IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 27, 2020, accepted November 7, 2020, date of publication November 11, 2020,

date of current version November 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037330

An Improved Method of Detecting Macro
Malware on an Imbalanced Dataset

MAMORU MIMURA

National Defense Academy, Kanagawa 239-8686, Japan

e-mail: mim@nda.ac.jp

ABSTRACT In spear-phishing attacks, macro malware written in VBA (Visual Basic for Applications)
is often used to compromise the target computers. Macro malware is often obfuscated in several ways to
evade detection. To detect new macro malware, several methods with machine learning techniques have been
proposed. While many methods were evaluated with the inadequate or balanced dataset with the same number
of benign and malicious samples, practical performance is still open to discussion. In reality, the population
of VBA macros consists of wide variety of samples. To evaluate practical performance, an imbalanced
dataset which contains many benign samples is required. In this paper, we propose an improved method
of detecting macro malware on an imbalanced dataset. Our method uses 2 language models (Doc2vec and
Latent Semantic Indexing (LSI)) and 4 popular classifiers. These language models are used to extract
features and mitigate the class imbalance problem by selecting important features. We create an imbalanced
dataset with more than 30,000 samples and evaluate the practical performance. The experimental result
demonstrates that our method mitigates the class imbalance problem and could detect completely new
malware regardless of the family type. The result also reveals that LSI is more robust than Doc2vec to

the class imbalance problem.

INDEX TERMS

Information security, intrusion detection, machine learning, VBA macros, office

documents, macro malware, natural language processing, Doc2vec, latent semantic indexing.

I. INTRODUCTION

Spear-phishing attacks are one of main threats for organiza-
tions of all sizes and across every field. The use of malicious
documents has increased rapidly along with a spectrum of
attacks. They offer flexibility in document structure with
numerous features for attackers to exploit [1]. While many
studies focus on Portable Document Format (PDF) document
files [2]-[8] or their JavaScript [9]-[11], this study focuses
on Microsoft (MS) document files. In spear-phishing attacks,
macro malware written in VBA (Visual Basic for Appli-
cations) is often used to compromise the target computers.
While VBA enables to automate tasks in MS document files,
attackers abuse its useful functions to execute malicious tasks.
Malicious VBA macros are obfuscated to evade anti-virus
programs with the latest definitions. In fact, main anti-virus
programs barely detect new malware samples [12], [13]. In
addition, there are few suitable code analysis tools for detect-
ing macro malware. Thus, traditional pattern-based detection
methods have a serious limitation in detecting new malware.

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro R. M. Indcio

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

To detect new macro malware, several methods with
machine learning models have been proposed [14]-[19].
While many methods were evaluated with the inade-
quate or balanced dataset, practical performance is still open
to discussion. For instance, some studies conducted cross
validation with restricted samples [14], [17]. While cross val-
idation reveals the generalization performance with limited
samples, it does not indicate that their method is effective
against new malware. Because the training samples may
contain many similar samples. New malware could be com-
pletely new and different. To avoid this problem, the other
studies consider the time series and confirmed that the train-
ing samples consist of earlier samples [18]-[23]. However,
these methods are evaluated with a balanced dataset with
the same number of benign and malicious samples. Thus,
many previous studies do not consider the class imbalance
problem and may not be robust on an imbalanced dataset.
In addition, they did not reveal detection rates in malware
families. In reality, the population of VBA macros consists of
wide variety of samples and contains many benign samples.
To evaluate practical performance, an imbalanced dataset
which contains many benign samples is required [24].

204709

https://orcid.org/0000-0003-4323-9911
https://orcid.org/0000-0001-8221-0666

IEEE Access

M. Mimura: Improved Method of Detecting Macro Malware on an Imbalanced Dataset

In this paper, we propose an improved method of detecting
macro malware on an imbalanced dataset. Our method uses
2 language models (Doc2vec and Latent Semantic Indexing
(LSI)) and 4 popular classifiers. These language models are
used to extract features. To improve the performance and
mitigate the class imbalance problem, we apply a mitigation
technique for proxy logs to macro malware [25]. This tech-
nique extracts important features based on word frequency.
We create an imbalanced dataset with more than 30,000 sam-
ples and evaluate the practical performance. These samples
are obtained from multiple sources to improve the reliabil-
ity of result. The experimental result demonstrates that our
method mitigates the class imbalance problem and could
detect new malware families. The best f-measure achieves
0.99. This study evaluates practical performance of macro
malware detection methods on an imbalanced dataset. In
addition, we analyze the detail and reveal detection rates
in malware families. This study also reveals robustness of
language models as a feature extraction method against an
imbalanced dataset. The mitigation technique is particularly
effective to Doc2vec rather than LSI. The result also shows
that LSI is more robust than Doc2vec to a class imbalance
problem.

This paper produces the following contributions:

1) Proposes an improved method of detecting macro

malware with a mitigation technique for proxy logs.

2) Evaluates practical performance of macro malware

detection methods on an imbalanced dataset.

3) Reveals detection rates in malware families.

4) The mitigation technique is particularly effective to

Doc2vec rather than LSI.
5) LSI is more robust than Doc2vec to a class imbalance
problem.
The structure of this paper is shown as follows. Section 2
describes related work. Section 3 describes malicious VBA
macros and section 4 provides Natural Language Process-
ing (NLP) techniques. Section 5 presents our method and
section 6 demonstrates the performance. Finally, we discuss
the results and conclude this paper.

