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ABSTRACT This paper focuses on the tracking control problem of Magnetic Levitation System (MLS).
MLS is highly unstable nonlinear system, in the process of operation, MLS needs to have strong robustness
and anti-interference ability. Due to disturbance and parameter uncertainties in MLS, it is complex to obtain
the exact dynamics of MLS, and it is difficult to design a suitable controller. The dynamic equation of the
system is established by Lagrange equation, and then we propose an adaptive Sliding Mode Control (SMC)
based on Radial Basis Function Neural Network (RBFNN). Because of the parameter uncertainties and
disturbance in MLS, RBFNN is used to approximate the unknown dynamics in MLS. The stability of the
closed-loop system is strictly proved by using the Lyapunov stability theory, which can achieve the uniform
ultimate boundedness (UUB) of the signals of the closed-loop MLS. MATLAB environment is used to
verify the performance of the proposed controller. Considering disturbance, parameter change, or unmodeled
dynamics inMLS, proposed controller is compared with other nonlinear controllers, simulation results verify
the effectiveness of the proposed approach.

INDEX TERMS Tracking, magnetic levitation system (MLS), neural network, Lyapunov stability.

I. INTRODUCTION
MLS is a highly unstable nonlinear system with single
input and single output (SISO) [1]–[5]. The basic principle
of magnetic levitation system is to balance the gravity of
electromagnet through the electromagnetic force generated
by current. The mathematical model is represented by the
third-order nonlinear differential equation. The main purpose
of MLS control is to make the system have strong tracking
and anti-interference ability. MLS has the advantages of low
energy consumption, no friction and so on. It has been widely
used in engineering and education, such as magnetic levita-
tion bearing [6], magnetic levitation train [7]–[9], magnetic
levitation wind turbines [10], etc. The controller design is
very important for engineering application, and the control
of MLS is an important and attractive research direction in
the control field.

In recent years, the problem of tracking control has been
widely studied [11], [12], for instance, a fuzzy tracking con-
troller is applied to completely non-affine uncertain switched
pure-feedback nonlinear systems [13]. Reference [14] con-
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siders the problem of fuzzy output-feedback tracking control
for switched stochastic nonlinear systems in pure-feedback
form. Reference [15] considers the quantized static out-
put feedback dissipative tracking control problem for a
class of discrete-time nonlinear networked systems based on
Takagi-Sugeno fuzzy model approach. In order to improve
the tracking ability of MLS, a variety of control methods
have been applied to the control of MLS. Parameter esti-
mation and generalized proportional integral control (GPIC)
are proposed [16], and the exponential asymptotic stability
of the system is guaranteed. Under the premise of nonlinear
model, a hybrid control based on disturbance observer is
designed to cancel the mismatched disturbance in the system
and improves the anti-interference ability of the system [17].
A controller based on feedback linearization model is devel-
oped, and the control effect is better than the traditional
cascade control of voltage and current [18]. The exponential
tracking problem of MLS is studied under the condition of
parameter uncertainty and external disturbance [19]. A Frac-
tional Order PID controller is proposed, and the parameters
of the controller are optimized by ant colony algorithm [20].
An Integral Backstepping controller is used to realize
the suspension control, and the steady-state error of the
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system is reduced [21]. According to the parameter estima-
tion observer, the problem of sensorless state observation of
MLS is solved [22]. The chattering in traditional slidingmode
control is eliminated by using supertwisting algorithm, and
the asymptotic stability of tracking error is guaranteed in the
presence of time-varying uncertain parameters and external
disturbances [23]. Considering the nonlinear characteristics
of the nonlinear MLS and the actual working environment,
if the uncertainty or disturbance is large, the performance
of MLS will deteriorate rapidly, so it is necessary to design
a more robust controller. RBFNN Sliding Mode Control
(RBFNNSMC) is proposed to deal with the unknown dynam-
ics of MLS. Due to the universal approximation ability of
neural networks, it is usually used to approximate unknown
functions in control systems [24]. A RBFNN is directly used
to design controller to deal with disturbance and parameters
change in coupled motor drives [25]. Fuzzy wavelet neural
network is proposed to improve tracking control accuracy
of manipulator [26]. Nonlinear dynamical model of friction
is approximated by neural networks [27]. In order to deal
with the main issues including the communication time delay,
various nonlinearities and uncertainties, an RBF adaptive
controller is addressed for nonlinear bilateral teleoperation
manipulators [28]. Reference [29] proposes a force sensor-
less control scheme based on neural network for interaction
between robot manipulators and human arms in physical
collision.

