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ABSTRACT This article investigates the difference between two quantum-based theories to calculate the
radar cross-section (RCS). Quantum radar cross-section (QRCS) has been commonly analyzed using the
dipole approximation method, and the related results show that it can improve the sidelobe of the interference
pattern in contrast to the classical methods. This study, on the other hand, utilizes the canonical quantization
(or microscopic) method, which is a more comprehensive theory than the dipole approximation method
to calculate the radar cross-section. It is shown that there are some similarities between two methods;
nonetheless, there are some crucial quantities and factors that have been ignored in the dipole approximation
methods. The main difference arises due to the interaction Hamiltonian that two methods relied on. The
theoretical calculation shows some critical points suggesting that the dipole approximation method cannot
cover all aspects of the radar cross-section calculation. To verify the mentioned point, we establish a new
method in which the radar cross-section is calculated by merging the quantum approach with the method of
moment (MoM), called quantum-method of moment (QMoM). The simulation results show that the newly
established method is in harmony with the canonical quantization method.

INDEX TERMS Radar cross-section, quantum radar cross-section, canonical quantization method, method
of moment.

I. INTRODUCTION
Radar cross-section (RCS) predicting an arbitrarily shaped
target is one of the crucial tasks that have been studied by dif-
ferent exact and numerical methods [1]–[4]. The mentioned
methods utilize the classical picture to calculate RCS and
are known as classical RCS (CRCS). The classical theory
defines the RCS based on the induced current on the target to
generate the scattering electromagnetic fields [4], [5]. RCS is
the ability of the target to backscatter the intercepted radar
signal and fundamentally depends on the projected cross-
section, as well as reflectivity and directivity of the target [6].
This means that RCS is not the projected geometric area.
More technically, RCS is a function of the position of radar’s
transmitter and receiver relative to the target, target geometry
and composition, incident wave frequency, transmitter, and
receiver polarization [7], [8].
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To accurately analyze the RCS, recently, the trend has
been concentrated on the quantum-based approach (quantum
electrodynamics theory) utilizing quantum radar [9]–[13]
to improve the radar cross-section calculation. The RCS
calculated via the quantum phenomena is called quantum
RCS (QRCS). This technique can be used by quantum
radar [9], [11]. Quantum radar is a sensing device utilizing
quantum illumination protocol [9] to enhance the system
performance, such as signal-to-noise ratio and detection of
the target in a noisy medium. In quantum radar, two entangled
photons (signal and idler) are generated through which signal
mode is propagated toward the target, and simultaneously the
idler is kept in the laboratory. Eventually, the entanglement
between retained (idler) and returned signals (propagated and
reflected fields from target) is evaluated.

There is an essential difference between the calcula-
tion of CRCS and QRCS. QRCS describes the interaction
between the intercepted photons’ field and atoms of the
target through the dipole approximation method [9], [10].
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FIGURE 1. System schematic in which the target is incident by the broadcasting photons, and the
detected signals are analyzed by two different methods at the same place in the same conditions.

Moreover, it should be noted that in QRCS, the diffraction
and absorption effect is usually ignored [5] through which
the calculation accuracy can be decreased. Previous studies
discussed why QRCS enhances sidelobes over CRCS [12],
[13]. It is theoretically proved that the QRCS equation con-
tains a term | cos(θ)| (θ is the incident angle) [12], whereas the
CRCS equation includes a term cos2(θ ) [12], [13]. The origin
of the term cos2(θ ) in the CRCS equation comes from the
decomposition of the induced current density on the target.
The results simulated in [5], [12], [13] shows that QRCS
improves the RCS in the sidelobe.

Nonetheless, one can claim that QRCS may be an incom-
plete method because it uses an approximation based method
to calculate RCS. Here, in this study, we want to answer some
critical questions about it: Is the dipole approximation a per-
fect method to analyze RCS? Canwe develop another method
to improve the QRCS? To answer the questions mentioned
above, here, we prefer to utilize the canonical quantization
methods [11], [17], rather than the dipole approximation.
It is known that this theory covers a full interaction between
the incident field and the atom’s field. Using this method,
we derive the scattering photons wave function and compare
the results with the wave functions of photons derived with
the dipole approximation method [12], [13]. It is found that
there are some crucial differences between the two methods,
which suggests that the canonical quantization method can
improve the RCS. To prove this point, additionally, we estab-
lish a new method in which we merge the quantum theory to
the method of moment (MoM) [3], [14] to calculate the RCS.

