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ABSTRACT In order to protect the distributed network from complex-valued attack, a secure diffusion
augmented complex-valued normalized subband adaptive filter algorithm is proposed in this article, which
is derived from a novel complex-valued detection method. This complex-value detection method can
be considered to consist of two parts. First, a non-cooperative augmented complex-valued normalized
subband adaptive filter algorithm is used to provide reliable reference estimations under complex-valued
attacks, and then the threshold test is constructed by using the reliable reference estimations to detect the
trustworthy neighbors of each node. The second part is to reassemble the information from the trustworthy
neighbors by using the diffusion augmented complex-valued normalized subband adaptive filter algorithm.
Then, the theoretical analyses of the mean and mean-square performance of the proposed algorithm are
derived based on the energy conservation framework. Finally, some experiments are performed to show the
effectiveness of the proposed algorithm under non-time-varying and time-varying complex-valued attacks,
respectively.

INDEX TERMS Adaptive networks, noncircular attacks, widely linear model, non-cooperative, augmented
complex-valued normalized subband adaptive filter, threshold test.

I. INTRODUCTION
Recent advancements in wireless sensor networks (WSNs)
have shown that it is an attractive and challenging research
area. One of the key technologies of WSN is distributed
adaptation over networks. In adaptive networks, the intercon-
nected nodes can continually learn and adapt independently
or collaboratively estimate some parameters of interest from
observations collected by the dispersed agents [1]–[3]. The
distributed strategies for data processing over networks can
be divided into incremental strategy, consensus strategy and
diffusion strategy [4]. Since the incremental strategy requires
a cyclic path that runs across the nodes to obtain the parame-
ter estimation, it is sensitive to the link failures. Compared
to the incremental strategy, the diffusion strategy is more
flexible, robust and energy efficient [5]. Besides, diffusion

The associate editor coordinating the review of this manuscript and

approving it for publication was Yingsong Li .

strategy has been shown to have superior stability and per-
formance improvement than the consensus-based implemen-
tations. Due to these merits, the diffusion strategy is widely
used in many applications, such as target tracking, environ-
ment monitoring, wireless and sensor networks [6]–[10].

Based on the diffusion strategy, many diffusion adaptive
algorithms have been proposed, such as diffusion least mean
square (D-LMS) algorithm [11], diffusion recursive least
square (D-RLS) algorithm [12], diffusion total least square
(D-TLS) algorithm [13], diffusion affine projection (D-APA)
algorithm, diffusion Kalman filter and so on [8]. All of
these studies were carried out under the assumption that the
network environment was secure (not attacked). That is to
say, these diffusion algorithms achieve good performance
in convergence rate and steady-state error under a secure
environment. However, the wireless sensor itself and commu-
nication between wireless sensors are very vulnerable. There-
fore, it is possible that the attack will cause the information
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received by the sensor from the adjacent sensors to be biased,
resulting in inaccurate estimation of the whole network [14].
If these attacks occur, the existing distributed algorithms
will provide biased estimates because the network cannot
effectively defend against attacks. Therefore, it is necessary to
develop secure distributed algorithmswith low computational
complexity.

In order to process distributed network information safely,
several secure distributed algorithms have been proposed.
Under the Byzantine attacks, distributed detection over sen-
sor networks has been studied in [15], [16]. Due to the
Bayesian detection method, the Byzantine attacks are well
detected. When attacks occur in cognitive radio networks,
secure collaborative spectrum sensing was proposed in [17]
by using cooperative diversity between cognitive radio spec-
trum sensors. By using information from neighbors to create
adaptive combination weights that are inversely proportional
to the distance between the instantaneous local estimation
and the reference estimation, a robust reputation-based dLMS
(R-dLMS) algorithm was proposed to achieve secure dis-
tributed estimation under malicious attacks in [18]. Because
the reference estimation comes from instantaneous local esti-
mation, it will be unreliable when the number of attacks
is large. To solve this problem, a novel detection method
using the non-cooperative LMS (nc-LMS) to provide refer-
ence estimation was developed and the secure D-LMS (SD-
LMS) algorithm was proposed by Liu and Li in [19]. The
SD-LMS algorithm is well solved, no matter whether the
attacks are on the sensor or the transmission path. However,
The SD-LMS algorithm is aimed at attacks in real domain.
The definition of complex-valued attacks is proposed in smart
grid [20]. A Kalman filter (KF) estimation/monitoring solu-
tion was proposed by using Euclidean detector when the
attacks are assumed to be false data injection [21]. In real
life, complex-valued signals are mostly noncircular. In [22],
it is impractical to ignore the correlation between the real part
and the imaginary part of the complex-valued attack signal.
Subsequently, a noncircular attack model was proposed and
the corresponding state estimation method was presented
in [23].

In this article, to give a good estimation performance
over WSNs in the presence of circular or noncircular
complex-valued attacks, a novel detection method is pro-
posed, and a secure diffusion augmented complex-valued
normalized subband adaptive filter (SD-ACNSAF) algorithm
is derived. The SD-ACNSAF can be considered to consist
of two parts. First, it needs a non-cooperative ACNSAF
(nc-ACNSAF) algorithm to provide reliable reference esti-
mation, which is further used for constructing the thresh-
old test to detect the trustworthy neighbors of each node.
The second part is to reassemble the information from the
trustworthy neighbors by using the D-ACNSAF algorithm.
The main contributions of this article are summarized below.
1) By using a novel threshold test, the SD-ACNSAF algo-
rithm is proposed for protecting distributed network from
complex-valued attacks. Besides, an adaptive way to select

the threshold is suggested. 2) The theoretical analyses of the
mean and mean-square performance of the proposed algo-
rithm are presented.

This article is organized as follows. Section II reviews
some attack models. In Section III, a SD-ACNSAF algorithm
is proposed to achieve secure distributed estimation under
attacks. Section IV illustrates the stability and steady-state
performance analysis of the proposed algorithm. Section V
illustrates the simulation results obtained by using the pro-
posed algorithm, and Section VI presents some conclusions.
Notation: Throughout this article, matrices and column

vectors are defined by boldface capital and small boldface,
respectively. <(·) and =(·) represent the real and imaginary
parts, respectively. (·)(m) denotes them-th element of a vector.
(·)∗ stands for the complex conjugate. The superscript (·)T

and (·)H stands for transposition and Hermitian transposition.
E[·] represents the expectation of [·].

II. PROBLEM FORMULATION
Fig. 1 shows a topology of the wireless sensor network
that has not been attacked. It contains N sensors. A set 0k
is defined as including the sensor node k and its adjacent
sensors. In the set, each node can interchange information
with their neighbor nodes, the information may be real-value
or complex-valued measurement vectors. Assuming all the
measurements are complex-valued in the article, and each
node k obtains an observed complex-valued output signal
dk (n) and a regression complex-valued vector uk (n) at time
instant n, where uk (n) is an M -dimensional column vector.
The complex-valued output signal dk (n) can be represented
by the following widely linear (WL) model

dk (n) = uTk (n)ho + u
H
k (n)go + υk (n) (1)

where ho and go are the M -dimensional unknown column
vectors to be estimated, υk (n) is the additive background
noise with the variance σ 2

υ,k at agent k . When the M -
dimensional unknown column vector go is 0, (1) becomes a
general linear model.