The main contributions of this paper include the following.
An affine nonlinear model ofMLS is established by Lagrange
equation. In order to reduce the complexity of the model,
the magnitude of magnetic flux is selected as the independent
variable. The conventional methods need to use the precise
mathematical model of MLS, but the precise model is not
easy to establish. The conventional methods are sensitive
to the system parameter change and disturbance. The pro-
posed method does not need to know the precise model of
the system, RBFNN are used to approximate the unknown
dynamics in MLS. The proposed controller guarantees that
the signals of the closed-loop MLS are UUB. Parameter
change, disturbance, or unmodeled dynamics will be used
to analyze the robustness and anti-interference ability of the
proposed controller later.

The rest of this paper is arranged as follows: Section II
establishes the affine nonlinear model of MLS by using
Lagrange equation, in order to reduce the complexity of the
model, the magnitude of magnetic flux is selected as variable.
the input-output feedback linearization controller is designed
in Section III. RBFNNSMC is proposed and system’s stabil-
ity is proved in Section IV. Section V analyzes the simulation
results of closed-loop MLS. Section VI is the conclusion.

II. MATHEMATICAL MODELING OF MLS BASED ON
LAGRANGE EQUATION
Generally, Newton’s law and Kirchhoff’s law are used to
establish the nonlinear model of MLS. Considering the
advantages of Lagrange equation modeling, that is, only

FIGURE 1. MLS model.

TABLE 1. Symbols of MLS in Fig. 1.

considering the energy of the whole system, and selecting
reasonable generalized coordinates for MLS, modeling the
system from the angle of energy can reduce the difficulty
of the problem, and quickly get the nonlinear differential
equation of the system. A simple single degree of freedom
MLS block diagram is shown in Fig. 1. table 1 shows the
parameters of Fig. 1.
Assumption 1: The magnetic resistance of the magnetic

circuit formed by electromagnet and guide rail is mainly
concentrated in the air gap between them.
Assumption 2: Ignore flux leakage.
It can be seen from Fig. 1 that the input is voltage, and

the current in the coil is used to generate electromagnetic
force. The electromagnetic force keeps the controlled plant
suspended at a given position. By changing the voltage,
different electromagnetic forces are generated to make the
system suspend in different positions. The main purpose of
control is to make the system have strong tracking ability and
robustness.

It can be obtained from Assumption 1

RT =
2z
µ0A

(1)

204564 VOLUME 8, 2020



W. Yang et al.: Tracking Control of MLS Using Model-Free RBFNN Design

From Assumption 2, we get magnitude of magnetic flux λ

λ = N8T = Lµ(z)i (2)

where the coil winding inductance

Lµ(z) =
N8T

i
=
N
i
∗
Ni
RT
=
µ0N 2A

2z
(3)

Electromagnetic energy of the system is

E(z, i) =
1
2
Lµ(z)i2 (4)

From (4), we get f0

f0(z, i) = −
∂E
∂z
=
µ0N 2A

4

[
i
z

]2
(5)

Since the Lagrange equation is used in the modeling pro-
cess, the following will briefly introduce the Lagrange equa-
tion. For an energy dissipative system with degree of freedom
n, the Lagrange equation with dissipation function is [30]

d
dt

(
∂L
∂ ṙj

)
−
∂L
∂rj
= −

∂G
∂ ṙj
+ Qj j = 1, . . . .., n (6)

where L is the Lagrange function, r and ṙ are the generalized
coordinates and their derivatives respectively, G is the dissi-
pation function of the system, and Qj is a generalized force
that is non-potential force except the dissipative force.

