /(TN + FP)) x 100 ©))
C. G-MEAN

Geometric mean (G-mean) [43] is the performance measure
that considers both the sensitivity and specificity in order to
show the balance of classifier over the majority as well as
minority classes. G-mean can be calculated using (10).

G — mean = \/Sensitivity x Specificity (10)
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D. MATHEWS CORRELATION COEFFICIENT

Mathews Correlation Coefficient (MCC) is a statistical metric
that can show a confusion matrix as a scalar value [42].
Comparatively, it is less influenced by imbalanced data. It is
therefore recognized as a stable performance metric among
others. MCC takes into account all the entries of a confusion
matrix including TP, FP, TN, and FN in its calculations. MCC
produces its output in the range of —1 and +1 where the
former is returned for inverse predictions and the later is for
perfect predictions whereas 0 is returned for average random
predictions. MCC is calculated using (11).

MCC = (TP x TN-FP x FN)
/\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

E. F-SCORE

F-score is a measure of balance between precision and recall
[44], [45]. It is calculated as harmonic mean of precision
and recall. F-score is null in case either of the precision or
recall is null. The output of F-score varies between 0 and 1
where 0 highlights poor performance of the model on positive
class and 1 indicates better performance of the model on
positive class. The values between 0 and 1 exclusively iden-
tify trade-off between precision and recall. F-score is given
by (12).

F — score=2x ((precision x recall) / (precision + recall))
(12)

where precision and recall are calculated using (13) and (14),
respectively.

precision = TP/(TP + FP) (13)
recall = TP/(TP + FN) (14)

Here, precision [42] is the number of true positives divided by
the sum of true positives and false positives predicted by the
classifier whereas recall [11] is the number of true positives
divided by the sum of all positives actually present in the
positive class.

IV. RESULTS AND DISCUSSION

Performance of Linear-SVM has been assessed using dif-
ferent feature spaces with and without SMOTE oversam-
pling technique. The performance is reported using Accuracy
(Acc), Sensitivity (Sn), Specificity (Sp), Geometric mean
(G-mean), MCC, and F-score. Results are obtained through
10-fold cross-validation testing, jackknife testing, and inde-
pendent dataset testing. All the simulations are performed in
MATLAB using LIBSVM package [30].

A. ANALYSIS OF INDIVIDUAL FEATURES WITH AND
WITHOUT OVERSAMPLING

The performance of Linear-SVM using various individual
feature spaces without oversampling is presented in Table 1.
Linear-SVM yielded the highest accuracy value of 86.1% for
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TABLE 1. Performance accuracies of Linear-SVM using various individual
feature spaces without oversampling.

TABLE 2. Performance accuracies of Linear-SVM using various individual
feature spaces with oversampling.

Feature Testing Acc  Sn Sp G-mean MCC  F-Score Feature Testing Acc  Sn Sp G-mean MCC  F-Score
10-fold 86.1 804 884 843 0.69 0.80 10-fold 873 89.0 855 872 0.74 0.87
BPB Jackknife 819 742 849 793 0.59 0.74 BPB Jackknife 859 87.6 842 858 0.71 0.86
Independent 100 100 100 100 1 1 Independent 100 100 100 100 1 1
10-fold 67.7 488 753 60.6 0.24 0.51 10-fold 799 846 752 7197 0.60 0.80
DPC Jackknife 61.8 418 698 54.0 0.11 0.43 DPC Jackknife 794 849 740 792 0.59 0.80
Independent 828 875 81.6 844 0.63 0.75 Independent  82.8 914 80.6 858 0.65 0.76
10-fold 69.7 469 788 60.7 0.27 0.50 10-fold 741 781 702 740 0.48 0.75
Amph — PseAAC  Jackknife 654 419 748 559 0.17 0.44 Amph — PseAAC  Jackknife 714 753 675 712 0.43 0.72
Independent 75 451 825 609 0.28 0.47 Independent 75 682 767 723 0.42 0.62
10-fold 75.6 550 839 679 0.42 0.60 10-fold 804 872 73.6 80.1 0.62 0.81
Bigram Jackknife 740 536 821 663 0.38 0.58 Bigram Jackknife 78.1 855 706 776 0.57 0.79
Independent 89.0 67.6 945 799 0.70 0.76 Independent  96.8 945 974 959 0.92 0.94