FIGURE 1. Example of distributed sensor network topology. Each agent k
exchanges data with neighbor nodes.

In order to deal with circular and non-circular complex-
valued signals effectively, the D-ACNSAF1 algorithm is

1A more detailed description of D-ACNSAF algorithm can be found
in [24].
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introduced according to the adaptive-then-combine (ATC)
diffusion strategy [24]

Adaptive step:

hk (n+ 1) = hk (n)+ µk
Ns∑
m=1

ek,m,D(n)
‖uk,m(n)‖2

u∗k,m(n) (2)

g
k
(n+ 1) = gk (n)+ µk

Ns∑
m=1

ek,m,D(n)
‖uk,m(n)‖2

uk,m(n) (3)

Combination step:

hk (n+ 1) =
∑
l∈0k

bk,lhl(n+ 1) (4)

gk (n+ 1) =
∑
l∈0k

bk,lgl(n+ 1) (5)

where hk (n) and g
k
(n) are the estimates of intermediate

weights, µk is the step-size at agent k . bk,l is the combination
parameter and satisfies

∑
l∈0k bk,l = 1 and bk,l = 0 if l /∈ 0k .

Ns is the number of subbands, ek,m,D(n) is the subband error
signal. uk (n) is partitioned into Ns subband signal uk,m(n)
through the analysis filters for m = 1, 2, . . . ,Ns. D is the
down sampling.

The D-ACNSAF algorithm is derived without attack.
In this article, we consider the existence of complex attacks
in wireless sensor network.

Generally, malicious attacks include two ways, bad data
attack and false data injection attack. As the bad data attack
replaces dk (n) with the random data d+k (n), it can be easily
detected by verifying the consistency of the l2 norm of the
attacked error signal [25]. However, this detection method
cannot be used for false data injection attack2 [26]. In this
article, the complex-valued false data injection attack is stud-
ied. The complex-valued false data injection attack can be
modeled as follows [23]:

zak (n) = Hk (n)zk (n)+ H̃H
k (n)z∗k (6)

where zk (n) represents the complex-valuedmeasurement vec-
tor, Hk (n) and H̃k (n) are attack matrices. When Hk (n) and
H̃k (n) are not equal to zero, zak (n) denotes the noncircular
complex-valued attack signal. Otherwise zak (n) is the circular
complex-valued attack signal.

Considering the general situation, attacks generally occur
in transmission paths (called compromised communications)
and sensors (called compromised sensors). The compromised
sensors and compromised communications are defined as
follows:

1) Compromised sensors: The sensor that is transmitted
fictitious data by an intruder is considered to be attacked.
For example, if node k is attacked, it can be modelled by the
following equation

d ′k (n) = dk (n)+ d ′′k (n) (7)

2The false data injection attack can send some malicious data satisfying
the model (1). When l2 norm detection of error signal is used, the false data
injection attack is robust to the detection method.

where dk (n) is the true desired output signal. d ′′k (n) is the
additional desired signal after attack, which is defined as a
linear combination of input signal and M -dimensional error
vector qk (n). The formula of qk (n) is similar to that of zak (n).
2) Compromised communications: The communication

is attacked between the node and its adjacent node when
the transmitted information between them is disturbed. For
example, when the communication between k and l is com-
promised, real information from l received by node k can be
represented as

hrk (n) = hl(n)+ z
a
k,l(n) (8)

gr
k
(n) = g

l
(n)+ za

′

k,l(n) (9)

where zak,l(n) and z
a′
k,l(n) are the mutual independent inter-

ference complex-valued signals with the same mean and
variance σ 2

zk,l .
To make the attack model more similar to the actual situa-

tion, the following assumptions are presented.
A1: For each node k , attacks cannot occur at an adjacent

node l and its transmission path to node k at the same time.
Besides, the number of the attacks that occur in the set 0k is
less than d nk2 e, where nk is the cardinality of the set 0k .
A2: The attacker does not have the complete knowledge of

the data model.
A3: The background noise and the input signal are

complex-valued vectors and spatially mutual indepen-
dent [27], [28].

In order to detect attacks to the greatest extent, the assump-
tion A1 is necessary for the proposed algorithm on the secure
network topology. The detailed explanation is given in the fol-
lowing part. Since the transmitted information is time-varying
and the attacker may not be so efficient, the assumption A2 is
resonable and has been used in attack hypotheses [29], [30].
In the following part, all the attacks occur under the assump-
tion A2. The assumption A3 is widely used in the analysis of
complex adaptive filtering, and it is reasonable.

According to the correlation between real part and imag-
inary part, complex-valued signals are divided into circular
or non-circular signals [31]. Therefore, to make full use
of the available second-order information, a novel detec-
tion method suitable for complex-valued signals is pro-
posed to detect the circular and noncircular attacks in the
following part.

III. DERIVATION OF SECURE D-ACNSAF ALGORITHM
In this section, a secure D-ACNSAF algorithm is proposed
to ensure the reliability of information exchange between
sensors in an attacked environment. The SD-ACNSAF algo-
rithm contains nc-ACNSAF and D-ACNSAF algorithm. The
nc-ACNSAF algorithm is D-ACNSAF algorithm without
information exchange, which provides reliable reference esti-
mation. The detailed explanation is given in Remark 1. Then,
the D-ACNSAF algorithm uses reliable estimations from
self-update.
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A. NC-ACNSAF ALGORITHM
In order to accurately detect the trustworthy adjacent nodes of
each node, similar to the method of dealing with real-valued
attacks in [19], an nc-ACNSAF subsystem is used to provide
reliable reference estimates. The nc-ACNSAF3 subsystem
that each node can construct an ACNSAF local adaptive rule
is used to provide reliable reference estimates and given as
follows:

hk (n+ 1) = hk (n)+ µk
Ns∑
m=1

ek,m,D(n)
‖uk,m(n)‖2

u∗k,m(n) (10)

gk (n+ 1) = gk (n)+ µk
Ns∑
m=1

ek,m,D(n)
‖uk,m(n)‖2

uk,m(n) (11)

The D-ACNSAF subsystem is used to achieve secure
distributed estimation over network. Assuming that attacks
on D-ACNSAF subsystem also occur on nc-ACNSAF
subsystem.
Remark1: Since the nc-ACNSAF only uses its own infor-

mation and does not need a combination strategy to update
the weights, other nodes are unaffected when a node is
attacked. The nc-ACNSAF is suitable for providing the reli-
able real-time reference estimates to monitor system changes.