Il. RELATED WORK

A. MS DOCUMENT FILE

In regard to intrusion detection, one of the hot research areas
is detection, visualization, and classification of malware [26].
Our method examines MS document files without execut-
ing files on a computer. Several methods without dynamic
analysis are proposed to examine MS document files. Office-
MalScanner is a basic tool to detect malicious MS document
files [27]. This tool scans the entire MS document file for
generic shellcode patterns or embedded objects. Chen et al.
developed a malicious document detector with the similar
techniques [28]. In malicious document files, executable files
are frequently embedded. The executable files are used to
detect malware, because benign document files usually do not
contain executable files [12]. These executable files involve
file structure of document files. Otsubo et al. developed a tool

204710

to detect anomaly file structure of document files containing
executable files [29]. They examined hundreds of these mali-
cious document files and found these document files do not
conform to legitimate file format strictly.

The similar idea has been extended to XML-based Office
documents. Cohen et al. presented a novel structural fea-
ture extraction method for XML-based Office documents
[13]. This method extracts discriminative features from mali-
cious documents based on their structure, and detects mali-
cious document files with machine learning algorithms.
Nissim et al. created a detection model that detects new mali-
cious docx files [30]. This model is based on their structural
feature extraction methodology [13].

Another approach is a visualization based method for
malware detection [31]. In this approach, the target file is
converted into an image to examine. Deep learning methods
have brought outstanding performance on image classifica-
tion. Convolutional Neural Network (CNN) is applied to
detect malicious document files [32]. This method converts
a document file into images and attempts to detect shellcode
patterns with CNN. Yakura et al. used CNN with Attention
Mechanism to analyze imaged binary samples [33], [34].

These methods can be applied to document files for detect-
ing new malicious document files. Some methods may detect
malicious document files which contain VBA macros. These
methods, however, do not examine the contents of VBA
macros.

B. VBA MACRO
In regard to VBA macros, Bearden et al. proposed a method
of classifying MS Office files containing macros as mali-
cious or benign using the K-nearest Neighbors machine learn-
ing algorithm [14]. This method extracts important features
from p-code opcode with Term Frequency-Inverse Docu-
ment Frequency (TFIDF), which is a popular method to
define word importance. P-code is a set of mnemonic instruc-
tions executed by the engine. Our method uses raw VBA
macro code and does not have to translate the code into
p-code opcode. Santos et al. demonstrated that the choice
of characteristics intrinsic to the VBA code that forms a
macro could become an effective method for the classification
of malware [15]. They used four classification algorithms:
Binary Decision Trees, Support Vector Machines, Random
Forest and Neural Networks. Aboud et al. proposed a method
for detecting VBA macro malware using five classifiers:
K-nearest Neighbors, Decision Tree, Random Forest, and
Gaussian Naive Bayes [16]. Their method uses statistical
features such as the number of specific kinds of variables.
Kim et al. focused on the obfuscation techniques and pro-
posed an obfuscated macro code detection method using
machine learning models [17]. Their method uses 15 static
features of obfuscation patterns. Hence, their method cannot
detect plain macro malware.

To overcome these problems, raw VBA macro code was
divided into words and used as features with Natural Lan-
guage Processing (NLP) techniques. These extracted words

VOLUME 8, 2020

M. Mimura: Improved Method of Detecting Macro Malware on an Imbalanced Dataset

IEEE Access

Algorithm 1 A Sample of Malicious Code
1: Sub AutoOpen()

2: Dim xHittp: Set xHittp = CreateObject
(“Microsoft. XMLHTTP”")
3: Dim bStrm: Set bSttrm = CreateObject

(““Adodb.Stream”)
4: xHttp.Open “GET”, <URL>, False
5. xHttp.Send

6: With bStrm

7. Type = 1 ’//binary

8 Open

9: write xHttp.responseBody

10: .savetofile “malware.exe’, 2

11: End With

12: Shell (““malware.exe’)

13: End Sub

were used to construct a Doc2vec model for detecting new
new malicious VBA macros [18], [19]. A Doc2vec model
is based on the context of words in the documents. Fake
text vectors may be used to mitigate the class imbalance
problem [23]. While this method improves the sensitivity of
minority class, this method is not evaluated on imbalanced
dataset. Moreover, this method is limited to a Doc2vec model.
Another popular language model is LSI and used to represent
VBA macros [21], [22]. An LSI model is based on the word
frequency in the documents. These methods simply extract
words from both benign and malicious VBA macros. There-
fore, these methods may not be robust on an imbalanced
dataset. To demonstrate this problem, an imbalanced dataset
with many benign samples will be used.

lll. MALICIOUS VBA MACRO

A. BEHAVIOR

Malicious VBA macros are usually embedded into MS
document files. Typical MS document files conform to
Compound File Binary (CFB) file format or Office Open
XML (OOXML) file format. CFB file format is a binary file
format used by Microsoft Office 2003 and earlier. OOXML is
a collection of separate files and folders in a compressed zip
package, and used by Microsoft Word 2007 and later. Many
extensions conform to both file formats support VBA macros.
VBA is a programming language supported in Office pro-
grams, and provides many useful functions. VBA macros are
a series of commands that can be executed automatically to
perform a task. Algorithm 1 shows how to perform malicious
activities.

This simple example downloads a malicious file from the
URL and executes it. Thus, attackers abuse its useful func-
tions to compromise other computers. They send a MS docu-
ment file with malicious VBA macros to the target computers.
Typical malicious VBA macros are used to drop or down-
load. The former is called dropper and the latter is called
downloader. Once a malicious document file is opened, only a
single click is required to activate the malicious VBA macro.

VOLUME 8, 2020

Dropper contains the main body in itself. The main body
is encoded or obfuscated by several techniques. Hence, drop-
per can obtain persistent access to the computer without
Internet connection. In contrast, downloader downloads the
main body from the Internet as its name suggests. Therefore,
downloader requires Internet connection to obtain persistent
access to the computer. Thus, malicious VBA macros tend to
contain functions to download or extract the main body. These
functions appear in the code and can be useful for detecting
malicious VBA macros.

