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ABSTRACT Control charts are a type of statistical tool used to control a production process in order to obtain
the quality products that can fulfill the demands of both the manufacturer and the consumers. In this paper,
we propose the TukeyMovingAverage-ExponentiallyWeightedMovingAverage control chart (MME-TCC)
to detect the change of average of the process with symmetric and asymmetric distribution and to compare
the efficiency in detecting the change of the MME-TCC to the MA,MME,MEM,MA-TCC andMEM-TCC
at the various change levels of the parameter. The criteria to measure the efficiency were average run length
(ARL), standard deviation of run length (SDRL), and median run length (MRL) which evaluated by using
Monte Carlo simulation (MC), The research results showed that the proposed control chart has the highest
efficiency in detecting the change when the change level was at −0.75 ≤ δ ≤ 0.75. However, if the change
of parameter increased (δ ≥ 1.00), the MME had more efficiency. In the case where the observation was
logistic distributions, the MA-TCC had more efficiency to detect the change. Moreover, from applying the
proposed control chart to two sets of real data, the mine explosion period in the UK during 1875-1951 and
data of diameter of the workpiece from an industrial factory, it was found that the MME-TCC was able to
more quickly detect the change than the other control charts.

INDEX TERMS Mixed control chart, Tukey moving average-exponentially weighted moving average
control chart (MME-TCC), average run length (ARL), Monte Carlo simulation (MC).

I. INTRODUCTION
Each type of business fulfills the demand of consumers dif-
ferently for their highest satisfaction, highest utilization and
most effective response to the customer demand. Therefore,
producing the quality products according to the standard is
a key factor of the business success. Quality control is sig-
nificant for mass production. Sometimes, the various sources
of raw materials make the quality different, which affects
the product quality directly, or the difference in the work-
men or their skills can influence the quality of products
as well. In any case, variation is the opponent of quality,
which is classified into two types: a common causes variation,
which is the mild variation that is normally occurs, and an
assignable causes variation that has severe impacts on the
production process. The cause of the second type of variation,
which might be machine, material, man, or method, must be
identified [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Statistical Process Control (SPC) plays an important role
in product inspection and quality control. The popular tool
that is used to control the SPC is the control chart, which is
applied in order to examine or control the production process
so that the variation is within the limit level. If the variation of
the production process is over the limit, the cause should be
identified. In 1931, Shewhart proposed the use of the control
chart [2], which was an efficient tool to examine the change
of a production process. It was classified into two types:
control charts for variables and attributes. The assumption of
Shewhart’s control chart was that the process should have the
normally and independently distributed, otherwise the control
chart would not detect the small changes. Thus, the Expo-
nentially Weighted Moving Average control chart (EWMA)
was proposed by Roberts [3] in 1959 and the Moving Aver-
age control chart (MA) by Khoo [4] in 2004 as alternative
control charts in order to detect the small changes. In addi-
tion, many researchers attach importance to the designing of
MA and EWMA charts with situations presented, for exam-
ple, Sukparungsee and Areepong [5], Chananet et al. [6],
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Sunthornwat et al. [7], Khan et al. [8], Aslam et al. [9],
Alghamdi et al. [10], etc.

Currently, the parametric control chart, which is a control
chart that uses a parameter, is popular to detect the change of
mean or standard deviation of the process. The disadvantage
of the parametric control chart is that the data depends on
this assumption about normality, homogeneity of variances,
independence, and as such the properties of these control
charts. In practical terms, the distribution of the collected
data from the production process is unknown or only the
distribution that has been identified but not the parameters
of a distribution. As a result, the non-parametric control chart
was proposed to resolve such problems.