B. SD-ACNSAF ALGORITHM
Since the weight estimation of the D-ACNSAF is deter-
mined by combining the intermediate weights of adjacent
secure nodes, it cannot be used as reference estimation.
For each node k , the reliable reference estimates wk (n) and
w′k (n) (which are given below) can be obtained based on
the received estimates hrl (n) and grl (n) from the neighbors
of the nc-ACNSAF subsystem. Once wk (n) and w′k (n) are
available, the reliable neighbors for each node are detected
via a threshold test constructed on the reference estimates.
Since the intermediate weights are in the form of complex
values, the real and the imaginary parts of the reference
estimates should be obtained separately and then recombined.
Firstly, each node k receives the estimates from its neighbors
of the nc-ACNSAF subsystem, the real and imaginary parts of
each element j of these intermediate weights including itself
are sorted, respectively. The progress is given as follows (see
the diagram given in Fig. 2):

w(j)
k1(n) =

[
<(hr(j)l1

), . . . ,<(hr(j)ls ),<(hr(j)lt ), . . . ,<(hr(j)lnk
)
]

w(j)
k2(n) =

[
=(hr(j)l1

), . . . ,=(hr(j)ls ),=(hr(j)lt ), . . . ,=(hr(j)lnk
)
]

w(j)
k (n) = w(j)

k1(n)+ iw
(j)
k2(n)

w
′(j)
k1 (n) =

[
<(gr(j)l1

), . . . ,<(gr(j)ls ),<(gr(j)lt ), . . . ,<(gr(j)lnk
)
]

w
′(j)
k2 (n) =

[
=(gr(j)l1

), . . . ,=(gr(j)ls ),=(gr(j)lt ), . . . ,=(gr(j)lnk
)
]

w
′(j)
k (n) = w

′(j)
k1 (n)+ iw

′(j)
k2 (n)

3The nc-ACNSAF algorithm can be considered as several independent
ACNSAF algorithms updating simultaneously. A more detailed description
of ACNSAF algorithm can be found in [32].

FIGURE 2. Example of finding the reference estimates of node k .

where <(hr(j)ls ) < <(hr(j)lt ), =(hr(j)ls ) < =(hr(j)lt ), <(gr(j)ls ) <

<(gr(j)lt ), =(gr(j)ls ) < =(gr(j)lt ) and l1, ls, lt , lnk ∈ 0k .
Under complex-valued attack, the estimator of the

unknown parameter vector will deviate from its true value.
In other words, it is very possible that the attacked estimators
should be on the left or right side of the sets. Under the
assumption A1, the central d nk2 eth estimates of the sets are
reliable with a high probability.

Based on the above statement, the references wk (n) and
w′k (n) of the j-th component at node k are chosen as

w(j)
k (n) = w(j)

d
nk
2 e
(n) (12)

w
′(j)
k (n) = w

′(j)
d
nk
2 e
(n) (13)

Repeating the above process for each entity m, the reli-
able reference vectors wk (n) = [w(1)

k (n), · · · ,w(M )
k (n)]T and

w′k (n) = [w
′(1)
k (n), · · · ,w

′(M )
k (n)]T can be obtained. It is

obvious that the reference estimates are only determined
by the nc-ACNSAF subsystem, and they can be considered
as weight estimation at time n without attack. Therefore,
the reference vectors can be considered as reliable value for
detecting whether the network is attacked or not (The detailed
explanation is given in Appendix).

Considering that the estimated weights will converge to the
deviation of the optimum weights under attacks, by using the
principle of ‘‘consistency’’ [24], attacks that occur at nodes or
communications can be detected. Firstly, defining the random
error variable sk,l(n) as follows

sk,l(n) = hr(j1)l (n)− w(j1)
k (n) (14)

where j1 is the index of the maximum element-wised l1-norm
distance between hr(j1)l (n) andw(j1)

k amongM elements at time
n, i.e.

max
m

{ ∣∣∣hr(j)l (n)−w(j)
k (n)

∣∣∣ } = ∣∣∣hr(j1)l (n)− w(j1)
k (n)

∣∣∣ (15)

Similarly, s′k,l(n), s
′′
k,l(n) and s′′′k,l(n) can be defined as

follows:

s′k,l(n) = gr(j2)l (n)− w
′(j2)
k (n) (16)

s′′k,l(n) = hr(j3)l (n)− w(j3)
k (n) (17)

s′′′k,l(n) = gr(j4)
l

(n)− w
′(j4)
k (n) (18)

where j2 is the index of the maximum element-wised l1-norm
distance between gr(j)l (n) and w

′(j)
k (n) among M elements, j3
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is the index of the maximum element-wised l1-norm distance
between hr(j)l (n) and w(j)

k (n) among M elements at time n, j4
is the index of the maximum element-wised l1-norm distance
between gr(j)l (n) and w

′(j)
k (n) amongM elements at time n.

If an effective attack occurs on node k or the transmission
path between node k and node l, these values sk,l(n), s′k,l(n),
s′′k,l(n) and s

′′′
k,l(n) will become very large. Taking both ACN-

SAF and D-ACNSAF subsystems into account, the following
random variables are defined

bk,l(n) =

{
s′′k,l(n), if |s′′k,l(n)| > |sk,l(n)|
sk,l(n), otherwise

(19)

b′k,l(n) =

{
s′′′k,l(n), if |s′′′k,l(n)| > |s

′
k,l(n)|

s′k,l(n), otherwise
(20)

Since the estimated weights and conjugate estimated
weights are updated simultaneously, the final constraints are
given

ck,l(n) =

{
b′k,l(n), if |b′k,l(n)| > |bk,l(n)|
bk,l(n), otherwise

(21)

Then, the compromised sensor or communication can be
detected by using the following threshold test:

Tk,l(n) = c2k,l(n)
H2
≷
H1

γk (n) (22)

where H1 represents the normal operation scenario, H2
refers to the case that the system is potentially under attack.
γk (n) is a positive threshold and the detailed selection method
given in Section IV-D.

Then, the set of reliable neighbors of node k at time n can
be obtained as follows:

0′k (n) =
{
l ∈ 0k |Tk,l(n) < γk (n)

}
(23)

It’s obvious that the instantaneous set γk (n) of trustwor-
thy neighbors is time-varying in an adversarial environment.
The combination rules based on the detected secure network
topology should be redefined. Defining the degree εk (n) of
reliable node k , the combination weights bk,l can be designed
according to the original combination rules with εk (n) > 0.
If there is no reliable nodes for node k , we set hrk (n) = wk (n),
gr
k
(n) = w′k (n), bk,k = 1 and bk,l = 0 for l 6= k . That is to

say, the estimate of D-ACNSAF subsystem is equivalent to
that of the reference.

Based on the coefficients bk,l , hrk (n) and g
r
k
(n) from neigh-

bors, the combination step of the SD-ACNSAF is performed
as

hk (n+ 1) =
∑

l∈0′k (n)

bk,lhrl (n+ 1) (24)

gk (n+ 1) =
∑

l∈0′k (n)

bk,lgrl (n+ 1) (25)

Finally, the update procedure of the proposed SD-ACNSAF
algorithm are summarized in Table 1.

TABLE 1. Summary of the Proposed Algorithm.

Remark2: There are two main reasons to affect the perfor-
mance of the network in an adversarial network environment.
One is the false alarm; the other is the missing detection.
If the false alarm happens, εk (n) is reduced the performance
of distributed estimation has also been reduced to a certain
extent, but this does not cause the propagation of malicious
data. On the other hand, if happens, the estimates of the whole
network are all damaged by the improper data fusion due
to missing the detection of compromised nodes or commu-
nications. Therefore, in order to reduce the probability of
occurrence of the above situation, the thresholds γk (n) and
εk (n) are all initialized to 0.

IV. THE PERFORMANCE ANALYSIS OF PROPOSED
ALGORITHM
In this section, the stability performance of the proposed
SD-ACNSAF algorithm is analyzed in detail. For analyzing
manageable, the following assumptions are adopted.
A4: The step-size is statistically independent of the weight

and input vectors [8].
A5: The fluctuations of ‖uk,m(n)‖2 can be neglected for the

long length of filter [33], [34].
These assumptions have been widely used in the analysis

of diffusion algorithms and are very useful in many practical
applications [35].