B. OBFUSCATION
Malicious VBA macros are frequently obfuscated by several
techniques. The typical obfuscation techniques are divided

into 3 approaches.
Encoding

converts parameters with reversible algorithms.
Several functions are used for encoding strings. For
example, some functions such as Asc(), Hex(), and
Chr() vary characters to the number of the ASCII
code. These functions convert strings into numerous
numerical characters. Therefore, typical malicious
VBA macros tend to contain these functions and
formatted numerical characters.

Replacing
converts strings into random strings. Several func-
tions are used for replacing strings. For example,
some functions such as Replace(), Right(), or Left()
replace strings to other random strings. These func-
tions mainly convert function names and variable
names into random strings, because these names
can be defined arbitrarily. Therefore, typical mali-
cious VBA macros tend to contain these functions
or random strings.

Splitting
divides strings into other characters. This technique
is effective to avoid anti-virus programs. The
divided characters are restored to its original strings
by join operators such as “and” or “plus”.

Thus, malicious VBA macros tend to contain names of

these functions and characteristic strings. These features can
be useful for detecting malicious VBA macros.

IV. NLP TECHNIQUES

A. BAG-OF-WORDS

Bag-of-Words (BoW) is a fundamental model to extract fea-
ture vectors from documents. BoW represents the frequency
of a word in documents and produces a matrix from docu-
ments. In this matrix, each row corresponds to each document
and each column corresponds to each unique word in docu-
ments. This method simply assigns a word its corresponding
column. Therefore, this model does not consider word mean-
ing or context. In this study, BoW is used as a baseline to
evaluate the performance of our method.

B. Doc2vec
To represent word meaning or context, Word2vec was pro-
duced [35]. Word2vec are shallow neural networks trained to

204711

IEEE Access

M. Mimura: Improved Method of Detecting Macro Malware on an Imbalanced Dataset

reconstruct linguistic contexts of words. Word2vec requires
a corpus of documents and produces a vector space of sev-
eral hundred dimensions. In this space, each unique word in
the corpus is assigned a corresponding vector. These word
vectors are positioned in the vector space such that sim-
ilar words are located in close proximity to one another.
Word2vec represents a word in documents. Paragraph Vector
is the extension of Word2vec to represent a document [36].
Doc2vec is an implementation of the Paragraph Vector. In our
method, Doc2vec is used to represent the features of VBA
macros.

C. TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY
Term Frequency-Inverse Document Frequency (TFIDF) is
one of the most popular models to define word importance.
TFIDF score is defined as follows: D
TFIDF,'J = TF,"]' X 10g2 D_F,
The TF;; is the frequency of a word i in a document j.
The DF; is the frequency of documents in which the word
i appears. The IDF is the logarithm of a value in which D
(the number of total documents) is divided by the DF;. In
this model, as a word appears rarely in an entire corpus and
appears frequently in a document, the TFIDF score increases.
In our method, the TFIDF scores are used to construct a LSI
model.

D. LATENT SEMANTIC INDEXING

Latent Semantic Indexing (LSI) or Latent semantic analy-
sis (LSA) is one of techniques in topic modeling. The core
idea is to decompose a matrix of documents and words into a
separate document-topic matrix and a topic-word matrix. In
this model, a row indicates a vector corresponding to a word,
giving its relation to each document. A column indicates a
vector corresponding to a document, giving its relation to
each word. In practice, raw counts do not work particularly
well because they do not account for the significance of
each word in the document. In other words, this matrix is
sparse and redundant across its many dimensions. Therefore,
dimensionality reduction can be performed using truncated
Singular Value Decomposition (SVD). SVD reduces dimen-
sionality by selecting only the r largest singular values, and
only keeping the first r columns or rows. To select the largest
values, usually the TFIDF scores are used. In our method, LSI
is also used to represent the features of VBA macros.

V. PROPOSED METHOD

A. STRUCTURE

This paper proposes an improved method of detecting macro
malware on an imbalanced dataset. Figure 1 shows the struc-
ture of the proposed method.

Our method is a combination of previous NLP-based detec-
tion models. To mitigate the class imbalance problem, our
method selects the frequent words from benign and mali-
cious VBA macros respectively. A previous study for proxy
logs revealed that frequent words are effective to mitigate a
class imbalance problem [25], [37]. Therefore, our method

204712

)

Training
samples

J

Test
samples

/ Class Imbalance Mitigation (D (Vf“;'f’u,e))
0000 Sees
0000

- -

\ o 00 == (0 ae)
e J' l R
Language model
[Doc2vec] [LSI]
_ J
e l l h
Classifier
[SVM] [RF] [MLP] [CNN]
L J

FIGURE 1. Structure of the proposed method.

applies this method for mitigation. For feature extraction,
previous method used a Doc2vec model [18], [19], [23] or an
LSI model [21], [22]. To compare the performance of these
methods, our method uses both Doc2vec and LSI models for
feature extraction. In addition. our method uses 4 popular
classifiers.

B. TRAINING PHASE
The training procedure of our method is shown in
Algorithm 2.

In the training phase, our method extracts words from
benign and malicious VBA macros. These samples are
labeled and obtained from web pages such as Virus Total.!
Firstly, our method extracts VBA macros from MS document
files. The source code is divided into words (line 1 to 7).
A space character and special characters are used as the
delimiter. For example, the words (Sub, Auto, Open, Msgbox,
Hello, World, End, Sub) are extracted from Algorithm 3.

Secondly, our method selects the frequent words from
benign and malicious VBA macros respectively (line 8
to 10). Thirdly, our method constructs the Doc2vec and LSI
models from these words (line 11 to 14). The Doc2vec and
LSI models convert benign and malicious VBA macros into
feature vectors (line 15 to 21). Finally, classifiers are trained
by these feature vectors with their labels (line 22 to 23).