I BPB for Bi-Profile Bayes

2 DPC for Di-Peptide Composition

3 Amph-PseAAC for Amphiphilic Pseudo Amino Acid Composition
4 Bigram for PSSM based bigram features

BPB features using 10-fold cross-validation protocol. The
performance of Linear-SVM for the same features is promis-
ing using jackknife testing with 81.9% accuracy. However,
the accuracy is 100% for same features using independent
dataset testing. Since accuracy is considered a poor per-
formance measure in case of imbalance dataset therefore,
we consider G-mean, MCC, and F-score values. The G-mean
value of 84.3% is highest for BPB features using 10-fold
cross-validation. As we also know that sensitivity measures
the accuracy for positive class, which is minority class in
this case therefore, F-score is a good measure to be dis-
cussed here. The higher F-score value of 0.80 indicates that
performance of Linear-SVM is better on the positive class.
This shows the significance of BPB features that possess
discriminative power even in the presence of imbalanced data.

This is evident from the spare diagram in Fig. [V-A where
only the BPB feature space shows separability in features.
It can be clearly observed that BPB features offer more
discrimination capability compared to other feature spaces
under consideration.

The performance of Linear-SVM for Amph-PseAAC using
independent testing is poor as shown by G-mean value of
60.9%. Similarly, F-score with value 0.47 is an indication of
poor performance of Linear-SVM over the positive class from
testing dataset. Table 2 presents the performance accuracies
of Linear-SVM using individual features with oversampling.
The highest accuracy value of 87.3% is achieved for BPB
features using 10-fold cross-validation. Through the jack-
knife testing, the accuracy is 85.9%. The G-mean value of
87.2% for BPB features indicates that performance of the
proposed model using 10-fold cross-validation is promising.
In addition, the same features performed well using jackknife
testing that achieved 85.8% G-mean value. Likewise, F-score
value of 0.87 for BPB features shows that performance of the
model over positive class is better compared to negative class.

B. ANALYSIS OF HYBRID FEATURES WITH AND WITHOUT
OVERSAMPLING

Table 3 highlights the performance of Linear-SVM for
hybrid feature spaces without oversampling using 10-fold
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! BPB for Bi-Profile Bayes

2 DPC for Di-Peptide Composition

3 Amph-PseAAC for Amphiphilic Pseudo Amino Acid Composition
4 Bigram for PSSM based bigram features

TABLE 3. Performance accuracies of Linear-SVM using various hybrid
feature spaces without oversampling.

Feature Testing Acc  Sn Sp G-mean MCC  F-Score
10-fold 855 795 879 835 0.67 0.79
BPB + Bigram Jackknife 825 757 852 803 0.61 0.75
Independent 984 953 992 972 096 097
10-fold 825 746 857 799 0.60  0.75
BPB+ DPC Jackknife 802 71.1 839 772 0.55 0.72
Independent 984 953 992 972 0.96 0.97
10-fold 87.8 80.6 90.6 854 0.72 0.82
BPB + Amph — PseAAC  Jackknife 848 774 878 824 0.66 0.78
Independent  96.8 90.7 984 944 091 0.94
10-fold 822 710 867 784 059 074
hybrid — all Jackknife 79.9 692 842 763 054 071
Independent  96.8 90.7 984 944 0.91 0.94

! BPB for Bi-Profile Bayes

2 DPC for Di-Peptide Composition

3 Amph-PseAAC for Amphiphilic Pseudo Amino Acid Composition
4 Bigram for PSSM based bigram features

5 hybrid-all for BPB + Bigram + DPC + Amph-PseAAC

cross-validation, jackknife testing, and independent dataset
testing. The 10-fold cross-validation accuracy value of
87.8%, achieved for the hybrid feature space of BPB and
Amph-PseAAC, is highest among other hybrid models. Like-
wise, the accuracy obtained using jackknife testing for the
same hybrid model is also in better range that is 84.8%. All
the accuracy values using 10-fold cross-validation are above
the percentage of 80 that show the importance of hybrid
models compared to their individual counterparts where only
BPB features achieved accuracy value over 80% as shown in
Table 1.

Similarly, the performance of Linear-SVM for hybrid fea-
tures with oversampling is shown in Table 4. The highest
accuracy value achieved by Linear-SVM for the hybrid model
of BPB and DPC is 91.4% using 10-fold cross-validation. The
accuracy using jackknife testing is 91.2% for the same hybrid
model. The G-mean value of 91.4% obtained using 10-fold
cross-validation testing for the hybrid features of BPB and
DPC with oversampling is highest. Overall, the performance
of Linear-SVM for the hybrid models with SMOTE oversam-
pling is higher compared to the individual feature spaces.

The spare diagram of hybrid feature spaces with and
without oversampling are depicted in Fig. 3 that highlights
the visual separability among different instances in the
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FIGURE 2. Individual feature spaces with and without oversampling.