According to (17) and (18), a reliable neighbor l of node k
should satisfy the following conditions

|hr(j3)l (n)− w(j3)
k (n)| <

√
γk (n) (26)

|gr(j4)
l

(n)− w
′(j4)
k (n)| <

√
γk (n) (27)

The inequality (26) and (27) suggest that the estimators
hrl (n) and gr

l
(n) should oscillate around wk (n) and w′k (n),

so the (26) and (27) can be written in another form

wk (n)−
√
γk (n)1T ≤ hrl (n) ≤ wk (n)+

√
γk (n)1T (28)
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w′k (n)−
√
γk (n)1T ≤ grl (n) ≤ w′k (n)+

√
γk (n)1T (29)

Then, hrl (n) and g
r
l
(n) is derived in the following form

hrl (n) = wk (n)+ θθθk,l(n) (30)

gr
l
(n) = w′k (n)+ θθθ

′
k,l(n) (31)

where θθθk,l(n) = [θθθ (1)k,l(n), · · · , θθθ
(M )
k,l (n)]

T denotes the dif-

ference between hrl (n) and wk (n), θθθ
′
k,l(n) = [θθθ

′(1)
k,l (n), · · · ,

θθθ
′(M )
k,l (n)]T denotes the difference between gr

l
(n) and w′k (n).

θθθk,l(n) and θθθ ′k,l(n) are the bounded M -dimensional random

vector with each component θθθ (j)k,l(n) <
√
γk (n) and θθθ

′(j)
k,l (n) <√

γk (n).
Because reliable neighbor for each node k cannot be

detected with complete accuracy, the set 0k (n) is divided into
two disjoint sets

0+k (n) = 0k (n) ∩ 0
o
k (n) and 0

−

k (n) = 0k (n)/0
+

k (n) (32)

where0+k (n) is the set of neighbors that are detected to be reli-
able and 0−k (n) is the attacked neighbors that are misdetected
to be reliable, 0ok (n) denotes the true set of normal neighbors
of node k .
Then, (4) and (5) can be rewritten as

hk (n) =
∑

l∈0+k (n)

bk,lhl(n)+
∑

l∈0−k (n)

bk,l(wk (n)+ θθθk,l(n)) (33)

gk (n) =
∑

l∈0+k (n)

bk,lgl(n)+
∑

l∈0−k (n)

bk,l(w
′

k (n)+ θθθ
′

k,l(n)) (34)

Substituting (33) and (34) into (2) and (3), and then sub-
tracting the optimumweights ho and go on both sides, respec-
tively. We have

h̃k (n+1) =
∑

l∈0+k (n)

bk,l

(
h̃l(n)+µl

Ns∑
m=1

el,m,D(n)
‖ul,m(n)‖2

u∗l,m(n)

)

+

∑
l∈0−k (n)

bk,l(w̃k (n+ 1)+ θθθk,l(n+ 1))

=

∑
l∈0+k (n)

bk,l

(
h̃l(n)+ µl

Ns∑
m=1

u∗l,m(n)cl(n)

‖ul,m(n)‖2

)

+

∑
l∈0+k (n)

bk,l

(
µl

Ns∑
m=1

u∗l,m(n)υl,m,D(n)

‖ul,m(n)‖2

)

+

∑
l∈0−k (n)

bk,l(w̃k (n+ 1)+ θθθk,l(n+ 1)) (35)

g̃k (n+1) =
∑

l∈0+k (n)

bk,l

(
g̃l(n)+µl

Ns∑
m=1

el,m,D(n)
‖ul,m(n)‖2

ul,m(n)

)

+

∑
l∈0−k (n)

bk,l(w̃
′

k (n+ 1)+ θθθ ′k,l(n+ 1))

=

∑
l∈0+k (n)

bk,l

(
g̃l(n)+ µl

Ns∑
m=1

ul,m(n)cl(n)
‖ul,m(n)‖2

)

+

∑
l∈0+k (n)

bk,l

(
µl

Ns∑
m=1

ul,m(n)υl,m,D(n)
‖ul,m(n)‖2

)

+

∑
l∈0−k (n)

bk,l(w̃
′

k (n+ 1)+ θθθ ′k,l(n+ 1)) (36)

where cl(n) = uTl,m(n)h̃l(n)+u
H
l,m(n)g̃l(n), h̃l(n) = hl(n)−ho,

g̃l(n) = gl(n)−go, w̃l(n) = wl(n)−ho, and w̃
′

l(n) = w′l(n)−go
are the weight deviations at node l.

A. DATA MODEL
To generate the performance analysis of the whole network,
some global quantities are defined as follows

h(n) = col [h1(n), h2(n), · · · , hN (n)]

g(n) = col [g1(n), g2(n), · · · , gN (n)]

h(n) = col
[
h1(n), h2(n), · · · , hN (n)

]
g(n) = col

[
g
1
(n), g

2
(n), · · · , g

N
(n)
]

D = diag [µ1IM , µ2IM , · · · , µN IM ]

U (n) = diag [U1(n),U2(n), · · · ,UN (n)]

Uk (n) = [uk,1(n), uk,2(n), · · · , uk,Ns (n)]

d(n) = col [d1(n), d2(n), · · · , dN (n)]

dk (n) =
[
dk,1(n), dk,2(n), · · · , dk,Ns (n)

]
υυυ(n) = col [υυυ1(n),υυυ2(n), · · · ,υυυN (n)]

υυυk (n) = [υk,1(n), υk,2(n), · · · , υk,Ns (n)]

θθθ (n) = col [θθθ1(n), θθθ2(n), · · · , θθθN (n)]

θθθk (n) = col
[
θθθk,1(n), θθθk,2(n), · · · , θθθk,N (n)

]
θθθ ′(n) = col

[
θθθ ′1(n), θθθ

′

2(n), · · · , θθθ
′
N (n)

]
θθθ ′k (n) = col

[
θθθ ′k,1(n), θθθ

′

k,2(n), · · · , θθθ
′
k,N (n)

]
w(n) = col [w1(n),w2(n), · · · ,wN (n)]

w′(n) = col
[
w′1(n),w

′

2(n), · · · ,w
′
N (n)

]
Two combination matrices B+(n) and B−(n) are intro-

duced, where the kl-th element is defined as follows:[
B+(n)

]
k,l =

{
bk,l(n), if l ∈ 0+k (n)
0, otherwise

(37)

and [
B−(n)

]
k,l =

{
bk,l(n), if l ∈ 0

−

k (n)
0, otherwise

(38)

Besides, the extended matrices are given as

A+(n) = B+(n)⊗ IM (39)

A−(n) = B−(n)⊗ IM (40)

where A+(n)+ A−(n) = A(n), ‖A+(n)‖, ‖A+(n)‖ ≤ 1.
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B. MEAN PERFORMANCE
According to the ahead definitions, (35) and (36) can be
rewritten as

h̃(n+ 1) = A+(n)h̃(n)− DA+(n)U∗(n)3(n)(
UT (n)h̃(n)+ UH (n)g̃(n)+ υυυ(n)

)
+A−(n)w̃(n)+ A−(n)θθθ (n) (41)

g̃(n+ 1) = A+(n)g̃(n)− DA+(n)U (n)3(n)(
UT (n)h̃(n)+ UH (n)g̃(n)+ υυυ(n)

)
+A−(n)w̃

′
(n)+ A−(n)θθθ ′(n) (42)

where3(n) = (UH (n)U (n))−1, h̃(n) = [h̃1(n), · · · , h̃N (n)]T ,
g̃(n) = [g̃1(n), · · · , g̃N (n)]T , w̃(n) = [w̃1(n), · · · , w̃N (n)]T

and w̃
′
(n) = [w̃

′

1(n), · · · , w̃
′

N (n)]
T .