C. TEST PHASE
The test procedure of our method is shown in Algorithm 4.
In the test phase, our method examines unknown samples.
Firstly, our method extracts words from MS document files
in the same way (line 1 to 4). Secondly, these words are
converted into feature vectors by the Doc2vec and LSI models
(line 5 to 8) which were constructed in the training phase.
Finally, the trained classifiers predict the label from these
feature vectors (line 9 to 12).

1 https://www.virustotal.com/

VOLUME 8, 2020

M. Mimura: Improved Method of Detecting Macro Malware on an Imbalanced Dataset

IEEE Access

Algorithm 2 Training Procedure

Algorithm 4 Test Procedure

1: /* Extract VBA macros */
. for all malicious VBA macros m do
mw < extract words from m
: end for
: for all benign VBA macros b do
bw <« extract words from b
end for
: /* Selects frequent words */
: smv < Select frequent words from mw
: sbv < Select frequent words from bw
: /* Construct a language models */
. construct a Doc2vec model from smw, sbw
. construct a TFIDF model from smw, sbw
. construct a LSI model from the TFIDF
15: /* Convert words into vectors */
16: for all malicious words mw do
17: mv < Call language models (smw)
18: end for
19: for all benign words bw do
20: bv < Call language models (sbw)
21: end for
22: /* Train classifiers with the labeled vectors */
23: Call classifiers (mv, bv)
24: return

—_ = = = =
A LN = O

Algorithm 3 A Sample of Code
1: Sub Auto_Open()
2: Msgbox “Hello World!*’
3: End Sub

D. CLASSIFIER

Our method uses supervised learning models to predict
unknown samples. We selected 4 classifiers: SVM (Support
Vector Machine), RF (Random Forests), MLP (Multi-layer
Perceptron), and CNN (Convolutional Neural Networks).
These classifiers are popular in the various field and have
different features.

E. IMPLEMENTATION

Our method was implemented with Python 3.6 in an envi-
ronment as shown in Table 1. Olevba,” a script to parse OLE
and OpenXML files is used to extract VBA macros from MS
document files. The SVM and RF models are implemented
with scikit-learn-0.21.2,%> a machine learning library which
contains many classification algorithms. Chainer-6.0.0,* a
deep learning framework is used to implement the MLP
and CNN models. The parameters are optimized by grid
search, which exhaustively generates candidates from a grid
of parameter values. Gensim-3.7.3> is used to implement

2https:// github.com/decalage2/oletools/wiki/olevba/
3 https://scikit-learn.org/

4https://docs.chainer.org/

3 https://radimrehurek.com/gensim/

VOLUME 8, 2020

1: /* Extract VBA macros */

: for all unknown VBA macros u do
uw < extract words from u

end for

: /* Convert words into vectors */

: for all unknown words uw do

uv < Call language models (uw)

: end for

: /* Predict labels with the trained classifiers */

. for all unknown vectors uv do

label < Call classifiers (uv)

: end for

: return

e
W N = O

TABLE 1. Environment.

CPU IntelCorei9-7900X 3.3GHz
Memory | DDR4 128GB

GPU GeForce GTX 1080 Ti 11G
oS Windows 10 Home

TABLE 2. The number of samples obtained from Virus Total and Stack
Overflow.

2015 2016 2017
ben mali ben malis ben mali
ign | cious ign cious ign cious
VT | 561 862 1127 1150 | 2085 1049
SO | 2533 - 10,215 - 11,702 -
total | 3094 | 862 | 11,342 | 1150 | 13,787 | 1049

the LSI model. Gensim has many functions related to NLP
techniques such as BoW, Doc2vec, or LSI.

VI. EVALUATION
A. DATASET
To evaluate our method, actual VBA macros were obtained
from Virus Total (VT) and Stack Overflow (SO).” These
actual VBA macros contain both benign and malicious VBA
macros. We selected all MS document files containing VBA
macros during 2015-2017 from Virus Total. Their file exten-
sions include doc, docx, xlIs, xIsx, ppt, and pptx. These
samples judged malicious by more than half of anti-virus
vendors are labeled as malicious. In addition, we extracted
benign macros from all questions in Stack Overflow using
vba and excel tags. The benign samples are judged benign
by all anti-virus vendors. We compared their hash values
and removed duplicated samples. The VBA macros were
extracted by olevba. Table 2 shows the number of samples.
Each year in the table indicates the period the samples were
uploaded for the first time. Samples in each year are ran-
domly distributed. Furthermore, we identified these samples
with Windows Defender Antivirus.® Table 3 shows the top
5 malware families in each dataset.

6https :/Iwww.virustotal.com/
7https :/[stackoverflow.com/
8https ://www.microsoft.com/en-us/windows/windows-defender/

204713

IEEE Access

M. Mimura: Improved Method of Detecting Macro Malware on an Imbalanced Dataset

TABLE 3. Top 5 malware families in each dataset.

period family name
TrojanDownloader:097M/Donoff
TrojanDownloader:097M/Adnel
TrojanDownloader:097M/Bartallex
TrojanDownloader:W97M/Adnel
TrojanDownloader: W97M/Donoft
TrojanDownloader:097M/Donoff
None
Trojan:097M/Madeba.A!det
TrojanDownloader:JS/Swabfex.P
Virus:W97M/Thus.GB
TrojanDownloader:O97M/Donoff
None

Virus:W97M/Thus.GB
Trojan:Win32/Tiggre!rfn
Virus:X97M/Metcol. A

2015

2016

2017

LA#LMN—M#WNHM#WNH?