Take the MLS as the research plant, According to (6), r1 =
z and r2 = q are the generalized coordinate and ż and q̇ = i
are corresponding derivative.

The kinetic energy of MLS can be written as

T =
1
2
mż2 + E(z, i) (7)

The potential energy of MLS can be written as

V0 = −mgz (8)

From (7)-(8), we get

L = T − V0 =
1
2
mż2 + E(z, i)+ mgz (9)

The energy dissipation function in MLS is

G =
1
2
R0i2 (10)

For generalized coordinates r1 and r2, we have

Q1 = 0, Q2 = u (11)

Substituting (9)-(11) into (6), we get (12)
d
dt

(
∂L
∂ ż

)
−
∂L
∂z
= −

∂G
∂ ż
+ Q1

d
dt

(
∂L
∂ q̇

)
−
∂L
∂q
= −

∂G
∂ q̇
+ Q2

(12)

Equation (12) can be written as
z̈ = −

ki2

4mz2
+ g

i̇ =
2z
k
(−R0i+ u)+

i
z
ż

(13)

Combining (2)-(3) and (12)-(13), we have{
z̈ = aλ2 + g
λ̇ = bλz+ u

(14)

where a = − 1
km , b = −

2R0
k , k is constant, k = µ0AN 2, µ0 is

permeability of vacuum.
Defining state variables

x = [x1, x2, x3]T = [z, ż, λ]T (15)

Remark 1: According to (12)-(15), selecting λ instead of i as
variable reduces the complexity of the model [31] simplifies
the complicated mathematical derivation in the process of
controller design. In (14), λ2 and λz are nonlinear function,
it shows that MLS is nonlinear system.

III. FEEDBACK LINEARIZATION CONTROL OF MLS
The SISO nonlinear system in the form of (16) is considered.

y(n) = χ
(
y(n−1), y(n−2), . . . , ẏ, y, u

)
(16)

where y is the system output, u is the control variable, and χ
is continuous function.

The feedback linearization control law can be easily
obtained by (16), and the expected closed-loop system is
shown in (17)

y(n) = k0 (xr − y)− k1ẏ− · · · − kn−1y(n−1) (17)

where k0, k1, . . . , kn−1 is the expected coefficient, xr is refer-
ence input.

According to (16)-(17), we have

χ
(
y(n−1), y(n−2), . . . , ẏ, y, u

)
= k0 (yr − y)− k1ẏ− · · · − kn−1y(n−1) (18)

From (18), we get

u = ψ
(
y(n−1), y(n−2), . . . , ẏ, y− yr

)
For the MLS in this paper, we have

y = x1 (19)

Taking time derivative of (19)

ẏ = ẋ1 = x2 (20)

Taking time derivative of (20)

ÿ = ẋ2 = ẍ1 = ax23 + g (21)

Taking time derivative of (21)

y = ẍ2 = x1 = 2ax3(bx3x1 + u) = f (x)+ l(x)u (22)

where f (x) = 2abx1x23 , l(x) = 2ax3, The control u appears on
the right side of (22). Design the ideal closed-loop differential
equation as shown in (23)

...
y = k0 (xr − y)− k1ẏ− k1ÿ (23)
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TABLE 2. Controller parameters corresponding to different Ts.

Defining error e

e = xr − x1 (24)

The basic objective of control is to ensure that the MLS can
track reference input within limited time t0, i.e., e → 0,
as t → t0.
From (22)-(24), we have

f (x)+ l(x)u = k0 (yr − y)− k1ẏ− k2ÿ

u =
1
l
(k0 (yr − y)− k1ẏ− k2ÿ− f )

=
1
l
(−f +

2∑
i=0

kie(i)) (25)

where e(i) = d (i)e
dt (i)

. The feedback linearization control struc-
ture diagram of MLS is shown in Fig. 2.