In 2000, Ryan [11] proposed theArcsine, which is a control
chart that can detect the mean in a process very well. Later
on, Alemi [12] proposed the Tukey’s Control Chart (TCC)
in 2004, which is a control chart designed for observing the
data with one observation or subgroup size. Moreover, it can
efficiently detect the change of mean. Afterwards, Yang et al.
[13] proposed the Exponentially Weighted Moving Average
Sign control chart (EWMA Sign) in 2011, which is a control
chart to detect a small change without using the parameter,
and the Arcsine Exponentially Weighted Moving Average
Sign control chart (Arcsine EWMASign), which was adapted
from the EWMASign control chart using the Arcsine method
to transformation the data to the standard normal distribution
in order to detect the error of mean in a process. In 2012, Suk-
parungsee [14] studied the strength of TCC for the data with
normal and non-normal distributions and found that TCC had
better efficiency to detect the larger changes than Shewhart’s
chart and EWMA. Then, in 2014, Khaliq and Riaz [15] pro-
posed the Tukey-Cumulative Control Chart (TCC-CUSUM)
to detect the change of average when the process had the sym-
metric and asymmetric distribution. The proposed control
chart had higher efficiency in detecting the change than TCC
and CUSUM. In 2016, Khaliq et al. [16] presented the Expo-
nentially Weighted Moving Average-Tukey’s Control Chart
(TUKEY-EWMA), which was developed from the TCC; it
is a combination of EWMA and TCC using the average
run length as the criteria. The results showed that TUKEY-
EWMA has better efficiency that both TCC and EWMA.
Later, in 2017, Muhammad Riaz et al. [17] proposed the
Tukey EWMA-CUSUM by comparison with the Shewhart,
EWMA, CUSUM, and TCC charts, as well as several other
variants such as the mixed EWMA-CUSUM, Tukey EWMA
and Tukey CUSUM charts. The results indicated that the
proposed control chart had higher efficiency in detection of
the change. Then, Mongkoltawat et al. [18] proposed the
Exponentially Weighted Moving Average-Tukey’s control
chart for Moving Range and Range to detect the change of
variation of processes with the symmetric and asymmetric
distribution using ARL as the criteria. It was found that the
efficiency of the proposed control chart was better than that
of the EWMA and TCC at all change levels. Besides, many
authors developed and designed nonparametric control chart
in several situations including, for instance, Abbas et al. [19],

Riaz et al. [20], Shafqat et al. [21], Chakraborti and Graham
[22], and Mabude et al. [23].
In the previous research studies, none of them combined

the advantages of MA, EWMA and TCC in order to detect
the change of mean in the process. Hence, the researcher has
proposed the MME-TCC control chart to detect the change
of mean of the process have the symmetric and asymmetric
distribution and to compare it with the MA, MME, MEM,
MA-TCC and MEM-TCC control charts regarding the effi-
ciency in detecting the change of ARL1, SDRL and MDRL.
The control chart having the lowest ARL1, SDRL andMDRL
are considered as the control chart with the best efficiency.
Furthermore, it could be applied to the real data, which were
the mine explosion period in the UK during 1875-1951 and
data of diameter of the workpiece from an industrial factory.

II. DESIGN STRUCTURES OF CONTROL CHARTS
The control charts used in this research included the para-
metric control charts, which were EWMA, MA, MME and
MEM charts and the non-parametric control charts, which
were MA-TCC, MEM-TCC and MME-TCC. This research
studied the efficiency in detecting change of the MA, MME,
MEM, MA-TCC, MEM-TCC and MME-TCC as follows.

A. EXPONENTIALLY WEIGHTED MOVING
AVERAGE (EWMA) CONTROL CHART
The EWMA control chart was proposed by Robert. It is a
chart to quickly detect the change of parameter in the process.
The statistic of EWMA is as follows.

Zi = λXi + (1− λ)Zi−1, i = 1, 2, . . . (1)

where Zi is the statistic of the EWMA control chart at i, λ is
the weighted parameter of the previous data (0 ≤ λ ≤ 1) and
Xi is the observation at time i.. The calculation for the upper
control limit (UCL) and lower control limit (LCL) of EWMA
can be calculated as follows.

UCL/LCL = µ0 ± Kσ

√(
λ

2− λ

) [
1− (1− λ)2i

]
(2)

From equation (2), i→∞, then (1− λ)2i → 0. The control
limits of the EWMA control chart are:

UCL/LCL = µ0 ± Kσ

√(
λ

2− λ

)
(3)

where K is the coefficient of the control limits of EWMA
control chart, µ0 is the mean of the process and σ is the
standard deviation of the process when it is under control.