Then, the weight deviation update is combined as[
h̃(n+ 1)
g̃(n+ 1)

]
= A+(n)

[
I − DU∗(n)3(n)UT (n)
−DU (n)3(n)UT (n)

−DU∗(n)3(n)UH (n)
I − DU (n)3(n)UH (n)

] [
h̃(n)
g̃(n)

]
−DA+(n)

[
U∗(n)
U (n)

]
3(n)υυυ(n)

+A−(n)

[
w̃(n)
w̃
′
(n)

]
+ A−(n)

[
θθθ(n)
θθθ ′(n)

]
(43)

and (43) can be rewritten as

w̃(n+ 1) = Aa+(n)
(
I2MN − DaUa∗(n)3(n)UaT (n)

)
w̃(n)

−DaAa+(n)Ua∗(n)3(n)υυυ(n)

+Aa−(n)w̃
a
(n)+ Aa−(n)θθθa(n) (44)

where w̃(n) = [h̃T (n), g̃T (n)]T , Ua(n) = [UT (n),UH (n)]T ,
w̃
a
(n) = [w̃

T
(n), w̃

′T
(n)]T , θθθa(n) = [θθθT (n), θθθ

′T (n)]T ,
Aa+(n) = diag[A+(n),A+(n)], Aa−(n) = diag[A−(n),A−(n)]
and Da = diag[D,D].

Under the A3, A4 and A5, taking the expectation operator
on both sides of the above equation, then

E
[
w̃(n+1)

]
= E[Aa+(n)]

{
I2MN−DaE

[
Ua∗(n)3(n)UaT (n)

]}
E[w̃(n)]+ E

[
Aa−(n)w̃

a
(n)
]

+E
[
Aa−(n)θθθa(n)

]
(45)

Theorem 1: (Mean stability) Under the assumptionsA1-A5,
the estimator w(n) asymptotically converges in mean sense if
the step-size satisfies condition (76).
Proof: According to the definitions of w̃

a
(n) and θθθa(n),

because the reference estimates wk (n) and w′k (n) converge
to unbiased estimates of optimum weights, it’s obvious that
E[w̃

a
(n)] = 0 and ‖Aa−(n)‖ ≤ 1. So we can conclude that

E
[
Aa−(n)w̃

a
(n)
]
= 0 as n→∞.

Because θθθa(n) is composed of θθθk,l(n) and θθθk,l(n), θθθ
(j)
k,l(n) <

√
γk (n) and θθθ

′(j)
k,l (n) <

√
γk (n). The Aa−(n)θθθa(n) is bounded

vector.
Since ‖Aa+(n)‖ ≤ 1, we have

|λmax(E[Aa+(n)](I2MN−DaE
[
Ua∗(n)3(n)UaT (n)

]
))|

< |λmax(I2MN−DaE
[
Ua∗(n)3(n)UaT (n)

]
)| (46)

As shown in appendix, for each node k , if the step-size sat-
isfies (76), we have |λmax(IM− µkE

[
U∗(n)3(n)UT (n)

]
)| <

1, and thus, |λmax(I2MN −DaE
[
Ua∗(n)3(n)UaT (n)

]
)| < 1.

In other words, ifµk satisfies (76), the first term in the RHS of
(45) converges, nomatter whatA+(n) is.We can conclude that
w(n) = [hT (n), gT (n)]T converges to a biased estimate of the
optimum weight wo with the bias governed by the step-size
µk and combination matrix A−(n). In a particular case, when
there is no missing detection of attacks, Aa−(n) converges
to an zero matrix, and thus w(n) converges to an unbiased
estimate of wo.
Remark3: As can be seen from (45), when the detection of

attacked sensors or communications is missing, the attacked
data exist, and the third term in the RHS of (45) will not
converge to zero. Hence, a biased estimate results in. There-
fore, the mean stability of the proposed secure algorithm is
significantly dependent on the error of missing detection.

C. MEAN SQUARE PERFORMANCE
The mean-square performance analysis is given by following
the energy conservation framework [36]. First, Defining the
squared weighted Euclidean norm of a complex-valued vec-
tor x, ‖x‖26 = xH6x, where6 is any symmetric nonnegative
definite matrix with the 2MN × 2MN dimension. And taking
the weighted Euclidean norm on both sides of (44) yields

‖w̃(n+ 1)‖26 = ‖w̃(n)‖
2
6′ + υυυ

H (n)Y (n)υυυ(n)

+ w̃
aH

(n)Aa−H (n)6Aa−(n)w̃
a
(n)

+θθθaH (n)Aa−H (n)6Aa−(n)θθθa(n)

+ w̃
aH

(n)Aa−H (n)6Aa−(n)θθθa(n)

+θθθaH (n)Aa−H (n)6Aa−(n)w̃
a
(n)

+

{
Cross term which are involving υυυ(n)

}
(47)

where

6′ = (I2MN − DaUa∗(n)3(n)UaT (n))HAa+H (n)6

Aa+(n)(I2MN − DaUa∗(n)3(n)UaT (n)) (48)

Y (n) = 3H (n)UaT (n)Aa+H(n)DaH6DaAa+(n)Ua∗(n)3(n)

(49)

Taking the expectation of (47) results in

E
[
‖w̃(n+ 1)‖26

]
= E

[
‖w̃(n)‖26′

]
+ E

[
υυυH (n)Y (n)υυυ(n)

]
+E

[
w̃
aH

(n)Aa−H (n)6Aa−(n)w̃
a
(n)
]
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+E
[
θθθaH (n)Aa−H (n)6Aa−(n)θθθa(n)

]
+ 2<

{
E
[
w̃
aH

(n)Aa−H (n)6

Aa−(n)θθθa(n)
]}

(50)

To calculate (50) tractable, the vectorization operation
is introduced. For any matrices

{
X , 6,Y

}
of compatible

dimensions, the following property of Kronecker product is
given [34]

vec(X , 6,Y ) = (Y T ⊗ X )vec(6) (51)

By applying (51) into (48), the following vector relation
can be derived

σσσ ′ = vec(6′) = Fσσσ (52)

where

F = E
{
((I2MN − DaUa∗(n)3(n)UaT (n))TAa+T (n))

⊗((I2MN − DaUa∗(n)3(n)UaT (n))HAa+T (n))
}

=

(
(I2MN − DaE

{
Ua∗(n)3(n)UaT (n)

}
)T ⊗

(I2MN−DaE
{
Ua∗(n)3(n)UaT (n)

}
)H
)

(E[Aa+T (n)]⊗ E[Aa+H (n)])

=

(
I2MN − I2MN ⊗ (E

{
Ua∗(n)3H (n)UaT (n)

}
DaH )

− (E
{
Ua(n)3(n)UaH (n)

}
Da)⊗ I2MN

+ (E
{
Ua(n)3(n)UaH (n)