TABLE 4. Confusion matrix.

actual value
true | false

predicted | positive | TP FP
result false FN TN

“None” indicates that the samples are not defined by
Windows Defender Antivirus, but detected by other anti-virus
vendors. Thus, our dataset is distributed and contains a wide
variety of malware samples. We are aware that the later
samples contain completely new malware families. Note that
these malware families are not contained in the earlier sam-
ples. As the trained model with the earlier samples could
detect the later samples, it suggests that our method could
detect completely new malware families. Thus, the timestamp
of the dataset is very important for evaluation.

B. EVALUATION METRICS
To evaluate the performance, accuracy, precision, recall, and
f-measure are used. These metrics are defined as follows:

TP+ TN
Accuracy =)
TP+ FP+ FN + TN
. TP
Precision = ——,
TP + FP
TP
Recall = ——,
TP + FN

2Recall x Precision

F — measure = —.
Recall + Precision

Table 4 shows the confusion matrix.

In our experiment, TP indicates detecting malicious VBA
macros correctly. Our dataset consists of 3061 positive and
28,223 negative samples, which is highly imbalanced. While
the minority class accounts for only 10%, accuracy may not
be appropriate to evaluate the performance. Hence, we also
provide precision, recall, and f-measure of positive class.

C. EXPERIMENTAL METHOD

Initially, we conduct 5-fold cross validation with samples
in 2015 to seek the optimum parameters and evaluate gener-
alization performance. Next, we conduct time series analysis
to reveal practical performance. Samples in 2015 for training
and samples in 2016 for testing are used to compare with pre-
vious methods [18], [19], [21]-[23]. These previous methods

204714

TABLE 5. Main optimized parameters of each classifier.

classifier | paramter
SVM kernel:linear, C:0.5
probability:True

criterion:gini

max features:10

RF min samples split:3

min samples leaf:1

number of estimators:200

3 fully connected layers, epoch:30
MLP optimizer: Adam

activation function: ReLU
hidden layer: 500 units

2 convolution layers, epoch:30
optimizer: Adam

CNN activation function: ReLU
hidden layer: 16 and 64 chanels
filter size: 3

accuracy. precision, recall, f-measure
°
&

SVMm RF MLP CNN SVM RF MLP CNN
Doc2vec LSI

Baccuracy Eprecision Erecall Of-measure

FIGURE 2. Generalization performance of the 5-fold cross validation on
samples in 2015.

do not mitigate the class imbalance problem. To evaluate
persistency, the testing samples are varied to ones in 2017.
Finally, the training samples are varied to ones in 2016.

D. RESULT

We optimized parameters by grid search. The dimension of
LSI is adjusted to 400. The main optimized parameters of
each classifier are shown in Table 5.

The other parameters are set to default values.

Figure 2 shows generalization performance of the 5-fold
cross validation on samples in 2015.

Overall, each performance achieves at least 0.96
except RF. Even RF performs at least 0.87. The precision has
produced better results than recall. One reason for this is that
the dataset contains many negative (benign) samples. There-
fore, we conclude that the generalization performance is
appropriate.

Figure 3 shows the comparison of the time series analysis
with previous methods. As the previous methods use an SVM
classifier, we use the same classifier in this experiment.

In comparison, our methods produced better performance
than previous methods without mitigation. In particular,
the Doc2vec with mitigation produced the best performance.
The best f-measure achieves 0.99. In the previous methods,
it is remarkable that Doc2vec performs less accurate than
BoW. The low recall indicates many false negatives, in other

VOLUME 8, 2020

M. Mimura: Improved Method of Detecting Macro Malware on an Imbalanced Dataset

IEEE Access

accuracy. precision, recall, f-measure
°
&

Bow Doc2vec LSl

Doc2vec + LSI + Mitigation

Mitigation

Waccuracy Dprecision Mrecall Of-measure

FIGURE 3. Comparison with previous methods.

TABLE 6. Required time of time series analysis.

model BowW Doc2vec LSI
feature extraction - 44.8s 11.2s
training 1.0s 1.8s 2.2s
test 0.4s 0.8s 0.7s
model - Doc2vec + LSI +
mitigation | mitigation
feature extraction - 33.0s 4.1s
training - 1.1s 1.3s
test - 0.1s 0.5s

accuracy. precision, recall, f-measure
°
&

SsV™M RF MLP CNN SVM RF MLP CNN
Doc2vec LSI

Waccuracy Dprecision Mrecall Of-measure

FIGURE 4. Practical performance of all combinations of the classifiers
and language models.

words overlooking malicious VBA macros. Table 6 shows the
required time for this experiment.

In comparison, our methods require less time than previous
methods. This is because our methods reduce the unique
words to construct a language model. The previous method
with Doc2vec requires more time to construct a language
model. However, all methods do not demand much time for
detecting. Thus, our method requires only half a second for
examining 12,565 samples in 2016. Therefore, our method
is more effective than previous methods on the imbalanced
dataset.

Figure 4 shows the practical performance of all
combinations of the classifiers and language models.

In comparison, SVM with both language models produced
the best performance. Therefore, we provide the performance
of an SVM classifier in the remaining procedures. Table 7
shows the required time of all classifiers.

In this dataset, SVM is the fastest. Neural networks such as
MLP or CNN require more training time than other models.
A GPU reduces the training time dramatically. From the
result, the time complexity seems to depend on each classifier.

VOLUME 8, 2020

TABLE 7. Required time of all classifiers.

model RF | SVM | MLP | MLP CNN CNN
(GPU) (GPU)

training | 4.2s 1.1s 30.3s 11.4s Sm43s 13.3s

test 0.3s 0.1s 0.6s 0.1s 7.4s 0.2s

accuracy. precision, recall, f-measure
o
2

Doc2vec LSl Doc2vec LsI Doc2vec LSl
Training - Test 2015 -2016 2015-2017 2016 -2017

Baccuracy D precision Brecall Of-measure

FIGURE 5. Persistency of the Doc2vec and LSI.