B. MOVING AVERAGE (MA) CONTROL CHART
The MA control chart as the most appropriate tool for detect-
ing a small change. In the moving average control chart,
the width (w) and the statistics of the MA control chart at i
are calculated from the moving average at each w. There are
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two cases as follows:

MAi =


Xi + Xi−1 + Xi−2 + . . .

i
, i < w

Xi + Xi−1 + . . .+ Xi−w+1
w

, i ≥ w.
(4)

The calculation of the upper control limit (UCL) and the
lower control limit (LCL) of MA control chart are following

UCL/LCL =


µ0 ±

K1σ
√
i
, i < w

µ0 ±
K1σ
√
w
, i ≥ w.

(5)

where K1 is a coefficient of the control limits of the MA
control chart, µ0 is the mean of the process, and σ is the
standard deviation of the process when it is under control.

C. MIXED MOVING AVERAGE - EXPONENTIALLY
WEIGHTED MOVING AVERAGE CONTROL
CHART (MME CHART)
This chart is a combination of the MA and EWMA control
charts [24], [25]. In the mathematical model developed for
the MME chart design, the plot statistic of the MA chart is
used as an input to the EWMA chart (equation 1). Therefore,
the statistic of the MME chart is as follows:

Zi = λMAi + (1− λ)Zi−1, i = 1, 2, . . . (6)

where λ is the weighting parameter of the data in the past
having the values from 0 to 1, Z0 is the starting value and is
set to be equal to the target mean µ0, and the UCL and LCL
of the MME chart are as follows:

UCL/LCL = µMA ± K2

√√√√(σ 2
MA

w

)(
λ

2− λ

)
(7)

where K2 is the coefficient of the control limits for the MME
chart,µMA is the mean of the process and the variance is σ 2

MA.

D. MIXED EXPONENTIALLY WEIGHTED MOVING AVERAGE
-MOVING AVERAGE CONTROL CHART (MEM CHART)
Similarly, the MEM chart was generated from combining the
EWMA and MA charts. Therefore, the statistic of the MEM
chart is as follows:

MAi =


Zi + Zi−1 + Zi−2 + . . .

i
, i < w

Zi + Zi−1 + . . .+ Zi−w+1
w

, i ≥ w.
(8)

Thus, the control limits for MEM chart can be represented as
follows.

UCL/LCL =


µz ± K3

√(
σ 2
z

i

)(
λ

2− λ

)
, i < w

µz ± K3

√(
σ 2
z

w

)(
λ

2− λ

)
, i ≥ w.

(9)

where K3 is a coefficient of control limits of MEM control
chart, µz is the mean of the process, and variance is σ 2

z .

E. TUKEY’S CONTROL CHART (TCC)
This is a non-parametric control chart where the distribution
of the data is unknown or the subsample (n) is 1. The control
limits are shown in equation (10).

UCL = Q3 + K (IQR)

LCL = Q1 − K (IQR) (10)

where Q1 and Q3 are the first and third quartiles, IQR is the
quartile range (Q3 −Q1) and K is a coefficient of the control
limits of TCC.

F. MIXED MOVING AVERAGE-TUKEY’S CONTROL
CHART (MA-TCC)
The MA-TCC control chart was proposed by Taboran et al.
[26]. It is a non-parametric control chart that combines the
MA and TCC control charts which use the statistic of MA,
as shown in equation (4), and the control limit is of the TCC.
Therefore, the control limits of theMA-TCC control chart for
i ≥ w are as given by equation (11).

UCL = Q3 + K4(IQR)
1
√
w

LCL = Q1 − K4(IQR)
1
√
w

(11)

where i < w, then the control limits are as in equation (12).

UCL = Q3 + K4(IQR)
1
√
i

LCL = Q1 − K4(IQR)
1
√
i

(12)

where K4 is the coefficient of the control limits of MA-TCC,
Q1and Q3 are the first and third quartiles, IQR is the quartile
range (Q3 − Q1).