}
Da)

⊗(E
{
Ua∗(n)3H (n)UaT (n)

}
DaH )

)
(E[Aa+T (n)]⊗ E[Aa+H (n)]) (53)

The second term of the right side of (50) can be written as

E
{
υυυH (n)Y (n)υυυ(n)

}
= E

{
Tr(υυυ(n)υυυH (n)Y (n))

}
= Tr

(
E
{
υυυ(n)υυυH (n)Y (n)

})
=

(
vec(E

{
υυυ(n)υυυH (n)

}T ))T
vec(E

{
Y (n)

}
) (54)

Then, using (52) and (54), (50) becomes

E
{
‖w̃(n+ 1)‖2vec−1(σσσ )

}
= E

{
‖w̃(n)‖2vec−1(Fσσσ )

}
+ϒϒϒ(n)σσσ

+E
[
w̃
aH

(n)Aa−H (n)6Aa−(n)w̃
a
(n)
]

+E
[
θθθaH (n)Aa−H (n)6Aa−(n)θθθa(n)

]
+ 2<

{
E
[
w̃
aH

(n)Aa−H (n)6Aa−(n)θθθa(n)
]}

(55)

where

ϒϒϒ(n) =
(
vec(E

{
υυυ(n)υυυH (n)

}T ))TE{(3(n)⊗3H (n))
}

E
{
(UaH (n)⊗UaT (n))

}
(E(Aa+(n))⊗ E(Aa+H (n)))

(Da ⊗ DaH ) (56)

Theorem 2: (Mean-square stability) Assume the step-size
is sufficiently small, the diffusion strategy (33) and (34) is
mean-square stable if the matrix F is stable. The stability
condition of F is guaranteed by sufficiently small step-sizes
that also satisfy (47).
Proof: Iterating recursion (55) starting from n = 0, we find

that

E
[
‖w̃(n+ 1)‖2vec−1(σσσ )

]
= E

[
‖w̃(0)‖2vec−1(Fn+1σ )

]
+

n∑
p=0

ϒϒϒ(p)σσσ

+

n∑
p=0

E
[
w̃
aH

(p)Aa−H (p)6Aa−(p)w̃
a
(p)
]

+

n∑
p=0

E
[
θθθaH (p)Aa−H (p)6Aa−(p)θθθa(p)

]

+ 2
n∑

p=0

<

{
E
[
w̃
aH

(p)Aa−H (p)6Aa−(p)θθθa(p)
]}

(57)

Provided that F is stable, the first and second terms on the
RHS of (57) converge as n → ∞, to zero for the former,
and to a finite value for the latter. The third term depends
on the cooperation matrix A−(n) and the MSD of reference
subsystem. Since ‖A−(n)‖2 ≤ 1,wk (n) andw′k (n) converge to
the optimumweight and optimum conjugate weight, the third
term is bounded. Since θθθk,l(n) and θθθ ′k,l(n) are the boundedM -
dimensional random vector with each component θθθ (m)k,l (n) <
√
γk (n) and θθθ

′(m)
k,l (n) <

√
γk (n), the forth term is bounded

by a value govered by the threshold γk,max(n). The fifth
term is bounded by the wk (n) and w′k (n) and converges to

zero. We conclude that E
{
‖w̃(n + 1)‖2

vec−1(σσσ )

}
converges to

a bounded value as n → ∞, and the algorithm is said to be
mean-square stable. Therefore, the overall MSD converges
and is bounded by the step-size.

However, since the cooperation matrixs A−(n) and A+(n)
are time-varying and depend on the detecting result, we can-
not give an exact constant to denote overall MSD. If no
missing detection or the attacks are all detected, that is to
say, the A−(n) converges to zero matrix, A+(n) converges
to a stable combination matrix A+

′

, and Aa+(n) converges
to a stable combination matrix Aa+

′

. In this special case,
the last three terms in (55) converge to zeros, we get the
corresponding MSD as follows

E
{
‖w̃(n+ 1)‖2vec−1(σσσ )

}
= E

{
‖w̃(n)‖2vec−1(F ′σσσ )

}
+ϒϒϒ ′(n)σσσ

(58)

where

F ′ = E
{
((I2MN − DaUa∗(n)3(n)UaT (n))TAa+

′T )

⊗((I2MN − DaUa∗(n)3(n)UaT (n))HAa+
′T )
}
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=

(
(I2MN − DaE

{
Ua∗(n)3(n)UaT (n)

}
)T ⊗

(I2MN−DaE
{
Ua∗(n)3(n)UaT (n)

}
)H
)

(E[Aa+
′T ]⊗ E[Aa+

′H ])

=

(
I2MN − I2MN ⊗ (E

{
Ua∗(n)3H (n)UaT (n)

}
DaH )

+ (E
{
Ua(n)3(n)UaH (n)

}
Da)⊗ I2MN

+ (E
{
Ua(n)3(n)UaH (n)

}
Da)

⊗(E
{
Ua∗(n)3H (n)UaT (n)

}
DaH )

)
(E[Aa+

′T ]⊗ E[Aa+
′H ]) (59)

and

ϒϒϒ ′(n) =
(
vec(E

{
υυυ(n)υυυH (n)

}T ))TE{(3(n)⊗3H (n))
}

E
{
(UaH (n)⊗UaT (n))

}
(E(Aa+

′

)⊗ E(Aa+
′H ))

(Da ⊗ DaH ) (60)

(58) has a similar form as the common D-ACNSAF except
that the combination weight matrix Aa+

′

.
When the proposed algorithm has converged to the steady-

state, (58) can be written as

E
{
‖w̃(∞)‖2vec−1(σσσ )

}
= E

{
‖w̃(∞)‖2vec−1(F ′σσσ )

}
+ϒϒϒ ′(n)σσσ

(61)

Then,

E
{
‖w̃(∞)‖2vec−1((I2MN−F ′)σσσ )

}
= ϒϒϒ ′(n)σσσ (62)

Choosingσσσ = (I2MN−F ′)−1, the sum of steady-statemean
square deviation for all the nodes can be given as

MSD(∞) = ϒϒϒ ′(n)(I2MN − F ′)−1 (63)

The network MSD is the average of MSD across all the
network nodes. Then, the network steady-state MSD can be
obtained as follows:

MSDnetwork (∞) =
1
N
MSD(∞) (64)

As illustrated in (62), when there is no missing detection,
the steady-state MSD is determined by the step-size, input
signal and the combination matrix A+

′

(n).
According to the above analysis, for small step-sizes,

we can conclude that the performance of SD-ACNSAF lies
somewhere around the reference subsystem, and does not
deviate it much. If the deviation is large, the hypothesis test
(22) is not satisfied, information is considered to be broken,
and is not used in combination step. The impact of the num-
ber of attacks on the performance of the algorithm will be
discussed in the section V.

FIGURE 3. Network topology with 20 nodes.

FIGURE 4. Performance comparisons of different algorithms for
noncircular ARMA complex-valued signals under circular single point
attack. (a) Transient network MSD. (b) Steady-state network MSD verus
node.

D. THE SELECTION OF THRESHOLD γk (n)
It’s obvious that the selection of threshold will have a great
impact on the performance of the proposed SD-ACNSAF
algorithm. The threshold selection method will be given in
the following section.