Feedback linearization is generally combined with the
classical pole placement method to design the controller.
According to the pole assignment method, the settling time
is defined as Ts, and β = 6

/
Ts, controller satisfies

[k0, k1, k2] = [β3, 3β2, 3β], Different Ts corresponding con-
trollers are shown in table 2.

In Fig. 3, zr is the reference input. It can be seen from table
2 that when Ts = 0.2, the coefficient of the controller is
the largest, the initial overshoot of the system response is the
smallest; when Ts = 0.4, the coefficient of the controller is
the smallest, the corresponding initial overshoot of the system
response is the largest. Assuming that the system has a change
in model coefficient, the specific change is shown in (26).
The curve z1 is most affected by the change of parameters,
and the maximum change is 0.0016m. Curve z3 is the least
affected by parameter change, and its maximum variation is
0.0005m. Although the decrease of Ts can reduce the initial
overshoot and the stronger the anti-interference ability, but
we can’t set the settling time of the system to zero, which
is not in line with the actual situation. In the process of
feedback linearization control design, the accurate model of
the system is needed, which can’t deal with the problems
such as unknown dynamics and parameters change. In the
next section, RBFNN combined with SMC is introduced to
solve the control problems under the condition of unknown
dynamics or parameters change.

b =

{
0.85b0 3 ≤ t ≤ 3.2
b0 else

(26)

where b0 is the nominal value of the coefficient b.

FIGURE 2. Feedback linearization control structure block diagram of MLS.

FIGURE 3. The response of MLS with different Ts.

FIGURE 4. Structure of RBFNN.

IV. DESIGN AND STABILITY ANALYSIS OF RBFNN
SLIDING MODE TRACKING CONTROLLER
In this Section, firstly, RBFNN is introduced, and then
RBFNNSMC is designed for MLS with unknown dynamics.

A. RADIAL BASIS FUNCTION NEURAL NETWORK
RBFNN can approximate any continuous function with arbi-
trary precision [24], Fig. 4 describes the single implicit layer
structure of RBFNN, SMC is simple and robust, and it is
widely used in control system, especially in deterministic sys-
tem which can establish accurate mathematical model [32].
In this paper, the RBFNNSMC is designed considering the
advantages of neural network and SMC.

Because of the disturbance and parameters change in the
system, f (x) and l(x) cannot be accurately obtained. Consid-
ering that f (x) and l(x) are unknown in MLS (22), RBFNN
can be used to approximate f (x) and l(x) under the condition
of satisfying assumption 3 and 4, as shown in (28). Although
SMC can deal with the disturbance and uncertainty in the
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feedback system, it can not provide a satisfactory scheme
when system’s dynamics is unknown. When the system
dynamics is unknown, RBFNNSMCmethod is proposed. The
stability proof based on Lyapunov theory is provided. The
weight coefficient of neural network is obtained by using the
adaptive law of online learning to ensure the tracking ability
of MLS.

where σj is the radial basis function, as shown in (27)

σj = exp

(
−(x− µj)

T(x− µj)

2b2j

)
, j = 1, 2, . . .m (27)

Assumption 3: x is bounded, f (x) and l(x) are smooth
functions, and |f (x)| ≤ fmax, |l(x)| ≤ lmax, ∀x ∈ U1.
Assumption 4: There are optimal weights W∗ and N∗,

satisfying

W∗ = arg min︸︷︷︸
W∈U2

{ sup︸︷︷︸
x∈U1

∥∥∥WTσ f (x)− f
∥∥∥}

N∗ = arg min︸︷︷︸
N∈U3

{ sup︸︷︷︸
x∈U1

∥∥∥NTσ l(x)− l
∥∥∥}

where U1,U2,U3 are bounded closed sets. f , l is short for
f (x), l(x).

f (x) = W∗Tσ f (x)+ εf (x)

l(x) = N∗Tσ l(x)+ εl(x) (28)

where x is the input vector of the neural network, σ (x) =
[σ1(x), σ2(x), · · · , σm(x)]T, and ε is the approximation error
of RBFNN,

∣∣εf ∣∣ ≤ εmax, |εl | ≤ εmax.