G. MIXED TUKEY EXPONENTIALLY WEIGHTED MOVING
AVERAGE - MOVING AVERAGE CONTROL
CHART (MEM-TCC)
The MEM-TCC control chart was design from combining
the MEM and TCC control charts which use the statistic of
MEM, as in equation (8), the UCL and LCL are of MEM-
TCC, which results in the expectation that the data is the same
as that of TCC, and the variance will be applied between
MEM and TCC. Therefore, the control limits of the MEM-
TCC control chart for i ≥ w are as given by equation (13)

UCL = Q3 + K5 (IQR)

√(
1
w

)(
λ

2− λ

)

LCL = Q1 − K5 (IQR)

√(
1
w

)(
λ

2− λ

)
(13)

where i < w, then the control limits are as in equation (14).

UCL = Q3 + K5 (IQR)

√(
1
i

)(
λ

2− λ

)
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TABLE 1. Comparative ARL, SDRL and MRL performance of MA, MME, MEM, MA-TCC, MEM-TCC and MME-TCC control charts for normal distribution.

LCL = Q1 − K5 (IQR)

√(
1
i

)(
λ

2− λ

)
(14)

where K5 is the coefficient of the control limits for the
MEM-TCC chart, λ is the weighting parameter of the data
in the past having the values from 0 to 1, w is the width
control chart, Q1 and Q3 are the lower and upper quartiles
respectively, and IQR is the inter-quartiles range.

H. MIXED TUKEY MOVING AVERAGE-EXPONENTIALLY
WEIGHTED MOVING AVERAGE CONTROL
CHART (MME-TCC)
Likewise, theMME-TCC control chart is the combinesMME
with TCC control charts which uses the statistics of MME,
as showed in equation (6). Therefore, the control limits of the
MME-TCC control chart are as in equation (15)

UCL = Q3 + K6 (IQR)

√(
1
w

)(
λ

2− λ

)

LCL = Q1 − K6 (IQR)

√(
1
w

)(
λ

2− λ

)
(15)

whereK6 is the coefficient of the control limits ofMME-TCC
chart which is consistent with ARL0 = 370 obtained from
MC simulation.

III. EFFICIENCY COMPARISON CRITERIA
The popular criteria used to evaluate the efficiency of a con-
trol chart is the Average Run Length (ARL) [27]. The ARL
value measures the efficiency of the control chart with regard
to detecting the amount of waste in the production process,
which is determined by the quickness of the detection of
the observed value outside the control when the average
of the process changes. The control chart that is able to detect
the change quickly is the efficient one because it allows
for the quick detection, so the causes and solutions can be
identified immediately. The ARL is the average number of
points that must be plotted before a point indicates an out-of-
control condition when ARL0 is at the in-control state and
ARL1 is at the out-of-control state. ARL0 and ARL1 can be
calculated as follows. At the in-control state, ARL0 = 1

/
ρ,

where ρ is a probability of the Type I error, which means
the probability that any point exceeds the control limits and
ARL1 = 1

/
(1− γ ), where γ is the probability of the Type II

error, which means the probability that the process in under
the control limits when the process changes. In addition,
the criteria for measuring the efficiency of the control chart
are the standard deviation of the run length (SDRL) and
median run length (MRL). For performance comparisons in
cases the observation was asymmetric distribution, the MRL
should be used as a measure because it is less affected by
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TABLE 2. Comparative ARL, SDRL and MRL performance of MA, MME, MEM, MA-TCC, MEM-TCC and MME-TCC control charts for logistic distribution.

the skewness of the run length distribution [28]. Besides,
there are other criteria using for comparing the efficiency
of the control chart, such as chattering, false detection rate,
missed detection rate, average detection delay, and etc. Some
researchers utilized such criteria in their studies e.g. Xu et al.
[29] and [30], Aslansefat et al. [31], and Naghoosi et al. [32].
This research applied Monte Carlo Simulation (MC) to

evaluate of ARL, SDRL and MRL, MC is the basic approach
that is understandable. The MC can be calculated as follows.

ARL =

M∑
i=1

RLi

M
(16)

SDRL =
√
E (RL)2 − ARL2 (17)

MRL = Median (RL) (18)

where RLi represents the examined sample before the process
is out of the control limits for the first time. In the simulation
at round i, M represents the repetition number of the experi-
ment whereM = 200,000.
The ARL at the in-control process is represented with

ARL0, which means the number of average sample sets to be
used in the examination until any of the statistics is out of the
control limits in the situation where the average of process
does not change or is at the default value (α0) The ARL of

the out-of-control process is represented with ARL1, which
means the number of the average sample sets to be used in
the examination until any of the statistics are out of the control
limits under the situation that the average of process changes
at different levels (α1) .

