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ABSTRACT Visibility restoration of an underwater image degraded by turbid water (due to scattering,
absorption, and reflection) is a challenging task which requires careful design of computational imaging
methods. The fundamental problems which limit image restoration are random diffusion and absorption of
light in turbid water. Recently, the red-channel underwater image restoration method has emerged as an
effective approach for visibility restoration under turbid water. However, this method fails to restore the
visibility in a degraded image captured under non-uniform turbid water. The method fails due to its reliance
on single transmission which cannot correctly express light propagation in an underwater environment.
To overcome these problems, we propose a novel image restoration method based on adaptive color
compensation and dual transmission estimation (ACDTE) to restore the visibility of underwater images
degraded by non-uniform turbid water. The proposed method uses color-tone adaption to determine the
hue of underwater images, and estimates global water light with quadtree decomposition. The method
estimates dual transmission in the media through coefficient modification for R/G/B channels. Simulation
and experimental results show that the proposed method can correct color deviations and has the advantage
of visibility restoration of underwater images. The proposed method can be used for marine exploration,
underwater rescue, and environmental monitoring.

INDEX TERMS Underwater imaging, image restoration, dual transmission, quadtree decomposition.

I. INTRODUCTION
Recently, a lot of research in computational imaging is
directed towards underwater image restoration. The visibility
restoration of an underwater image improves the visual dis-
tance in a scene, which is conducive to underwater rescue and
surveys. Studies on underwater image visibility restoration
conducted in the past can be categorized into three types,
namely (a) improved dark channel prior methods [1]–[9],
(b) fusion-based methods [10]–[14], and (c) deep learning
based methods [15]–[18]. The underwater image visibility
restoration method based on deep learning requires syn-
thetic datasets, which do not contain realistic (practical)
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information, and usually lead to model over-fitting. The
fusion-basedmethods compute featureweights, which in case
of inaccurate estimation lead to image restoration failures.
The improved dark channel methods based on physical model
are more efficient (compared to two abovementioned cat-
egories) which consider light scattering and absorption in
turbid water. Therefore, the proposed method is a type of
underwater image restoration based on improved dark chan-
nel prior.

He et al. [19] proposed the dark channel prior method for
image dehazing under bad weather. Although this method
can be used for image dehazing, it only considers atmo-
spheric scattering and does not provide a mechanism to
counter absorption of light under turbid water. Therefore,
the method fails to restore visibility of underwater images.
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Galdran et al. [6] proposed a new red-channel method, which
can be interpreted as a variant of the dark channel method.
This method can be used to tackle both the visibility loss and
color distortion of underwater images. However, this method
only estimates a single transmission, and it is difficult for
it to express real underwater light propagation. In addition,
this method needs to estimate many unknown parameters
(such as attenuation coefficients, weights for each compo-
nent, saturation etc.) during image recovery, and inaccuracy
of these parameters affects the quality of restored image.
Li et al. [8] proposed a method based on blue-green channels
dehazing and red channel correction for underwater image
restoration. However, the method employs contrast stretching
for correcting red-channel, which makes it difficult to achieve
red component restoration. Li and Li [20] built an underwater
image restoration system by measuring the currents and sedi-
ment movement at the sea floor. However, this method needs
to deploy a free-ascending tripod under water to measure the
scene information of the seafloor. Li and Zhang [9] proposed
a new algorithm for underwater image restoration based on
improved background light estimation and automatic white
balance. This method can reduce the influence of light and
white objects under water, and improves underwater light
estimation accuracy. However, the color distortion of under-
water image is over-compensated, and the red channel color
saturation of the restored image is too high. Lu et al. [21]
proposed a novel method for enhancing optical images using
weighted guided trigonometric filter and spectral proper-
ties in turbid water. However, the turbid sediments cause
inaccurate estimation of water light in dense turbid water.
Bryson et al. [22] proposed a method to reconstruct true
colors in an underwater image by using image formation
model that accounts for attenuation, scattering, and artificial
lighting influence. However, this method requires 3D struc-
tural information of the terrain to be imaged, which is not
available or cannot be ascertained from images.

To summarize, in order to recover a clean image (with
clear scene visibility) from a degraded underwater image (i.e.,
image captured underwater by a camera), different methods
can be used [1]–[18], amongst which the improved dark chan-
nel method based on physical model is often used. There are
many types of underwater image restoration methods based
on improved dark channel prior, and the most commonly used
method is the red-channel underwater restoration method.
However, this method fails to restore the degraded image
visibility in a non-uniform or dense turbid water. In addition,
the method does not have adaptive color compensation (e.g.,
red-component compensation).

In this paper, we report an underwater image restoration
method based on adaptive color compensation and dual trans-
mission estimation (ACDTE) to solve the aforementioned
problems. The proposed method employs adaptive under-
water color-tone matching to estimate global water light,
and subsequently use it to estimate dual transmission (and
refine them rapidly). Considering the limitations of existing
schemes, a novel underwater restoration method with the

FIGURE 1. Schematic of underwater imaging. For underwater imaging,
commercially available cameras like Olympus STYLUS TG-3 can be used.

following salient features is proposed: (1) the proposed
method automatically adapts to multi-tone underwater
images with efficient color-ton matching, and estimates
global water light by using the quadtree decomposition, (2)
improved image quality under dense turbid water due to its
ability to estimate dual transmission (direct transmission and
backscattered transmission) from the color-tone of underwa-
ter images, (3) effective rectification of color distortions and
blurs.