RCS prediction for an arbitrarily shaped perfect con-
ductor (PEC) through MoM has been recently investi-
gated [3], [14]. In MoM, the electric field integral equation
in which the total tangential electric field on the PEC sur-
face is set to be zero is solved. Initially, the PEC surface
is divided into rectangular or triangular subdomains, and by
choosing suitable basis and weighting functions, the integral
equation is reduced to a matrix equation. One can calcu-
late the scattering field after solving the matrix equation for
unknown coefficients, which leads to the calculation of the
current density in RCS problems [15]. The RCS is figured
out using the surface current. In contrast with the classical
MoM, we establish a new method utilizing MoM with the
current density operator (QMoM) to calculate the scattering

field and RCS. Using the current density operator [16], [17]
gives us some degrees of freedom, while it was ignored when
the classical theory employs the current density average.
The results indicate that QMoM predicts the enhancement of
sidelobes, which confirms the achievement of QRCS. Also,
it reveals an enhancement in the main lobe, and that point has
not ever been predicted by QRCS calculation. This key point
confirms the difference between the canonical quantization
and dipole approximation methods that we want to discuss in
detail in the following.

The novelty of this study can be shortly summarized as:
(I) Using canonical quantization method as a complete quan-
tum theory to enhance the RCS calculation; (II) Showing the
point that the dipole approximation method is incomplete
to analyze RCS; (III) Establishing a new numerical method
called QMoM to calculate RCS.

The present work organization is as follows: In section II
and part A, the theory and background of the study are
presented, and in this part, we try to theoretically prove the
difference between two quantum-based methods to calculate
the emitted photons wave function. Also, in section II and part
B, the newMoM based algorithm called QMoM is presented.
In this part, all of the associated formula derived forMoMwill
be re-derived for QMoM. In section III, the simulation results
will be presented, and finally, in section IV, we offer a short
conclusion.

II. THEORY AND BACKGROUND
In this section, RCS calculations through two different
quantum-basedmethods, dipole approximation and canonical
quantization methods, are examined and compared with each
other. For this reason, we initially suggest considering the
schematic of the system illustrated in Fig. 1. It is supposed
that a wave with an intensity of I0 propagates into the atmo-
sphere to the incident upon a target, and the scattering signals
are detected by two similar detectors at the same place. The
detecting signals are analyzed via two different approaches to
compare the results. In the following, we focus on the canon-
ical quantization method and theoretically derive 9c(1R,t),
which is the wave function of the scattering photons, and
compare with 9D(1R,t), which has been derived by the
dipole approximation method [12], [13].
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A. CANONICAL QUANTIZATION METHOD TO DERIVE THE
SCATTERING PHOTONS WAVE FUNCTION
Here, our purpose is to obtain an appropriate wave function
using the canonical quantization method for a photon emitted
from an atom. The approach commonly starts from the inter-
action of light withmatter. In fact, thematter is supposed to be
a harmonic polarization field or atomic medium in the canon-
ical quantization method. So, the contributed Hamiltonian is
given by:

H0 = ε0(E2
+ ω2

k .A
2)

Hm = m.ω2
m.X

2
+
P2

m

Hint = α.
A.P
m

(1)

where H0, Hm, and Hint are, respectively, the incident field,
atom’s field, and interaction Hamiltonians. Also, ε0, ωk =

2π fk, m, ωm = c/λm, and α are the free space permittiv-
ity, incident angular wave frequency, oscillator mass, matter
oscillator angular frequency (λm is the related wavelength),
and interaction coefficient between incident field and atom’s
field, respectively. Moreover, in (1), E, A, X, and P are
the electric field, vector potential, position, and momentum
operators, respectively. Through defining the annihilation
and creation operators, the related Hamiltonians can be re-
expressed as:

H0 = }ωk (a+a+ 1/2)

Hm = }ωm(b+b+ 1/2)

Hint = −α.
i}
2m

√
mωm
ε0ωk

(a+ + a)(b− b+) (2)

where (a+, a) and (b+, b) indicate the creation and annihi-
lation operators of the incident field and polarization field,
respectively. Also, is the reduced Planck’s constant. Drop-
ping the nonconserving energy terms due to the rotating wave
approximation, by considering different modes, the interac-
tion Hamiltonian is re-expressed as:

Hint =
i}
2

∑
k

√
α2

mε0
.
ωm

ωk
(akb+e−j[ωk t−k.r]

− a+k be
j[ωk t−k.r]) (3)

where the term
√
(α2/m/ε0) indicates the rate of interaction

between the incident field and polarization field. To calcu-
late the emitted photon wave function using<0|E+(r,t)|γ0>,
we initially need to examine the time evolution of the state
of atoms interacted with the incident field |γ0>. The state
of the interaction of the incident photons with atoms can be
expressed using quantum superposition between the atoms in
an excited state with no photonic mode and the state of all
photonic mode while the atom is in the ground state as:

|γ0(t) >= Cb(t)|b, 0 > +
∑
k

Ca(t)|a, 1k > (4)

where Cb and Ca are the probability of finding atoms in the
excited state |b>with no incident photons and the probability

of finding atom in ground state |a> due to the interaction with
a photon of mode k, respectively. To make the time evolution
of the considered state, one can use the Schrödinger equation
as:

|
•

γ0(t) >

=
−i
}
Hint|γ0(t) >→

•

Cb(t) |b, 0 > +
∑
k

•

Ca(t) |a, 1k >

=

∑
k

√
α2

4mε0
.
ωm

ωk

{∑
k

Ca(t)e−j[ωk t−k.r]|b, 0 >

−Cb(t)ej[ωk t−k.r]|a, 1k >

}
(5)

One can re-express (5) as a coupled equation regarding the
frequency sweeping:

•

Ca(t) = −

√
α2

4mε0
.
ωm

ωk
.Cb(t)ej[(ω−ωk )t−k.r]

•

Cb(t) =
∑
k

√
α2

4mε0
.
ωm

ωk
.Ca(t)e−j[(ω−ωk )t−k.r]

(6)

Through the integration of each side of the first part of (6) and
substituting into the second part, the equation becomes:

•

Cb(t) = −
∑
k

α2

4mε0
.
ωm

ωk
.

t∫
0

dt ′Cb(t ′)ej(ω−ωk )(t−t
′) (7)

Since the modes are so closely spread, then one can
replace summation with integration in the volume V through
which (7) is presented as:

•

Cb(t)

= −
2V

(2π )3

∫
dk3

 α2

4mε0
.
ωm

ωk
.

t∫
0

dt ′Cb(t ′)ej(ω−ωk )(t−t
′)


(8)

where dk3 = k2sin(θ)dkdθdϕ. Using k = ωk/c and dk =
dωk/c, and by assuming that ωk can be supposed as a constant
in the considered bandwidth, (8) can be simplified as:

•

Cb(t) = −
2V

(2π )3

2π∫
0

dϕ

π∫
0

sin θdθ

t∫
0

dt ′Cb(t ′)

×

α2ωm4mε0

∞∫
0

ω2
k

c2
ej(ω−ωk )(t−t

′) dωk
cωk


•

Cb(t) = −
2V

(2π )3
.4π.

ωk

c3
.
α2ωm

4mε0
.

t∫
0

dt ′Cb(t ′).δ(t ′ − t)

→−
2V

(2π )3
.4π.

ωk

c3
.
α2ωm

4mε0
Cb(t)

(9)
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From (9), Cb(t)= exp[−0∗q t/2], where 0q = (V/4π2)(ωk/c3)
(ωmα

2/mε0). Then, Cb(t) is substituted into the first part
of (6), leading to the calculation of Ca(t) as:

Ca(t) = −

√
α2

4mε0
.
ωm

ωk
.e−jk.r

t∫
0

dt ′Cb(t)e−j[(ω−ωk )+
0q
2 ]t ′

(10)

So, Ca(t) is expressed in the steady-state condition as:

Ca(t) = i

√
α2

4mε0
.
ωm

ωk
.

e−jk.r

(ω − ωk )+ i
0q
2

(11)

Finally, the state of the interaction between the incident pho-
ton and polarization field by ignoring Cb(t) effect can be
introduced as:

|γ0 >= i
∑
k

√
α2

4mε0
.
ωm

ωk
.

e−jk.r

(ω − ωk )+ i
0q
2

|1k > (12)

We are now ready to calculate the emitted photon wave func-
tion, ψc(r, t), using the canonical quantization method. The
related wave function due to the interaction of the incident
photon with the polarization field is derived from [9], [12]:

9c(r, t)