IV. RESEARCH RESULTS
The objectives of this research were to compare the quickness
in detecting the change of mean of the process between the
proposed control chart and MA, MME, MEM, MA-TCC and
MEM-TCC control charts under the four distributions pro-
cesses, which were symmetrical distributions: Normal(0,1)
and Logistic(6,2) distributions, and asymmetric distributions:
Exponential(1) and Gamma(4,1) distributions. The parameter
(α) of the process was set at α = α0 when it was an in-control
process and at α = α1 when it was an out-of-control process
and α1 = α0 + δσ0, where δ referred to the amount of shift,
α1 was the shifted mean, α0 was the in-control mean and, σ0
was the controlled value of the process standard deviation.
The evaluation criteria for the efficiency of the control chart
was considered from the ARL, SDRL and MRL. The control
chart with the lowest ARL, SDRL and MRL was the most
efficient control chart.

When the observation was Normal(0,1) distribution,
ARL0 = 370, λ = 0.25 it was found that the MME-TCC
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TABLE 3. Comparative ARL, SDRL and MRL performance of MA, MME, MEM, MA-TCC, MEM-TCC and MME-TCC control charts for exponential distribution.

TABLE 4. Comparative ARL, SDRL and MRL performance of MA, MME, MEM, MA-TCC, MEM-TCC and MME-TCC control charts for gamma distribution.

control chart where K6 = 8.765 was the most efficient
control chart to detect the change at the±0.05,±0.10,±0.25,
±0.50 and±0.75 levels. while the MME control chart where
K2 = 7.632 was the most efficient control chart to detect the
change at±1.00,±1.50,±2.00,±3.00 and±4.00, when con-
sidering the result of the SDRL and MDRL, it was consistent
with ARL1, as shown in Figure 1 and Table 1.
In Figure 2 and Table 2, where the observationwas Logistic

(6,2) distribution, ARL0 = 370 and λ = 0.25, it is shown that
theMME-TCC control chart whereK6 =12.120was the most
efficient control chart to detect the change at ±0.05, −0.50,
−0.75, −1.00, −1.50, −2.00, −3.00, and −4.00, whereas
the MA-TCC control chart where K4 = 3.965 was the most
efficient one to detect the change at±0.10,±0.25, 0.50, 0.75,
1.00, 1.50, 2.00, 3.00 and 4.00, the result of the SDRL and
MDRL, it was correspond to ARL1 values.

FIGURE 1. ARL curves of MA, MME, MEM, MA-TCC, MEM-TCC and
MME-TCC control charts at ARL0 = 370, w = 5 and λ = 0.25 for normal
distribution.

As seen in Table 3 and Figure 3, where the observation
was Exponential (1) distribution, ARL0 = 370 and λ =
0.25, it was found that the MME-TCC control chart where
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TABLE 5. ARL performance of MA, MME, MEM, MA-TCC, MEM-TCC and MME-TCC charts for normal distribution by varying w and set ARL0 = 370.

TABLE 6. ARL performance of MA, MME, MEM, MA-TCC, MEM-TCC and MME-TCC charts for exponential distribution by varying w and set ARL0 = 370.

K7 = 11.090 was the most efficient control chart to detect
the change at 0.05, 0.10, 0.25, 0.50 and 0.75, while the MME
control chart where K2 = 4.424 was the most efficient

one to detect the change at 1.00, 1.50, 2.00, 3.00, and 4.00,
the result of the SDRL andMDRL, it was consistent to ARL1
values.
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FIGURE 2. ARL curves of MA, MME, MEM, MA-TCC, MEM-TCC and
MME-TCC control charts at ARL0 = 370, w = 5 and λ = 0.25 for logistic
distribution.

FIGURE 3. ARL curves of MA, MME, MEM, MA-TCC, MEM-TCC and
MME-TCC control charts at ARL0 = 370, w = 5 and λ = 0.25 for
exponential distribution.