Substituting (30) into the combination step (24),

hk (n) =
∑

l∈0′k (n)

bk,l
(
wk (n)+ θθθk,l(n)

)
= wk (n)+

∑
l∈0′k (n)

bk,lθθθk,l(n)

= wk (n)+ B(n)θθθk (n) (65)
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FIGURE 5. Performance comparisons of different algorithms for
noncircular Ikeda map complex-valued signals under circular single point
attack. (a) Transient network MSD. (b) Steady-state network MSD verus
node.

Subtracting the optimum weight ho and obtaining the
squared deviation of (65)

‖h̃k (n)‖2 = ‖w̃k (n)‖2 + ‖B(n)θθθk (n)‖2

+ w̃
H
k (n)B(n)θθθk (n)+ θθθ

H
k (n)B(n)w̃k (n) (66)

Then,

‖B(n)θθθk (n)‖2 ≤ 2<
{
w̃
H
k (n)B(n)θθθk (n)

}
≤ ‖w̃

H
k (n)B(n)θθθk (n)‖ (67)

A sufficient condition for ensuring (66) can be obtained

|

∑
l∈0′k (n)

bk,lθθθ
(m)
k,l (n)| < 2|w̃

(m)
k (n)| (68)

Which is equivalent to

|

∑
l∈0′k (n)

bk,lθθθ
(m)
k,l (n)| <

√
βk (n) (69)

Combining (68) and (69)

βk (n) < 4‖w̃
(m)
k (n)‖2 (70)

Similarly, another threshold is derived

β ′k (n) < 4‖w̃
′(m)
k (n)‖2 (71)

FIGURE 6. Performance comparisons of different algorithms for
noncircular ARMA complex-valued signals under noncircular single point
attack. (a) Transient network MSD. (b) Steady-state network MSD verus
node.

As a result, the threshold γk (n) can be derived as follows

γk (n) = min(βk (n), β ′k (n)) (72)

Since the optimumweights ho and go are unknown in prac-

tical applications, ‖w̃
(m)
k (n)‖2 and ‖w̃

′(m)
k (n)‖2 can be obtained

by employing the time average method as follows

µ̂̂µ̂µk1(n+ 1) = [nµ̂̂µ̂µk1(n)+ wk (n)]/(n+ 1)

σ̂̂σ̂σ k1(n+ 1) = [(n)σ̂̂σ̂σ k1(n)+ ‖wk (n)− µ̂̂µ̂µk1(n)‖2/M ]/(n+ 1)

µ̂̂µ̂µk2(n+ 1) = [nµ̂̂µ̂µk2(n)+ w′k (n)]/(n+ 1)

σ̂̂σ̂σ k2(n+ 1) = [(n)σ̂̂σ̂σ k2(n)+ ‖w′k (n)− µ̂̂µ̂µk2(n)‖
2/M ]/(n+ 1)

where µ̂̂µ̂µk1(1) and µ̂̂µ̂µk2(1) are all initialized as zero vectors.
σ̂̂σ̂σ k1(1) and σ̂̂σ̂σ k2(1) are all equal to 0.

Then, the threshold is given as

γk (n) = min(σ̂̂σ̂σ k1(n), σ̂̂σ̂σ k2(n)) (73)

V. SIMULATION RESULTS
In this section, several numerical simulations have been
done to examine the effectiveness of the proposed algorithm.
The unknown channel is a widely linear moving average
(WL-MA) process and is randomly generated as unit mag-
nitude in the form of complex values. The cosine modulated

VOLUME 8, 2020 203177



P. Wen et al.: Diffusion ACNSAF Algorithm for Secure Distributed Estimation

FIGURE 7. Performance comparisons of different algorithms for
noncircular Ikeda map complex-valued signals under noncircular single
point attack. (a) Transient network MSD. (b) Steady-state network MSD
verus node.

filter banks are used as the synthesis and analysis filters.
The number of subband Ns is set to 4 and the length of
prototype filter is 32. The Metropolis rule is used for the
combination weights. The network profile with 20 nodes is
used shown in Fig. 3. There are 39 links between nodes
in the network. The communication between node 5 and
node 15 is compromised. The attack measurement qk (n) for
compromised sensor is a noncircular complex-valued doubly
whiteGaussian (E{q2k (n)} = 0.9)with q ∼ N (0, 1)+iN (0, 1).
The disturbance vectors zak,l(n) and z

a′
k,l(n) for compromised

communications are generated from zero-mean complex-
valued doubly Gaussian distribution (E{za

2
(n)} = 0.9) with

za(n) ∼ N (0, 0.5)+ iN (0, 0.5). The complex-valued network
mean-square deviation (NMSD) is used as the evaluation
criteria, which is defined as:

NMSD(n) =
1
N

N∑
k=1

E
{
‖ho − hk (n)‖2

+‖go − gk (n)‖2
}

(74)

The simulation results are achieved by averaging 20 itera-
tions and perform on benchmark complex-valued noncircular
input signals.

FIGURE 8. Performance comparisons of different algorithms for
noncircular ARMA complex-valued signals under time-varying noncircular
single point attack. (a) Transient network MSD. (b) Steady-state network
MSD verus node.

One of the noncircular complex-valued signals is an
autoregressive moving average (ARMA) complex process,
which is given as follows [37]

uk (n) = 0.85uk (n− 1)+ 2o(n)+ 0.45o∗(n)

+ o(n− 1)+ 0.9o∗(n− 1) (75)

where o(n) is a complex-valued doubly second order noncir-
cular white Gaussian process with σ 2

o = 1 and σ̃ 2
o = 0.8.

Another benchmark noncircular signal is the Ikeda signal
(nonlinear and with coupled states), given by [38]

u(n) = 1+ α(u(n− 1) cos(t(n− 1)))

− v(n− 1) sin(t(n− 1)) (76)

v(n) = α(u(n− 1) sin(t(n− 1)))

+ v(n− 1) cos(t(n− 1)) (77)

where α = 0.9 and t(n−1) = 0.4−6/(1+u2(n−1)+v2(n−
1)). u(n) and v(n) are the real and imaginary parts of uk (n).

A. SINGLE POINT ATTACK
First, to verify the anti-circular attack effect of proposed
algorithm, we present the comparisons of the performance of
the proposed SD-ACNSAF algorithm, nc-ACNSAF and the
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FIGURE 9. Performance comparisons of different algorithms for
noncircular Ikeda map complex-valued signals under time-varying
noncircular single point attack. (a) Transient network MSD.
(b) Steady-state network MSD verus node.

original D-ACNSAF with and without attacks for noncircu-
lar complex-valued input signals under circular single point
attack. The learning curves of these algorithms are shown
in Fig. 4 and 5. The compromised sensor is chosen as 10.
The length of unknown channel is set as 4. The step-size µk
is chosen as 0.00145. The background noise of each node
is a circular complex-valued doubly white Gaussian, and the
variances are within (0, 0.1). As can be seen from Figs. 4(a)
and 5(a), since the damaged information is also used by other
adjacent nodes, the performance of D-ACNSAF decreases
most. The performance of nc-ACNSAF algorithm is a litter
better than the D-ACNSAFwith attacks because the damaged
information is not exchanged. Due to the detection scheme,
the proposed SD-ACNSAF behaves a similar performance
with the D-ACNSAF without attacks in an adverse environ-
ment. From Fig. 4(b) and 5(b), the simulation results further
validate our theoretical analysis. Because the network MSD
of the compromised node is extremely large, the averaged
performance of the network is poor. The performance of
nc-ACNSAF is superior to D-ACNSAFwith attacks, but infe-
rior to our proposed algorithm. The proposed SD-ACNSAF
algorithm shows low steady-state NMSD and closes to the
theoretical value without attacks due to making a detection
of reliable neighbors at first and then performing data fusion

FIGURE 10. Performance comparisons of different algorithms for
noncircular Ikeda map complex-valued signals under noncircular
multipoint attacks. (a) Transient network MSD. (b) Steady-state network
MSD verus node.

on the reliable neighbors. The small difference between them
is due to the removal of themeasurements from the unaffected
nodes that are detected as being attacked.