= < 0|E+(r, t)|γ0 >

= < 0|E+(r, t) |i
∑
k

√
α2

4mε0
.
ωm

ωk
.

e−jk.r

(ω − ωk )+ i
0q
2

|1k >

(13)

where E+(r, t) is the quantized electric field and can be
substituted in (13) to finalize as:

9c(r, t) =< 0| i
∑
k ′

√
}ωk ′
2V ε0

e−j(ωk′ t−k.r)ak ′

. i
∑
k

√
α2

4mε0

ωm

ωk

e−jk.r0

(ω − ωk )+ i
0q
2

|1k > (14)

After some algebraic simplification and using k= k′, (14) can
be re-expressed as:

9c(r, t) = −
∑
k ′

√
}α2ωm
8V ε20

.
e−jωk tejk.(r−r0)

(ω − ωk )+ i
0q
2

(15)

By transferring the summation to integral and make some
algebraic simplifications, (15) is finally presented as:

9c(r, t) =
−2V
(2π )3

∫
dk3

√
}α2ωm
8V ε20

.
e−jωk tejk.(r−r0)

(ω − ωk )+ i
0q
2

k= ωc ,k0=
ωk
c

−−−−−−−→ =
−1

(2π )3

√
}α2ωmV

2ε20

∞∫
−∞

k2dk

.
e−jωk tejk0.(r−r0)

c[(k − k0)+ i
0q
2c ]

(16)

Using the Residue method, the integral in (16) is solved as:

9c(r, t) =
i

(2π )2

√
}α2ωmV

2ε20

ω2
k

c3
e−jωk tejk0.(r−r0)

× e
−0q
2 [ k0(r−r0)c −t] (17)

Defining ηc = 0.5∗0q[k′0(r− r0)/c − t], (17) is given by:

9c(r, t) =
i

2(2π )2

√
2}α2ωmV

ε20

ω2
k

c3
e−ηc−jωk tejk0.(r−r0) (18)

Thus, one can compare the emitted photon wave func-
tion derived for the canonical quantization method in (18)
with the wave function derived by the dipole approximation
method [12] as:

9d (r, t) =
i

2(2π )2
e
ε0

(dab • εk )
ω3
k

c3
e−ηd−jωk tejk0.(r−r0) (19)

where e, ηd, dab, and εk are the electron charge, excited state
decay rate, and dipole moment of transition and incident pho-
ton polarization. In fact, (dab. εk) defines the type of coupling
between the incident photons and the dipole operator. It can
be easily shown that 9d(1R,t) and 9c(1R,t) have the same
unit.

Based on the schematic illustrated in Fig. 1, one can define
the radar cross-section for the two different approaches as
σd = limr→∞ 2π r ∗ (Isd/I0)2 and σc = limr→∞ 2π r ∗

(Isc/I0)2, where Isd and Isc are the scattering photons intensity
for the canonical conjugate and dipole approximation meth-
ods, respectively. Herein, we want to study the difference
between two analysis methods; we need to analyze σc/σd ∼
[9c(1R,t)/ 9d(1R,t)]2:

9c(r, t)
9d (r, t)

=


i

2(2π)2

√
2}α2ωmV

ε20

ω2
k
c3
e−ηc−jωk tejk0.(r−r0)

i
2(2π)2

e
ε0
(dab • εk )

ω3
k
c3
e−ηd−jωk tejk0.(r−r0)


=

1
(dab • εk )

√
2}α2ωmV

e2
1
ωk
eηd−ηc (20)

First of all, one can simply suppose ηd ∼ ηc. It is also
assumed that the electric dipole momentum dab.εk can be
considered the same as α, which stands for the coupling
between the incident and polarization fields in the canonical
quantization method. With the listed assumptions, (20) is
reduced to:

9c(r, t)
9d (r, t)

∼

√
2}V
e2

.
ωm

ω2
k

(21)

By considering V = 4π r3/3, where r is the far-field distance
given as r >= 2D2/λk, and also D is the largest dimension of
the scatter. The simulation results are depicted in Fig. 2 for
the range of incident wave frequency 1.5 GHz < fk <

60 GHz, and D ∼ 0.1 mm, and r >= 200 nm. The result
in Fig. 2 reveals that for the frequency less than 2 GHz,
the emitted photons by the canonical quantization method
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FIGURE 2. The comparison between 9d and 9c for ηd ∼ ηc and
α ∼ dab.εk.