TABLE 8. Detection rates of top 10 unknown families in samples in 2016.

No. | family name DR
1 TrojanDownloader:JS/Swabfex.P 50/50
2 Virus:W97M/Thus.GB 30/30
3 TrojanDownloader:097M/Donoff.CD 19/20
4 TrojanDownloader: O97M/Donoff!rfn 19/20
5 TrojanDownloader:097M/Zinunlate. A | 19/19
6 TrojanDropper:O97M/Vibro.A 17/17
7 TrojanDownloader:097M/Donoff!'map | 15/16
8 Virus:W97M/Marker.BR 13/13
9 TrojanDropper:097M/Donoff 12/13

10 | Virus:X97M/Mailcab.A 10/10

5 shows the persistency of the Doc2vec and LSI.

Regarding to Doc2vec, the original performance remains
flat. The best f-measure achieves 0.99. In regard to LSI,
the original performance achieves 0.91. Varying testing sam-
ples to ones in 2017, the performance is slightly reduced due
to aging. Varying training samples to ones in 2016, the perfor-
mance is improved. The best f-measure achieves 0.95. Thus,
retraining the model with new samples is effective to improve
the accuracy. As a result, the most effective combination is the
SVM and Doc2vec. The training samples were discovered
over a year ago, nevertheless the f-measure maintains flat
even on an imbalanced dataset.

VIl. DISCUSSION

A. ACCURACY

We analyzed detection rates of new malware families. Table 8
shows the detection rates of top 10 new malware families in
samples in 2016.

These families contain both downloaders and droppers.
Note that these new malware families are not included in the
training dataset. Thus, our method could detect completely
new malware families regardless of the family type.

B. COMPARISON
Table 9 shows comparison with other methods.

Previous methods are evaluated by 10-fold cross validation
with several dozens of samples [14] or thousands of samples
[17]. This means they used 90% of samples for training

204715

IEEE Access

M. Mimura: Improved Method of Detecting Macro Malware on an Imbalanced Dataset

TABLE 9. Comparison of detection rates with other methods.

imbalanced
method sample CvV time series and
time series
[14] 158 0.99 - -
[16] 1011 0.99 - -
[17] 2537 0.915 - -
[18]-[20] 2978 - 0.89 0.29
[21], [22] 7145 0.99 0.89 0.75
[23] 3842 0.99 0.91 -
Our method | 31,284 | 0.99 - 0.99

without timestamps. While another study used samples for
testing which were not present in the training samples, they
used only 83 benign samples for testing [16]. VBA macros are
highly used in enterprise environments with benign purposes
[38]. Thus, these studies do not reveal practical performance.
Moreover, they did not reveal the malware families.

Other previous studies considered time series of the
dataset and selected training samples from earlier samples
[18]-[22]. The detection rate was 0.89. These methods are
enhanced with fake vectors and achieved 0.91 [23]. However,
these methods are not evaluated on an imbalanced dataset.
Moreover, they did not reveal detection rates in malware
families.

We conducted 5-fold cross validation with more than
30, 000 samples and the detection rate was almost perfect.
Note that the condition is more severe than previous stud-
ies [14], [17]. In addition, we constructed an imbalanced
dataset to evaluate practical performance. The experimental
result demonstrated that previous methods are not robust
to an imbalanced dataset. In contrast, our method could
detect completely new malware families regardless of the
family type.

C. FINDINGS

In the comparison of the time series analysis, our method
clearly produced better performance than previous methods
without mitigation. Inexplicably, Doc2vec performed less
accurate than BoW in the previous methods. On a balanced
dataset, Doc2vec performed good accuracy [21], [22]. It can
thus be suggested that Doc2vec is not robust on an imbal-
anced dataset. This is consistent with previous studies [25],
[37]. Our study provides additional support for this finding.

In contrast, LSI performed more accurate than the other
previous methods. LSI also performed with good accuracy
on a balanced dataset [21], [22]. This result would seem to
suggest that LSI is more robust than other previous methods.
As far as we are aware, this is the first time that LSI is robust
on an imbalanced dataset.

With the mitigation technique, Doc2vec was drastically
enhanced on an imbalanced dataset. LSI was also enhanced
on an imbalanced dataset with the same technique. One rea-
son for this difference is that LSI is based on word frequency.
The mitigation technique is based on the same hypothesis.
Hence, the effectiveness seems to be limited. In contrast,
the mitigation technique is compatible with Doc2vec. Thus,
the mitigation technique is particularly effective to Doc2vec.

204716

D. LIMITATIONS

We are aware that our study may have two limitations.
In this study, we created an imbalanced dataset from more
than 30,000 samples. This dataset may not represent the
typical samples. Regarding to the training data, this suggests
room for improvement. If we could extract representative
samples for the training data, the performance would be
improved. Regarding the test data, this suggests more prac-
tical environment. Our method was evaluated with the maxi-
mum samples as far as we know. However, these samples do
not completely represent all actual samples. Apparently, it is
not feasible to obtain all actual samples. The best method to
mitigate this is obtaining more samples. However, obtaining
many labeled samples is a challenging task.

This study also evaluated the required time of our method.
According to the result, the time complexity seems to depend
on each classifier. To evaluate the time complexity, more
samples are required. Hence, this limitation is also related to
the number of samples. In addition, time complexity analysis
of each classifier is a challenging task. Further data collection
would be required to determine exactly how the practical
performance and time complexity are.