TABLE 4. Performance accuracies of Linear-SVM using various hybrid
feature spaces with oversampling.
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TABLE 5. Performance of Linear-SVM ensemble for hybrid feature spaces
with oversampling.

Feature Testing Acc  Sn Sp G-mean MCC  F-Score
10-fold 90.7 930 884 90.6 0.81 0.90
BPB + Bigram Jackknife 884 914 854 883 0.77 0.88
Independent 100 100 100 100 1 1
10-fold 914 941 888 914 0.83 091
BPB+ DPC Jackknife 912 937 887 911 0.82 0.91
Independent  96.8  90.7 984 944 0.91 0.94
10-fold 903 912 894 902 0.80 0.90
BPB + Amph — PseAAC  Jackknife 89.1 904 879 89.1 0.78 0.89
Independent  96.8 90.7 984 944 091 0.94
10-fold 92.1 940 903 92.1 0.84 0.92
hybrid — all Jackknife 912 933 89.1 911 0.82 091
Independent 984 953 992 972 0.96 0.97

I BPB for Bi-Profile Bayes

2 DPC for Di-Peptide Composition

3 Amph-PseAAC for Amphiphilic Pseudo Amino Acid Composition
4 Bigram for PSSM based bigram features

5 hybrid-all for BPB + Bigram + DPC + Amph-PseAAC

constructed feature space. It is evident that BPB based hybrid
models possess higher discrimination power compared to
other individual feature spaces. This enhanced the learn-
ing capability of Linear-SVM that ultimately improved the
ensemble performance. In the next section, we are presenting
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Testing Acc  Sn Sp G-mean MCC  F-Score

10-fold 976 988 965 97.6 0.95 0.97
Ensemble  Jackknife 96.5 97.8 952 964 0.93 0.96

Independent 984 953 992 972 0.96 0.97

the performance of ensemble classification comprising of
multiple Linear Support Vector Machines.

C. ANALYSIS OF ENSEMBLE CLASSIFICATION

This study considers the first three hybrid models from
Table 4 for constructing Golgi-predictor: an ensemble of
Linear Support Vector Machines. The achieved results are
highlighted in Table 5.

The ensemble accuracy is highest among the outputs of
individual SVM classifications. That is why ensemble-based
predictions are always important because they provide reli-
able and more accurate results in any problem domain.

Through the 10-fold cross-validation protocol, Golgi-
predictor has achieved 97.6% ensemble accuracy thatis 5.5%

VOLUME 8, 2020



M. Tahir et al.: Discrimination of Golgi Proteins Through Efficient Exploitation

IEEE Access

BPB + Bigram PSSM without Oversampling

%®®000® @® €)
8
2

|

@

o))
4
. . %
0.4 0.8

PB + Amph-PseAAC without Oversampling

@000 @@

0.
0.
0.

0.

@
(%)

0.8
FIGURE 3. Hybrid feature spaces with and without oversampling.

higher than the accuracy value of stand-alone Linear-SVM on
hybrid-all features as shown in Table 4. Similarly, jackknife
testing accuracy is 5.3% higher that shows the significance
of ensemble method. From Table 5, the G-mean value of
97.6% 1is also promising. The F-score value of 0.97 shows
performance enhancement on the positive class. Similarly,
through the jackknife testing, the obtained performance accu-
racy, G-mean, and F-score values are 96.5%, 96.4%, and
0.96, respectively. Moreover, through the independent dataset
testing, Golgi-predictor achieved 98.4% accuracy, 97.2%
G-mean, and 0.97 F-score values. Improved predictions are
due to the differences in classifier’s learning capabilities,
which are different with different feature extraction strate-
gies. Each feature extraction strategy extracts different infor-
mation from protein sequences that affects the learning of
classifiers differently. When the predictions are combined,
the output results are improved.

V. PERFORMANCE COMPARISON
Comparative analysis of the proposed technique against the
existing techniques is presented in Table 6. The comparison
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is provided based on accuracy, sensitivity, specificity, and
MCC. In order to make the comparison more interesting,
we also calculated G-mean for the other methods, as shown
in Table 6. F-score values are provided for our work only.

Ding et al. [7] have computed results only through jack-
knife and independent dataset testing. In another work,
Ding et al. [8] reported their results only through jackknife
testing protocol. Yang et al. [9] reported the performance
predictions of their system using 10-fold cross-validation,
jackknife, and independent dataset testing protocols. They
achieved accuracy values of 90.1%, 88.5%, and 93.8%,
respectively, for the three testing protocols. The work pub-
lished by Ahmad er al. [4] have reported the highest per-
formance accuracies compared to the other mentioned tech-
niques. In another work by Ahmad and Hayat [10], MVFS
based method has achieved accuracy values of 95.8%, 98.1%,
and 94.0% through 10-fold cross-validation, jackknife, and
independent dataset testing protocols, respectively.