is much more than the dipole approximation method. It is
worthy to note that to calculate σc/σd, we need to consider
the square power of [9c(1R,t)/ 9d(1R,t)]. By increasing
the incident frequency, the ratio of the amplitude [9c(1R,t)/
9d(1R,t)] is dramatically decreased. Nonetheless, the sim-
ulated result shows that the emitted photon from the target
through the canonical quantization method is approximately
2∗105 times the dipole approximation method at fk = 1GHz.
This means that the dipole approximation method ignores
some critical points when utilizing the approximation proce-
dure. In other words, the result depicted in Fig. 2 suggests that
the radar cross-section main lobe may be enhanced beside the
sidelobe.

The RCS sidelobe improvement is fully predicted by
QRCS [12], [13], while the latter mentioned methods cannot
forecast anything about the main lobe.

Regarding the mentioned points, however, one needs
enough details about (20) to thoroughly compare the two
different methods. To do so, we focus on time constants
by which the atom’s excited state is decayed. That is the
comparison between ηd and ηc. For better understanding,
one can notice the simulation results displayed in Fig. 3.
In this figure, to easily compare the results, ηd is multiplied
by 1000 because ηd is much less than ηc. This figure shows
that decay rates derived with the canonical quantization and
dipole approximation method show the same behavior at very
low frequency. This means that the exponential term in (20)
can be ignored at a low frequency. However, by increas-
ing the frequency, ηc becomes dominant; This means that
the excited state of the atom predicted by the canonical
quantization method is sharply decayed at the RF frequency
compared to the dipole approximation method. Furthermore,
to thoroughly analyze (20), we need to know the behavior
of exp[ηd − ηc] shown in Fig. 4. It is demonstrated that
exp(ηd − ηc) is so close to unity, which means that it doesn’t
have a critical effect on 9d(1R,t)/ 9c(1R,t), especially in

FIGURE 3. The comparison between ηd and ηc for α = dab.εk.

FIGURE 4. The change of exp[ηd − ηc] vs. frequency for α = dab.εk.

the range of 0.5∼3 GHz. Thus, the term exp[ηd − ηc] can be
safely ignored at that mentioned range of frequency.

Nonetheless, the crucial case to compare 9d(1R,t) and
9c(1R,t) is the difference between α and dab.εk. So, in the
following, we want to thoroughly study two terms and inves-
tigate 9c(1R,t)/ 9d(1R,t) in the non-ideal form.
From the semi-classical point of view, dab is the electric

dipoles of the atom randomly oriented in each direction.
To analyze precisely, one can express the atom’s electric
dipole and photon’s polarization vector as:

−→
dab =

−→
d < sin ξ cos ζ, sin ξ sin ζ, cos ξ >

−→εk = < sin θ cosϕ, sin θ sinϕ, cos θ > (22)

The vectors in (22) are presented in the spherical coordi-
nates in which two different azimuth and elevation angles
are defined to distinguish between the atom dipole orienta-
tion and the incident photon polarization direction. Operator
dab is the radial component of the dipole operator, which
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operates on atom’s states. It has generally been considered
two different scenarios for the case of dab. The first scenario
assumes that each dipole direction is uniformly distributed,
so each atom has the same average value, and one can use
mean(|dab.εk|2) rather than

∑ N
i=1|dabi.εki|

2. The second
scenario is that all of the electric dipoles are oriented in the
same direction. That is like immersing an object into a string
field. Therefore, the term (|dab.εk|2) is the same for all atoms.
That means that

∑
i=1

N
|dabi.εki|2 = N∗(|dab.εk|2).

For two defined scenarios above, the first one seems to be
reasonable for the present application (RCS calculation) in
which due to the attenuation of the medium such as atmo-
sphere, the target senses a low-intensity field. Thus, the mean
value of the dabi.εki is considered, which indicates a con-
stant number can define the dipole operator coupling with
the photon’s polarization. After a short introduction about
the dipole momentum, to complete the analysis, we need to
express α in terms of the atom’s transition momentum. From
the dipole approximation method, if one considers the mean
value of dabi.εki as a constant, the atom-field coupling factor
is defined as [19]:

gd = ς
E
}

(23)

where E is the electric field, and ς is the atom’s transition
momentum equal to the mean value of e.(dabi.εki). Thus,
eigenstates of the atom’s state are shifted by gd . It is note-
worthy to mention that ς is a characteristic constant of the
atom and only depends on the wave function of the electronic
states, which are not changed inside the cavity (considering
the first scenario). Therefore, gd is strongly dependent on
just an incident field. This is the point we want to relate
the canonical quantization method’s coupling constant to
the dipole approximation method’s characteristics constant.
From the canonical quantization method, we know that a
term
√
(α2/m/ε0) indicates the rate of interaction between the

incident field and the polarization field. Therefore, by sub-
stituting the rate of interaction into (23), α can be estimated
as: √