VIIl. CONCLUSION
In this paper, we propose an improved method of detecting
macro malware on an imbalanced dataset. To mitigate the
class imbalance problem, we apply a mitigation technique
for proxy logs to macro malware. The experimental result
with more than 30,000 samples demonstrates that previous
methods are not effective on an imbalanced dataset. Our
method could detect completely new malware regardless of
the family type. The best f-measure achieves 0.99. The mit-
igation technique is particularly effective to Doc2vec. The
result also reveals that LSI is more robust than Doc2vec.
Our method requires almost half a second for investigating
more than 10,000 samples. Thus, one of our future work is to
implement a real time detection system. We can implement
our method on a mail server or proxy server to examine files
in real time.

REFERENCES

[1] P. Singh, S. Tapaswi, and S. Gupta, ‘‘Malware detection in PDF and office
documents: A survey,” Inf. Secur. J., Global Perspective, vol. 29, no. 3,
pp. 134-153, May 2020.

[2] C. Ulucenk, V. Varadharajan, V. Balakrishnan, and U. Tupakula,
“Techniques for analysing PDF malware,” in Proc. 18th Asia—Pacific
Softw. Eng. Conf. (APSEC), Ho Chi Minh, Vietnam, Dec. 2011,
pp. 41-48.

[3] D. Stevens, “Malicious PDF documents explained,” IEEE Secur. Privacy
Mag., vol. 9, no. 1, pp. 80-82, Jan. 2011.

[4] H. V. Nath and B. M. Mehtre, “Ensemble learning for detection of mali-
cious content embedded in PDF documents,” in Proc. IEEE Int. Conf.
Signal Process., Informat., Commun. Energy Syst. (SPICES), Feb. 2015,
pp. 1-5.

[5] M. Iwamoto, S. Oshima, and T. Nakashima, “A study of mali-
cious PDF detection technique,” in Proc. 10th Int. Conf. Complex,
Intell., Softw. Intensive Syst. (CISIS), Fukuoka, Japan, Jul. 2016,
pp. 197-203.

[6] S. H. T. Mavric and C. K. Yeo, “Online binary visualization for pdf
documents,” in Proc. Int. Symp. Consum. Technol. (ISCT), May 2018,
pp. 18-21.

VOLUME 8, 2020

M. Mimura: Improved Method of Detecting Macro Malware on an Imbalanced Dataset

IEEE Access

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

N. Nissim, A. Cohen, J. Wu, A. Lanzi, L. Rokach, Y. Elovici, and
L. Giles, “Sec-lib: Protecting scholarly digital libraries from infected
papers using active machine learning framework,” IEEE Access, vol. 7,
pp. 110050-110073, 2019.

A. Corum, D. Jenkins, and J. Zheng, ‘“Robust PDF malware detection
with image visualization and processing techniques,” in Proc. 2nd Int.
Conf. Data Intell. Secur. (ICDIS), South Padre Island, TX, USA, Jun. 2019,
pp. 108-114.

F. Schmitt, J. Gassen, and E. Gerhards-Padilla, “PDF scrutinizer: Detect-
ing javascript-based attacks in PDF documents,” in Proc. 10th Annu. Int.
Conf. Privacy, Secur. Trust (PST), Paris, France, N. Cuppens-Boulahia,
P. Fong, J. Garcia-Alfaro, S. Marsh, and J. Steghofer, Eds., Jul. 2012,
pp. 104-111.

D. Liu, H. Wang, and A. Stavrou, “Detecting malicious javascript in
PDF through document instrumentation,” in Proc. 44th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw. (DSN), Atlanta, GA, USA, Jun. 2014,
pp. 100-111.

A. Lemay and S. P. Leblanc, “Is eval () evil: A study of JavaScript
in PDF malware,” in Proc. 13th Int. Conf. Malicious Unwanted Softw.
(MALWARE), Nantucket, MA, USA, Oct. 2018, pp. 13-22.

M. Mimura, Y. Otsubo, and H. Tanaka, ‘‘Evaluation of a brute forcing tool
that extracts the RAT from a malicious document file,” in Proc. 11th Asia
Joint Conf. Inf. Secur. (AsiaJCIS), Aug. 2016, pp. 147-154.

A. Cohen, N. Nissim, L. Rokach, and Y. Elovici, “SFEM: Structural
feature extraction methodology for the detection of malicious office doc-
uments using machine learning methods,” Expert Syst. Appl., vol. 63,
pp. 324-343, Nov. 2016.

R. Bearden and D. C.-T. Lo, “Automated microsoft office macro malware
detection using machine learning,” in Proc. IEEE Int. Conf. Big Data (Big-
Data), Boston, MA, USA, J.-Y. Nie, Z. Obradovic, T. Suzumura, R. Ghosh,
R. Nambiar, C. Wang, H. Zang, R. A. Baeza-Yates, X. Hu, J. Kepner,
A. Cuzzocrea, J. Tang, and M. Toyoda, Eds., Dec. 2017, pp. 4448-4452.
S. D. L. Santos and J. Torres, “Macro malware detection using machine
learning techniques—A new approach,” in Proc. 3rd Int. Conf. Inf.
Syst. Secur. Privacy (ICISSP), Porto, Portugal, P. Mori, S. Furnell, and
O. Camp, Eds., Feb. 2017, pp. 295-302.

E. Aboud and D. O’Brien, “Detection of malicious VBA macros using
machine learning methods,” in Proc. 26th AIAI Irish Conf. Artif. Intell.
Cogn. Sci. Trinity, vol. 2259, Dublin, Ireland, R. Brennan, J. Beel,
R. Byrne, J. Debattista, and A. C. Junior, Eds., Dec. 2018, pp. 374-385.
S. Kim, S. Hong, J. Oh, and H. Lee, “Obfuscated VBA macro detection
using machine learning,” in Proc. DSN, 2018, pp. 490-501.