In the current paper, we proposed a Linear-SVM based
ensemble that outperformed the existing techniques in terms
of accuracy values through 10-fold cross-validation and
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TABLE 6. Performance comparison with the existing techniques.

Method Acc  Sn Sp G-mean MCC  F-Score
Ding et al. [7] - - -
Ding et al. [8] - - - - -
10-fold Yang et al. [9] 90.1 90.8 894 90.0 0.80
Ahmad et al. [4] 949 972 926 94.8 0.90 -
Ahmad and Hayat [10] 958 97.2 944 - 0.92 -
Cuietal. [11] 80.0 - - - - -
Zhou et al. [13] - - - - - -
Golgi-predictor 97.6 988 965 976 0.95 0.97
Ding et al. [7] 747  69.6 79.6 744 0.51
Ding et al. [8] 854 738 905 817 0.65
Jackknife Yang et al. [9] 88.5 889 88.0 884 0.76
Ahmad et al. [4] 949 972 926 94.8 0.90
Ahmad and Hayat [10] 98.1 98.6 97.7 - 0.96
Cuietal. [11] - - - - - -
Zhou et al. [13] 92.1 89.7 944 - 0.84 -
Golgi-predictor 96.5 978 952 964 0.93 0.96
Ding et al. [7] - - -
Ding et al. [8] - - - - -
Independent  Yang et al. [9] 93.8 923 941 93.1 0.82
Ahmad et al. [4] 948 940 939 939 0.86
Ahmad and Hayat [10] 94.0 814 96.8 - 0.84
Cuietal. [11] - - - - -
Zhou et al. [13] 865 98.1 750 - 0.75 -
Golgi-predictor 984 953 992 972 0.96 0.97

independent dataset testing protocols. However, it shows
slightly lower performance in case of jackknife testing
against the work of Ahmad and Hayat [10]. In case
of 10-fold cross-validation, our proposed model achieved
97.6% accuracy and outperformed the existing techniques
by 1.8% beating the previous highest accuracy reported by
Ahmad and Hayat [10]. The G-mean, which is considered a
balance measure in the presence of imbalanced data, has
produced better values compared to other methods. Simi-
larly, through jackknife testing, our proposed model obtained
96.5% accuracy that is 1.6% better than the previous highest
reported value. The G-mean value, in this case, is also highest.
Our proposed model also outperformed the existing state-
of-the-art methods using independent dataset testing. This
work achieved 98.6% accuracy and proved the efficiency of
our proposed ensemble based technique. Despite the majority
voting based ensemble, the hybrid-all feature space shown in
Table 4 has also outperformed the reported performance of
Yang et al. [9]. This shows the significance of our proposed
models.

VI. CONCLUSION

The proposed Golgi-predictor is a novel and reliable com-
putational model for the identification of sub-Golgi proteins.
We proposed the utilization of hybrid models in conjunction
with SMOTE oversampling technique that are exploited by
Linear-SVM for classification. The final output is obtained
by combining the predictions of multiple SVMs using the
majority voting approach.

The proposed Golgi-predictor has been validated for its
accuracy, reliability, and efficiency using three standard
testing protocols, including 10-fold cross-validation, jack-
knife testing, and independent dataset testing. Simulation
results demonstrated significant performance in classifying
the sub-Golgi proteins. The hybrid models exploited by indi-
vidual SVMs have shown marginal performance compared
to existing state-of-the-art methods. However, the majority
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voting based ensemble of SVMs has boosted the accuracy to
higher levels and outperformed the existing methods. Results
obtained through different testing protocols have proved that
the proposed Golgi-predictor is reliable and efficient that
could be used by researchers for drug development and diag-
nostic purposes. Since the predictions are based on hybrid
models as well as ensemble classification, it would be wor-
thy for future research to identify critical characteristics of
different feature extraction techniques specific to individual
protein sequences. This would help in identifying case-by-
case characteristics of individuals. We further add that the
overall accuracy may be improved by removing irrelevant
features using some feature selection technique that is also
helpful in reducing the computational complexity of a model.
Some of the recent works [46], [47] have demonstrated the
effectiveness of feature selection. In future, we intend to
enhance the prediction capability of our model using feature
selection techniques.
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