B. CONTROLLER DESIGN AND STABILITY PROOF OF
CLOSED-LOOP SYSTEM
Suppose that f and l are known in (22), define sliding mode
function s

s = [c1 c2 1][e ė ë]T (29)

where ci > 0, i = 1, 2, And the polynomial λ2 + c2λ+ c1 is
Hurwitz, so e→ 0 as s→ 0.
From (29) and (22), we have

ṡ = c1ė+ c2ë+
...
e

= c1(ẋr − ẋ1)+ c2(ẍr − ẍ1)+ (
...
x r −

...
x 1)

= −f − lu+
...
x r + c1ė+ c2ë (30)

where

u =
1
l
(−f +

...
x r + c1ė+ c2ë+ kσ s) (31)

Defining Lyapunov functions V

V =
1
2
s2 (32)

From (29) - (32), it can be obtained

V̇ = −kσ s2 ≤ 0

Therefore, MLS is stable.

Considering that f and l are unknown in system (22), slid-
ing mode controller u and neural network parameter vector N̂
and Ŵ is designed, makes e→ 0 as s→ 0.
Theorem 1: Considering that f and l are unknown in

system (22), and satisfy Assumption 3-4, the controller is
(33), the adaptive law is (34), then the closed-loop system is
UUB.

u =
1

l̂
(−f̂ +

...
x r + c1ė+ c2ë+ kσ s+ τ sgn(s)) (33)

where

sgn(s) =


1 s > 0
0 s = 0
−1 s < 0{
˙̂W = −ξ (sσf + γ Ŵ )
˙̂N = −δ(sσlu+ ςN̂)

(34)

where

f̂ = Ŵ
T
σ f , l̂ = N̂

T
σ l (35)

where f̂ and l̂ are estimates of f and l, respectively, satisfying
W̃ = Ŵ −W∗, Ñ = N̂ − N∗.
Remark 2: In order to avoid the influence of RBFNN on

the system stability, a robust term τ sgn(s) is added. ξ and δ
are positive constant, which determines the convergence rate
of Ŵ and N̂ , γ and ς are small positive constants, which are
mainly used to reduce the error of RBFNN approximation,
and can also avoid the influence of excessive weight drift on
system performance. The scheme of RBFNNSMC is shown
in Fig. 5.

Proof: the Lyapunov function chosen is

V =
1
2
s2 +

1
2
ξ−1W̃

T
W̃ +

1
2
δ−1Ñ

T
Ñ (36)

The time derivative of (36) is written as

V̇ = sṡ+ ξ−1W̃
T ˙̂W + δ−1Ñ

T ˙̂N

= s(−
...
x 1 +

...
x r + c1ė+ c2ë)+ ξ−1W̃

T ˙̂W + δ−1Ñ
T ˙̂N

= s(−f − l̂u+ (l̂ − l)u+
...
x r + c1ė+ c2ë)

+ ξ−1W̃
T ˙̂W + δ−1Ñ

T ˙̂N (37)

From (33), (37) can be rewritten as

V̇ = s(−f −
l̂

l̂
(−f̂ +

...
x r + c1ė+ c2ë+ kσ s

+ . . . τ sgn(s))+ (l̂ − l)u+
...
x r + c1ė+ c2ë)

+ . . . ξ−1W̃
T ˙̂W + δ−1Ñ

T ˙̂N

= s(f̂ − f + (l̂ − l)u− kσ s− τ sgn(s))

+ . . . ξ−1W̃
T ˙̂W + δ−1Ñ

T ˙̂N (38)

From (29) and (35), (38) can be rearranged as

V̇ = s(W̃
T
σf + εf + ÑTσlu+ εlu

− . . . kσ s− τ sgn(s))+ ξ−1W̃
T ˙̂W + δ−1Ñ

T ˙̂N
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FIGURE 5. Block diagram of RBFNNSMC.