Then, in order to test the anti-noncircular attack effect of
proposed algorithm, the comparisons of the performance of
the proposed SD-ACNSAF algorithm, nc-ACNSAF and the
original D-ACNSAFwith and without attacks for noncircular
complex-valued input signals under noncircular single point
attack are presented. The learning curves of these algorithms
are shown in Fig. 6 and 7. The compromised sensor is chosen
as 10. The length of unknown channel is set as 4. The step-size
µk is chosen as 0.00245. Since these algorithms are all using
the WL model, they have a good capability of processing
noncircular complex-valued signals. Besides, the proposed
SD-ACNSAF algorithm has a good performance against both
the circular and noncircular attacks. Also note the steady-state
network MSD of the proposed SD-ACNSAF algorithm is
quite close to that of the D-ACNSAF without noncircular
attacks.

Afterwards, we compare the proposed SD-ACNSAF algo-
rithm with nc-ACNSAF and the original D-ACNSAF with
and without attacks for noncircular complex-valued input
signals under time-varying noncircular single point attack.
The network transient behaviors and steady-state behaviors in
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FIGURE 11. Performance comparisons of different algorithms for
noncircular Ikeda map complex-valued signals under time-varying
noncircular multipoint attacks. (a) Transient network MSD.
(b) Steady-state network MSD verus node.

term of MSD for these algorithms are shown in Fig. 8 and 9.
The compromised sensor is chosen as 10. The length of
unknown channel is set as 4. The step-size µk is chosen as
0.0185. As can be seen from Fig. 8 and 9, the proposed algo-
rithm performs better than the nc-ACNSAF and D-ACNSAF
with attacks and has a similar convergence performance with
the D-ACNSAF algorithm without attacks in a time-varying
noncircular attack environment.

B. MULTIPOINT POINT ATTACK
To further verify the anti-noncircular attack effect of proposed
algorithm under time-varying and non-time-varying noncir-
cular multipoint attacks, the comparisons of the performance
of the proposed SD-ACNSAF algorithm, nc-ACNSAF and
the original D-ACNSAF with and without attacks for noncir-
cular complex-valued Ikeda map input signals are presented.
In Fig. 10 and 11, we show the learning curves of these algo-
rithms. The compromised sensors are chosen as 2, 9 and 16.
The length of unknown channel is set as 4. The step-sizeµk is
chosen as 0.0245. As can be seen from Fig. 10 and 11, due to
the ability of processing noncircular complex-valued signals
and making a detection of reliable neighbors, the proposed
algorithm also has good ability to resist multi-point noncir-
cular attacks and achieves a similar convergence performance

FIGURE 12. Performance comparisons of SD-ACNSAF algorithm for
noncircular Ikeda map complex-valued signals with different attacked
nodes. (a) Transient network MSD. (b) Steady-state network MSD verus
node.

with the D-ACNSAF algorithm without attacks. As a result,
the proposed algorithm has a good anti-attack capability,
whether the attacks are circular or non-circular, time-varying
or non-time-varying, single or multipoint.

C. DISCUSSION ON THE INFLUENCE OF ATTACK NUMBER
In order to study the influence of the number of attacks on
the performance of the proposed algorithm, the performance
comparison of the SD-ACNSAF with different attack num-
bers for noncircular complex-valued Ikeda map input signals
are presented. The compromised sensors are chosen as 1, 2,
4, 5, 7, 8, 9, 11, 13, 16, respectively. The attacked nodes are
randomly selected in the simulation. The parameter setting is
the same as the previous experiment. As shown in Fig. 12,
the proposed algorithm has a robustness performance against
complex-valued attacks. However, As the number of attacks
increases, the performance of the SD-ACNSAF algorithm
decreases. Since the proposed algorithm is derived based
on assumption 1, when the number of attacks is more than
or equal to half of the number of network nodes, the anti
attack performance of the algorithm will decline. This is
consistent with the previous analysis. The performance of
the proposed algorithm is determined by the success rate of
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attack detection. It is obvious that the increase of the number
of attacks will bring difficulties to attack detection. However,
the impact is acceptable under the assumption 1.

VI. CONCLUSION
In this article, to solve the problem of complex-valued
attacks in sensor network, a secure diffusion aug-
mented complex-valued normalized subband adaptive filter
(SD-ACNSAF) algorithm is proposed to protect informa-
tion against noncircular attacks, which is derived from a
novel complex-valued detection method. This complex-value
detection method can be considered to consist of two parts.
It first needs to detect the trustworthy neighbors of each node
by using reliable reference estimation and then reassembles
the information from the trustworthy neighbors by using the
D-ACNSAF algorithm. The theoretical analyses of the mean
and mean-square performance of the proposed algorithm
are presented. Simulation results show that the proposed
algorithm exhibits good performance.

APPENDIX
As can be seen from (12) and (13), the elements of wk (n) and
w′k (n) are determined by the nc-ACNSAF algorithm. Suppose
the sensor is not attacked, the mean convergence condition of
nc-ACNSAF can be given as follows [27]:

0 < µk <
2

λmax

(∑Ns
m=1

E(ua∗k,m(n)u
aT
k,m(n))

E(uHk,m(n)uk,m(n))

) (78)

CASE 1: Assume no attack occurs on the network.
Under the above convergence condition, the weights of the
nc-ACNSAF algorithmwill converges to the optimum values.
Since the elements of wk (n) and w′k (n) are composed of
weights of the nc-ACNSAF algorithm, the wk (n) and w′k (n)
converge to an unbiased estimate of optimum weights.
CASE 2: Suppose that the attack occurs on some sensors or

communication paths and the attacks are random. According
to the assumption A1, each node k has no less than d nk2 e
reliable neighbors. Therefore, the reliable neighbors should
lin in both sides of w(j)

k (n) and w
′(j)
k (n). Such as:

<(w(j)
lt (n)) < <(w

(j)
k (n)) < <(w(j)

ls (n)) (79)

=(w(j)
lt (n)) < =(w

(j)
k (n)) < =(w(j)

ls (n)) (80)

<(w
′(j)
lt (n)) < <(w

′(j)
k (n)) < <(w

′(j)
ls (n)) (81)

=(w
′(j)
lt (n)) < =(w

′(j)
k (n)) < =(w

′(j)
ls (n)) (82)

where w(j)
lt (n), w

(j)
ls (n), w

′(j)
lt (n) and w

′(j)
ls (n) are the reliable

neighbors of node k . The elements of wk (n) and w′k (n) can
be considered reliable.

As a result, the references wk (n) and w′k (n) converge to the
true expectation of the estimation.
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