As shown in Table 4 and Figure 4, where the observation
was Gamma(4,1) distribution, ARL0 = 370 and λ = 0.25,
the MME-TCC control chart where =13.880 was the most
efficient control chart to detect the change at 0.05, 0.10, 0.25,
0.50, 0.75 and 1.00, whereas the MME control chart where
K2 = 2.0005 was the most efficient one to detect the change
at 1.50, 2.00, 3.00, and 4.00, the result of the SDRL and
MDRL, it was consistent to ARL1 values.
Furthermore, the researcher considered the efficiency of

average change value detection of each control chart by
varying, w = 2, 5 and 10 since all control charts used the
moving average based designs. The results in Table 5 and
Table 6 showed that if the observed value had normal distribu-
tion and exponential distribution, the results were consistent;
when the value of w increased, ARL of all control charts
decreased. When comparing the efficiency of the proposed
control chart to other control charts, it was found that the
increasing value ofw provided the lower efficiency of average
change value detection. In contrast, MME chart detected the
average change value quicker, especially when w = 10.
It was obvious that MME chart was more efficient in change
detection than other control charts at all change levels.

V. APPLICATION
In this section, the proposed control chart will be performed,
considering two set data as follows.

A. THE DIAMETER OF THE WORKPIECE FROM AN
INDUSTRIAL FACTORY
The researcher applied the proposed control chart to data
of 40 sets of a diameter of the workpiece from an industrial

FIGURE 4. ARL curves of MA, MME, MEM, MA-TCC, MEM-TCC and
MME-TCC control charts at ARL0 = 370, w = 5 and λ = 0.25 for gamma
distribution.

FIGURE 5. Graphical displays of the illustrative of the diameter of the
workpiece from an industrial factory of parametric control charts: (a) MA
chart, (b) MEM chart and (c) MME chart.

factory that had the normal distribution and target value was
2.0 mm. The mean diameter of the workpiece has been esti-
mated parameter was 1.95 mm., the standard deviation was
0.03 mm., and at the 33rd change of the process, it showed
the mean change of diameter was 1.67 mm [33].

The data sets: 1.94, 1.98, 1.98, 1.98, 1.98, 1.95, 1.96, 1.97,
1.94, 1.96, 1.93, 1.97, 1.98, 1.94, 1.94, 1.90, 1.94, 1.98, 1.93,
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FIGURE 6. Graphical displays of the illustrative of the diameter of the
workpiece from an industrial factory of non-parametric control charts:
(a) MA-TCC chart, (b) MEM-TCC chart and (c) MME-TCC chart.

1.93, 1.94, 1.92, 1.94, 1.92, 1.91, 1.92, 1.91, 1.94, 1.90, 1.91,
2.00, 1.94, 2.01, 1.95, 1.94, 1.96, 1.95, 2.00, 1.96, 1.97.

The data generated the MA, MME, MEM, MA-TCC,
MEM-TCC, and MME-TCC control charts from equations
(5), (7), (9), (12), (13), (14) and (15) as shown in graphical
results as Figures 5-6. For this case study, the set of data that
had the normal distribution showed that the proposed chart
was able to detect the change from the 5th, the MME and
MEM-TCC charts were able to detect at 6th, the MEM chart
can be detected at 7th, the MA andMA-TCC charts were able
to detect at 27th.

B. THE MINE EXPLOSION PERIOD IN THE
UK DURING 1875-1951
The second set was 100 sets of data of the mine explosion
period in the UK during 1875-1951 with exponential distri-
bution showed that there were ten or more people died from
the process.When the process had not changed, the mean was
129 days/time. At the 51st change of the process, it showed
339 days/time [34].

FIGURE 7. Graphical displays of the illustrative of the mine explosion
period in the UK during 1875-1951 of parametric control charts: (a) MA
chart, (b) MEM chart and (c) MME chart.

The data sets: 378, 36, 15, 31, 215, 11, 137, 4, 15, 72, 96,
124, 50, 120, 203, 176, 55, 93, 59, 315, 59, 61, 1, 13, 189,
345, 20, 81, 286, 114, 108, 188, 233, 28, 22, 61, 78, 99, 326,
275, 54, 217, 113, 32, 23, 151, 361, 312, 354, 58, 275, 78, 17,
1205, 644, 467, 871, 48, 123, 457, 498, 49, 131, 182, 255,
195, 224, 566, 390, 72, 228, 271, 208, 517, 1613, 54, 326,
1312, 348, 745, 217, 120, 275, 20, 66, 291, 4, 369, 338, 336,
19, 329, 330, 312, 171, 145, 75, 364, 37, 19.