= −kσ s2 + W̃
T
(ξ−1 ˙̂W + sσf )

+ . . . Ñ
T
(δ−1 ˙̂N + sσlu)+ (εf + εlu)s− τ |s| (39)

Defining τ ≥
∣∣εf + εlu∣∣, from (34), (39) can be rearranged

as

V̇ = −kσ s2 − γ W̃
T
Ŵ − ςÑ

T
N̂ (40)

with regard to the two coupling terms in (40), there are the
following facts.

γ W̃
T
Ŵ =

γ

2
(W̃

T
(W∗
+ W̃ )+ (Ŵ −W∗)TŴ )

× γ W̃
T
Ŵ =

γ

2
(W̃

T ˜W + ŴTŴ −W∗TW∗)

− γ W̃
T
Ŵ ≤ −

γ

2
(W̃

T
W̃ −W∗TW∗) (41)

Similarly

−ςÑ
T
N̂ ≤ −

ς

2
Ñ

T
Ñ +

ς

2
N∗TN∗ (42)

Equation (40) can be rewritten as

V̇ ≤ −αV + η + α(
1
2
s2 +

1
2ξ
W̃

T
W̃ +

1
2δ
N∗TN∗)− η . . .

− kσ s2 −
γ

2
(W̃

T
W̃ −W∗TW∗)−

ς

2
(Ñ

T
Ñ − N∗TN∗)

(43)

where

η =
γ

2
W∗TW∗ +

ς

2
N∗TN∗, 0 < α = 2min(kσ ,

ξ

2
γ,
δ

2
ς )

Equation (43) can be rearranged as

V̇ ≤ −αV + η + (
α

2
− kσ )s2 + (

α

2ξ
−
γ

2
)W̃

T
W̃ + . . .

+ (
α

2δ
−
ς

2
)Ñ

T
Ñ − (η −

γ

2
W∗TW∗ −

ς

2
N∗TN∗)

V̇ ≤ −αV + η (44)

Make some mathematical transformations on (44),
we have

V̇ + αV − η = V̇ exp(αt)+ αV exp(αt)− η exp(αt) ≤ 0

=
d
dt
(V exp(αt)−

η

α
exp(αt)) ≤ 0

=

t∫
0

d
dt
(V exp(αt)−

η

α
exp(αt)) ≤ 0

= V exp(αt)−
η

α
exp(αt)− V (0)+

η

α
≤ 0

(45)

where exp(αt) is exponential function.
From (45), we have

V ≤ (V (0)−
η

α
) exp(−αt)+

η

α
(46)

From (36) and (46), we have

1
2
s2 ≤ V (0)+

η

α

‖s‖ ≤
√
2Y (47)

where Y = V (0)+ η
α
.

Similarly ∥∥∥W̃∥∥∥ ≤ √2ξY ,
∥∥∥Ñ∥∥∥ ≤ √2δY (48)

From (46)-(48), we can know that s, W̃ , Ñ is bounded and
converges to 4s, 4W̃ , 4Ñ respectively, and the closed-loop
MLS is UUB.

where 4s, 4W̃ , 4Ñ is given as
4s = {s ∈ R| ‖s‖ ≤

√
2Y }

4W̃ = {W̃ ∈ R
n
|

∥∥∥W̃∥∥∥ ≤ √2ξY }

4Ñ = {Ñ ∈ R
n
|

∥∥∥Ñ∥∥∥ ≤ √2δY } (49)

Remark 3: Considering that system (22) is mainly com-
posed of (33)-(35), the initial values of these parameters are
bounded, and the proposed controller makes the system meet
the Lyapunov stability, so t > 0, All signals in MLS are still
bounded.
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TABLE 3. List of parameters in MLS.