H. Miura, M. Mimura, and H. Tanaka, ‘“Macros finder: Do you remember
loveletter?” in Proc. 14th Int. Conf. Inf. Secur. Pract. Exper. (ISPEC),
Tokyo, Japan, Sep. 2018, pp. 3—-18.

H. Miura, M. Mimura, and H. Tanaka, *“‘Discovering new malware families
using a linguistic-based macros detection method,” in Proc. 6th Int. Symp.
Comput. Netw. Workshops (CANDARW), Nov. 2018, pp. 431-437.

M. Mimura and H. Miura, “Detecting unseen malicious VBA macros with
NLP techniques,” J. Inf. Process., vol. 27, pp. 555-563, Sep. 2019.

M. Mimura and T. Ohminami, “Towards efficient detection of malicious
VBA macros with LSL”” in Proc. 14th Int. Workshop Secur. (IWSEC),
in Lecture Notes in Computer Science, vol. 11689, N. Attrapadung and
T. Yagi, Eds. Tokyo, Japan: Springer, Aug. 2019, pp. 168-185.

M. Mimura and T. Ohminami, “Using LSI to detect unknown malicious
VBA macros,” J. Inf. Process., vol. 28, pp. 493-501, Sep. 2020.

M. Mimura, “‘Using fake text vectors to improve the sensitivity of minority
class for macro malware detection,” J. Inf. Secur. Appl., vol. 54, Oct. 2020,
Art. no. 102600.

S. Marchal and N. Asokan, “On designing and evaluating phishing web-
page detection techniques for the real world,” in Proc. 11th USENIX
Workshop Cyber Secur. Experimentation Test (CSET), Baltimore, MD,
USA, C. S. Collberg and P. A. H. Peterson, Eds., Aug. 2018, pp. 1-8.

M. Mimura, “Adjusting lexical features of actual proxy logs for intrusion
detection,” J. Inf. Secur. Appl., vol. 50, Feb. 2020, Art. no. 102408.

VOLUME 8, 2020

(26]
(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

R. Komatwar and M. Kokare, “A survey on malware detection and classi-
fication,” J. Appl. Secur. Res., pp. 1-31, Aug. 2020.

F. Boldewin, “Analyzing msoffice malware with officemalscanner,”
Tech. Rep., Jul. 2009.

C.-K. Chen, S.-C. Lan, and S. W. Shieh, ““Shellcode detector for malicious
document hunting,” in Proc. IEEE Conf. Dependable Secure Comput.
(DSC), Taipei, Taiwan, Aug. 2017, pp. 527-528.

Y. Otsubo, M. Mimura, and H. Tanaka, ‘“O-checker: Detection of malicious
documents through deviation from file format specifications,” Black Hat
USA, Tech. Rep., 2016.

N. Nissim, A. Cohen, and Y. Elovici, “ALDOCX: Detection of unknown
malicious microsoft office documents using designated active learn-
ing methods based on new structural feature extraction methodol-
ogy,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 3, pp. 631-646,
Mar. 2017.

K. Kancherla and S. Mukkamala, “Image visualization based malware
detection,” in Proc. IEEE Symp. Comput. Intell. Cyber Secur. (CICS),
Apr. 2013, pp. 40—44.

M. Mimura, Y. Otsubo, H. Tanaka, and A. Goto, “Is emulating ‘binary
grep in eyes’ possible with machine learning?”” in Proc. CANDAR, 2017,
pp. 337-343.

H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma, ‘“Mal-
ware analysis of imaged binary samples by convolutional neural network
with attention mechanism,” in Proc. 8th ACM Conf. Data Appl. Secur.
Privacy (CODASPY), Tempe, AZ, USA, Mar. 2018, pp. 127-134.

H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma, *‘Neural
malware analysis with attention mechanism,” Comput. Secur., vol. 87,
Nov. 2019, Art. no. 101592.

T. Mikolov, W.-T. Yih, and G. Zweig, ‘“‘Linguistic regularities in con-
tinuous space word representations,” in Proc. Hum. Lang. Technol.,
Conf. North Amer. Chapter Assoc. Comput. Linguistics, L. Vanderwende,
H. Daumé, III, and K. Kirchhoff, Eds. Atlanta, GA, USA: Westin
Peachtree Plaza Hotel, Atlanta, The Association for Computational Lin-
guistics, Jun. 2013, pp. 746-751.

V. Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. 31th Int. Conf. Mach. Learn. (ICML), Beijing, China,
Jun. 2014, pp. 1188-1196.

M. Mimura and H. Tanaka, “A linguistic approach towards intrusion
detection in actual proxy logs,” in Proc. 20th Int. Conf. ICICS, Lille,
France, Oct. 2018, pp. 708-718.

S. C. Vitel, G. Balan, and D. B. Prelipcean, “Improving detection of
malicious office documents using one-side classifiers,” in Proc. 21st Int.
Symp. Symbolic Numeric Algorithms Sci. Comput. (SYNASC), Timisoara,
Romania, Sep. 2019, pp. 243-247.

MAMORU MIMURA received the B.E. and M.E.
degrees in engineering from the National Defense
Academy of Japan, in 2001 and 2008, respec-
tively, the Ph.D. degree in informatics from the
Institute of Information Security, in 2011, and the
M.B.A. degree from Hosei University, in 2014.
From 2001 to 2017, he was a member of the Japan
Maritime Self Defense Force. From 2011 to 2013,
he was with the National Information Security
Center. Since 2014, he has been a Researcher with

the Institute of Information Security. Since 2015, he has been with the
National Center of Incident Readiness and Strategy for Cybersecurity. He is
currently an Associate Professor with the Department of Computer Science,
National Defense Academy of Japan.

204717