α2

mε0
= ς

E
}
→ α = ς

√
mωk
2}V

(24)

where (24) indicates the relationship between α and ς .
By substituting (24) into (20), one can exactly predict
9d(1R,t) and9c(1R,t). The results in the non-ideal form are
shown in Fig. 5. At a frequency such as 2 GHz, 9c = 409d,
which means that σc ∼ 1600σd. Thus, RCS predicted by
the canonical quantization method is greater than the dipole
approximation method. Moreover, from this figure, one can
clearly understand that the exponential term in (20) has a
slight effect in the range of RF frequency.

With the results simulated above, it is shown that RCS
calculated by the canonical quantization method significantly
differs from the dipole approximation method. That is con-
tributed to the difference in the coupling factor employed by
two different methods. Also, from the relationship σc/σd ∼

FIGURE 5. The comparison between 9d and 9c; bold: ηd = ηc, dashed:
ηd 6= ηc.

[9c(1R,t)/9d(1R,t)]2, one can find that the emitted photons
amplitude from the target is the critical factor that RCS
is defined based on it. Consequently, from 9c(1R, t) >

9d(1R,t), the comparison σc � σd is easily deduced, which
means that RCS predicted by the canonical quantization
method is strongly enhanced. In the following, we want
to introduce a new numerical method utilizing a quantum
approach to confirm this point.

So far, using full quantum theory, the corresponding for-
mulas are theoretically derived, and results show that the
amplitude of photons emitted by the canonical quantization is
much greater than the dipole approximation method. In fact,
the results show that there is a crucial difference between
the canonical quantization method and dipole approximation
by which one can infer that the prediction of QRCS may be
incomplete. That means that QRCS [9], [12], maybe, cannot
predict the main lobe amplitude enhancing as well as side-
lobe. In the following, we establish a newmethod to calculate
RCS by merging a quantum approach into the Method of
Moment called QMoM. Our purpose is to utilize MoM with
the current density operator to compute the scattering field
and the related RCS. It is shown that using the current density
operator [7], [18] in QMoM gives us some degree of freedom
ignored in the classical picture, CRCS, in which the average
of the current density has been employed [5]. We want to
show by QMoM that using dipole approximation to calculate
RCS is not a complete method.

B. QMoM: USING THE QUANTUM APPROACH IN
METHOD OF MOMENT TO CALCULATE RCS
Since an incident field is illuminated on a PEC object,
the total field becomes the sum of the incident and scat-
tered fields when the object is exposed. The scattered field
includes reflected, diffracted, and surface wave components.
To initialize the MoM approach, one commonly uses the
Huygens’ equivalence principle [20] in which the object is
replaced with the same parameter of the outside medium and
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FIGURE 6. a) Square plate geometry and the illumination of the microwave photons with angle
θi, ϕi and scattering angle θs, ϕs. 1Cj stands jth unit of the segmentation used in MoM;
b) QMoM and MoM comparison for the calculation of RCS of 1m ∗ 1m rectangular target
illuminated at f = 1.2 GHz and θi = 0, ϕs = ϕi = 0.

considers equivalent electric and magnetic current densities
on the surface.

Due to the PEC assumption, Ms = 0, it is because the
tangential component of Etangential equals zero on the surface
of PEC. Thus, the scattered fields are just created by Js.
Therefore, we focus on the boundary condition on which
Etangential = 0, then it can be concluded that n×(Es

due to Js +

Ei) = 0. In the following section, we need to express
Maxwell’s equations in terms of Es, which involves the inte-
gration of Js that leads to a Fredholm integral equation by
which Js can be solved. The derivation of the QMoMmethod
from classical MoM can be found in detail in Supplementary
materials (Appendix A).