The performance in detecting amean of themine explosion
period in the UK from 1875-1951of the MA, MME, MEM,
MA-TCC, MEM-TCC, and MME-TCC control charts are
demonstrated in term of graphical results as Figures 7-8.
The performance of the proposed chart can detect a mean
change of the mine explosion period in the 11th is superior
to MEM-TCC control chart which can detect at 12th whereas
the MME and MEM charts were able to detect a change
of the mine explosion at 51th, the MA chart was able to
detect change at 54th, the MA-TCC control chart was able
to detect a change of the mine explosion at 55th. There-
fore, it could be concluded that MME-TCC was the quickest
control chart to detect the change of the mine explosion
period in the UK between 1875-1951, where w = 5 and
λ = 0.25.
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FIGURE 8. Graphical displays of the illustrative of the mine explosion
period in the UK during 1875-1951 of non-parametric control charts:
(a) MA-TCC chart, (b) MEM-TCC chart and (c) MME-TCC chart.

TABLE 7. Comparison between proposed chart with MA, MME, MEM,
MA-TCC and MEM-TCC charts for symmetric and asymmetric distribution.

VI. CONCLUSION AND RECOMMENDATIONS
From the comparison of the performance of the proposed
control chart with the MA, MME, MEM, MA-TCC and
MEM-TCC control charts based on the ARL1, SDRL and
MRL as the criteria to measure the efficiency, the results illus-
trated that if the process has the symmetric and asymmetric
distribution, the average run length (ARL) was 370 when the
process was in the in-control process. The research results
could be summarized in Table 7.

With the normal distribution, MME-TCC was more effi-
cient to detect the change than other control charts at−0.75 ≤
δ ≤ 0.75. However, when δ ≤ −1.00 and δ ≥ 1.00, it was
found out that MME chart had better efficiency than other
control charts.

For the exponential distribution and gamma distribution,
MME-TCC was more efficient detection than other control
charts at 0.05 ≤ δ ≤ 0.75. However, when δ ≥ 1.00,
MME chart was more efficient to detect the change than other
control charts, which was in line with the normal distribution.

For the logistic distribution, it provided the different
results. When the parameter changes negatively (δ ≤ −0.05),
MME-TCC had better detection efficiency than other control
charts. On the other hand, it the parameter change positively
(δ ≥ 0.05), MA-TCC was the quickest chart to detect the
change of average at all change levels. Additionally, it was
found out that if w value increased, ARL of all control charts
comparing to the proposed chart would decreased. It was in
line with the previous research [25] which discovered that if
w value was higher, the detection efficiency of the proposed
control chart would decreasewhen comparing to other control
charts. In contrast, the higher value of w supported the better
efficiency of MME chart. In particular, when w = 10, MME
chart was the quickest control chart to detect the change
at all change level. The application results of the proposed
control chart to the two sets of data indicated that the proposed
control chart was applicable to various data and was efficient
to detect the change of both data sets (normal and non-normal
distributions). However, it depended on set the parameter of
each control chart.

Besides, the researchers compared ARL performance of
proposed MME-TCC chart vs. Tukey-EWMA [16], Tukey-
CUSUM [15] and Tukey EWMA-CUSUM [17] charts under
the Normal (0,1) distribution, ARL0 = 370 and the numerical
ARL1 where δ is a shift sizes:−4.00 ≤ δ ≤ 4.00. The numer-
ical results found the performance of the proposed chart
performed better than the Tukey-EWMA, Tukey-CUSUM
and Tukey EWMA-CUSUM charts for all magnitudes of
change, except for at δ = 0.25, the Tukey EWMA-CUSUM
performed better than the proposed chart. This would be an
alternative to the non-parametric control charts that can be
applied to other fields such as health care, epidemiology,
environmental science, etc. The further research studies may
extend the scope to examine the method of efficiency com-
parison of the control charts, which can then be applied to the
data with different distributions.
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