V. SIMULATION
In order to verify the effectiveness of the proposed controller
(namely RBFNNSMC), the simulationmodel of the proposed
controller is built in Simulink [33], [34]. In order to avoid the
chattering of the closed-loop MLS near the sliding surface,
(50) is used to approximate sgn(s)

sgn(s) =
s

|s| + υ
(50)

where υ = 0.05.
To verify the boundedness of f and l,

|f (x)| =
∣∣∣2abx1x23 ∣∣∣ ≤ 734, |l(x)| = |2ax3| ≤ 67

where

U1 =

{
x|0.001 ≤ x1 ≤ 0.01,−0.05 ≤ x2 ≤ 0.05,

0.001 ≤ x3 ≤ 0.5

}
.

The values of parameters in MLS are given in table 3.
The initial value of air gap is 0.006 m, and the reference
value is 0.003 m. The control gain parameters in (33) are
designed as c1 = 540, c2 = 47, kσ = 26, τ = .1. The input
vector of RBFNN is chosen as x = [x1, x2, x3]T, the structure
of RBFNN is taken as 3-9-1. µ and bj are determined by
the actual operating range of x1, x2, x3, the range of µ is
[−0.012, 0.012] × [−0.06, 0.06] × [−0.8, 0.8], nine nodes
are used in the area ofµ, bj = 20. The gain parameters in (34)
are selected as ξ = 300, δ = 1.5, γ = .001, ς = .01,
the weights of RBFNN are initialized between −2 to 2.
In order to analyze the performance of the proposed con-

troller, we compare the proposed controller with SMC and
Backstepping control, and compare their response perfor-
mance index to verify the superiority of the proposed con-
troller. The proposed controller is not compared with linear
controller, because MLS is a highly nonlinear unstable sys-
tem, linear control needs to linearize the nonlinear dynam-
ics of MLS, the dynamics of MLS is modified, and linear
control cannot fully reflect the information of MLS. The
proposed controller is a nonlinear controller, and SMC and
Backstepping control are nonlinear control, so it is compared
with SMC and Backstepping control. The tracking perfor-
mance of RBFNNSMC, SMC and Backstepping control are
shown in Fig. 6, The control input of RBFNNSMC, SMC and
Backstepping control are shown in Fig. 7, and performance
analysis are shown in table 4.

As can be seen from Fig. 6 and table 4, all three con-
trollers can track the reference input in finite time. To be
more exact, the proposed controller has the smallest initial

FIGURE 6. Tracking performance of RBFNNSMC, SMC and Backstepping
control.

FIGURE 7. Control input of RBFNNSMC, SMC and Backstepping control.

TABLE 4. Performance analysis of three controllers.

overshoot which is 0.0015 mm, SMC’s initial overshoot is
0.0145 mm, Backstepping controller has the biggest initial
overshoot which is 0.069 mm. The proposed controller can
reach steady-state in 0.67 s, and the steady-state time of both
SMC and Backstepping control is greater than 1 s. As shown
in Fig. 7, the control input of the proposed controller has fast
convergence compared with SMC and Backstepping control.
To be more precise, from in table 4, in 0 s-.003 s, the con-
trol input of the proposed controller is from 23.05 to 8.03,
the control input of SMC is from 10.37 to 8.51, and the control
input of Backstepping control is from 8.88 to 7.34. On the
basis of analysis, we can see that the proposed controller has
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FIGURE 8. Control diagram of MLS in case of Disturbance, Parameter
changes or Unmodeled dynamic.

FIGURE 9. Tracking performance of RBFNNSMC, SMC and Backstepping
control (in case of Disturbance in short time).

batter tracking capability compared with SMC and Backstep-
ping control. During the operation of MLS, MLS may be
influenced by disturbance, parameters change or unmodeled
dynamic, and the corresponding control structure diagram is
shown in Fig. 8. The anti-interference ability and robustness
of the proposed controller will be analyzed later.