FromAppendix A, (A9) is the modified version of the clas-
sical MoM Fredholm integral presented in (A2), is expressed
as:

N∑
j=1

|Cj|2
kη
4
.
e}k
m

∫
1C ′

j

dl ′
{
|Fj(r ′)|2H

(2)
0 (k|ri − r ′|)

}
= E iz(ri), (25)

In this study, we nominate the new version of MoM as
QMoM. From (25), one can get N equations for each weight
function. Through construction N∗Nmatrix as [A]nn[Cj]n1 =
[bj]n1, one can find Cj and plugging in 8(r,t) =

∑N
j=1

CjFj(r) to calculate the current density. After solving the
matrix system for unknown coefficients corresponding to Jz
distribution, we can calculate the scattered field using (C1)
to analyze the RCS. In the following section, the simulation
results are presented.

III. RESULTS AND DISCUSSIONS
To apply QMoM, we consider a 1m∗1m metal square plate
illuminated by a microwave wave illustrated in Fig. 6a. Since
the aim is to verify the new approach by comparing it with
the simulated and published results [5], [12], and [13], for this
reason, a simple geometric shape is selected. There are some

numerical and theoretical modeling of RCS for ametal square
plate [5], [13], [21]. The simulated result in Fig. 6b shows that
using QMoM improves the main lobe beside the sidelobe as
an important result that can be discussed. This figure shows
the difference between MoM and QMoM of calculation of
RCS for a square with a dimension of 1m∗1m at f= 1.2 GHz
and θi = 0, ϕs = ϕi = 0. The figure indicates using a
dotted circle that the main lobe is enhanced in magnitude as
well as the sidelobe, which means that QRCS cannot predict
the main lobe improving. Enhancing in magnitude implies
the increase of the absolute value of the reflected photons
wave function derived in (18). This point is because of the
difference between 9c(1R,t) and 9d(1R,t), which are the
critical factors in RCS defining. Also, in QMoM, the results
strongly contributed to the quantization of the current derived
in (C6). In other words, when the current density operator
is utilized as expressed in (C6), it means that the imaginary
part of the wave function affects the result beside the real
part. It is noteworthy to mention that the result illustrated
in Fig. 6 is completely comparable with Fig. 5 of [13] and
Fig. 4 of [5] in which a rectangular plate 1m ∗ 1m has been
incident at 1.2 GHz.

Furthermore, to certify the QMoM and make a comparison
with a classical MoM, we have studied the effect of the
incident wave frequency, incident angle, and the geometrical
shape effects on RCS. We show that all of the results are
comparable with the results of published works [5], [13],
and [21]. The related results can be found in the Supplemen-
tary materials (Appendix B).

IV. CONCLUSION
In this article, RCS was calculated using the canonical quan-
tization method, which is a more comprehensive theory than
the dipole approximation. The main aim was to compare
the difference between two quantum-based theories dealing
with the RCS calculation. It was shown that there are some
similarities between two quantum-based methods at some
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specific range of frequencies; nonetheless, it was revealed
that there are a few crucial factors that have been ignored
in the dipole approximation methods. The main difference
between the dipole approximation and canonical quantization
method to calculate radar cross-section was issued from the
interaction Hamiltonian. In other words, it was the coupling
factor that created a significant difference between the two
methods.

In this study, RCS was calculated for a system by two dif-
ferent methods with the same conditions. The results revealed
that the emitted photons calculated by the canonical quantiza-
tion method are more than that of dipole approximation. This
point severely affected the RCS calculation. To prove this
point, we established a new numerical method in which the
quantum theory is utilized inMoM to enhance the calculation
of RCS rather than QRCS. The idea of the QMoM initiated
from this point that using the current density operator rather
than the current density average could enhance the results.
Thus, using quantum theory, the current density operator
was derived and substituted into the MoM approach. The
simulated results showed this approach could enhance the
sidelobe in the same way with QRCS; interestingly, it also
revealed that the main lobe intensity was enhanced. That
is contributed to the difference between the current density
average used in the classical MoM and the current density
operator utilized in the new method as QMoM.

To confirm the QMoM operation accuracy, the effect of
some parameters such as frequency, incident angle, and shape
changes are considered on RCS calculation. The results
revealed full compatibility in accuracy between MoM and
QMoM as one could compare the results with the different
cited works. As a significant result, it can be mentioned
that using dipole approximation to calculate RCS is not a
completemethod. In other words, although the dipole approx-
imation approach to compute the radar cross-section may
improve the calculation accuracy with respect to classical
radar cross-section; nonetheless, it is not a perfect method.
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