For the purpose of analyzing the behavior of the proposed
controller under the condition of external constant distur-
bance, external constant disturbance is added to MLS in 5
s-5.2 s, the response of MLS in case of external constant
disturbance is shown in Fig. 9.

According to Fig. 9, it can be observed that the
anti-interference ability of Backstepping control is weakest
in case of external constant disturbance. To be more specific,
after adding disturbance, the overshoot of the proposed con-
troller is 0.3668 mm, the overshoot of Backstepping control
is 1.999 mm, and the overshoot of SMC is 0.5739 mm. Com-
pared with SMC and Backstepping control, the overshoot of
the proposed controller is the smallest. This result shows that
the proposed controller has stronger anti-interference ability
and faster convergence compared with Backstepping control
and SMC.

In order to assess the robustness of the proposed con-
troller, considering the mass of MLS changes slowly over
time, the response of MLS in the presence of mass change
is shown in Fig. 10 and Fig. 11, the performance analysis
of the three controllers is given in table 5. From Fig. 10,

FIGURE 10. Tracking performance of RBFNNSMC, SMC and Backstepping
control under the condition of mass change.

FIGURE 11. Tracking of Speed (ẋ1) for RBFNNSMC, SMC and Backstepping
control in the presence of mass change.

TABLE 5. Performance analysis of three controllers (mass change).

Fig. 11, and table 5, the response of Backstepping control
has the largest fluctuation in the presence of mass change.
To be more specific, the response of Backstepping control
fluctuates between 2.79 mm and 3.19 mm, if the parame-
ter changes increases further, MLS maybe become unsta-
ble. the response of SMC fluctuates between 2.95 mm and
3.05 mm, the fluctuation of proposed controller’s response is
almost zero. The proposed controller uses neural networks to
approximate unknown dynamics, so the influence of parame-
ter changes on the system is extreme small. On the ground
of analysis, we can see that proposed controller has better
robustness compared with SMC and Backstepping control
under the condition of mass change.
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FIGURE 12. Tracking performance of RBFNNSMC, SMC and Backstepping
control under the effect of unmodeled dynamic.

FIGURE 13. Tracking performance of RBFNNSMC with sinusoid input.

FIGURE 14. Control input with sinusoid input.

In addition to the problems of disturbance and param-
eter change during the operation of MLS, the unmod-
eled dynamics of MLS should be taken into consideration.
It is assumed that there is the high frequency unmodeled
dynamic in MLS, an unmodeled dynamic (0.3 sin(10π t)) is

added to MLS, the response of MLS in case of unmod-
eled dynamic is shown in Fig. 12. From Fig. 12, it can be
seen clearly that all three controllers can make MLS run
stably in the presence of unmodeled dynamic. More specif-
ically, the response of SMC and Backstepping control has
larger chattering than the proposed controller, if unmodeled
dynamic increases further, SMC and Backstepping control
maybe make MLS unstable. In term of analysis, we can see
that the proposed controller has better effect on handling with
unmodeled dynamic compared with SMC and Backstepping
control.

The simulation of the proposed controller tracking sinu-
soidal signal will be given following. The reference input is
given as xr = 0.003+ 0.001 sin(4t).

When selecting the reference input, the physical meaning
should be considered, instead of blindly selecting the com-
plex nonlinear reference input. As shown in Fig. 13, the pro-
posed controller tracks the reference input nicely. According
to Fig.14, there is no obvious chattering in the control input.
The result shows that the proposed controller can nicely track
the sinusoid input.

VI. CONCLUSION
In this paper, RBFNNSMC has been addressed for tracking
problem of MLS with unknown dynamics. The unknown
dynamics ofMLS is approximated by RBFNN. The proposed
controller guarantees that the closed-loop MLS is UUB.
Simulation results have shown that the proposed controller
has faster convergence and stronger robustness compared
with SMC and Backstepping control. Due to the problem
of parameters selection in the process of controller design,
the intelligent optimization algorithm will be considered in
the future research to optimize parameters.
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