II. ADAPTIVE COLOR COMPENSATION AND DUAL
TRANSMISSION ESTIMATION
ACDTE involves three processes. First, the underwater image
color-tone is automatically matched (to blue or green tone),
and the image region is searched by the quadtree decom-
position for global water light estimation. Second, the dual
transmission is computed by the improved dark channel
prior based on the color-tone of underwater image. Finally,
the scene radiance is restored by the underwater formation
model.

A. COLOR-TONE ADAPTION AND WATER LIGHT
ESTIMATION
Jaffe-McGlamery underwater image formation model [23],
[24] points out that the intensity of an underwater image
captured by a camera includes three components i.e., the
direct incident component Dλ, the fore-scattered component
Fλ, and the backscattered component Bλ, shown in Figure 1.
Thus, the intensity of degraded underwater image can be
written as:

Iλ(x) = Dλ(x)+ Fλ(x)+ Bλ(x)

= Jλ(x)tλ(x)+ (Jλ(x)tλ(x)) ∗ gλ(x)

+Aλ(x)(1− tλ(x)), (1)

where Iλ(x) is the observed intensity, Jλ(x) is the scene
radiance, gλ(x) denotes the point spread function (expressing
light diffusion due to forward scattering), Aλ(x) denotes the
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global water light, tλ = e−cλd(x) is the transmission describ-
ing the portion of light that is not scattered and reaches the
camera, cλ is the attenuation coefficient of light wavelength
λ, λ ∈ {r , g, b}, d(x) is the distance between the scene and
camera, cλ = aλ + bλ, aλ is the absorption coefficient, and
bλ is the scattering coefficient.

We assume that the distance between the scene and camera
is small such that the influence of fore-scattered component
can be ignored. Furthermore, Ref [25] points out that the
absorption and scattering effects of water on light cause
inconsistent light attenuation at different wavelengths; sug-
gesting the use of same transmission for light of different
wavelengths in Eq. (1) to be inappropriate. Therefore, the
underwater image formation model can be simplified as:

Iλ(x) = Jλ(x)tDλ (x)+ Aλ(x)t
B
λ (x), (2)

where the transmission can be divided into direct component
transmission tDλ (x) and backscattered component transmis-
sion tBλ (x).
The global water light should be taken from the infinite

distance of the scene. The greater the scene depth, the greater
the influence of background scattering and the lower the
transmission. Assuming the background scattering at infinite
distance to be uniform, the quadtree decomposition [26] is
applied on the underwater image to obtain the region for
estimating global water light. In quadtree decomposition, the
region with the largest average intensity is used to carry out
(continue) decomposition. If the region size is less than L×L
(we use an empirically optimized window size of 30 × 30
pixels throughout this article), the decomposition is stopped,
and the convergence region I ′ is obtained. The global water
light is estimated by adaptive underwater image color-tone
written as:{
Aλ(x) = I ′[(max(I ′b(x)− I

′
r (x)))Index], Īb(x) ≥ Īg(x)

Aλ(x) = I ′[(max(I ′g(x)− I
′
r (x)))Index], Īb(x) < Īg(x),

(3)

where max(·) denotes the maximum extraction operation,
(·)Index denotes the index value of the row and column for
the current value in I ′.

B. ESTIMATION OF DUAL TRANSMISSION
1) ESTIMATION OF DIRECT COMPONENT TRANSMISSION
Assuming the turbid water to be homogeneous, according to
the Lambert-Beer theorem [27], the direct component trans-
mission of dual transmission can be expressed as:

tDλ (x) = exp[−cDλ d(x)], (4)

where cDλ is the attenuation coefficient of the direct inci-
dent component, which is related to the distance d(x) and

wavelength λ. The distance d(x) is small when the images
are captured by an underwater camera, and the change of
d(x) has little effect on cDλ . Therefore, the model ignores the
influence of d(x) on cDλ , and only considers the change of c

D
λ

with wavelength in R/G/B channels.
He et al. [19] proposed a dark channel prior (DCP) method

for image dehazing. The DCP is based on the observation
about haze-free images that: in most of the non-sky regions,
at least one color channel has very low intensity in some
pixels, defined by:

Jdark (x) = min
y∈�(x)

{
min

λ∈{r,g,b}
Jλ(x)

}
→ 0, (5)

�(x) is a local patch centered at x. In order to ensure that the
transmission is effective for the high intensity region under
water, the dark channel extremum serves as the correction
coefficient for the transmission. Referring to our transmission
optimization research [28], the optimized transmission can
be written as (6), shown at the bottom of the page, where U
represents the identity matrix, and ‘◦’ denotes the Hadamard
product. The absorption of light by water results in a blue-
green tone in underwater images. The red channel component
can be compensated by adaptively judging the color-tone of
underwater images. Therefore, the primary color transmis-
sion of the tDλ (x) can be estimated by adaptive image color-
tone judgment as:{

tDb (x) = t(x), Īb(x) ≥ Īg(x)
tDg (x) = t(x), Īb(x) < Īg(x).

(7)

The global water light in an underwater image is propor-
tional to the scattering coefficient and inversely proportional
to the attenuation coefficient [29]:

Aλ,∞ ∝
bλ
cλ
. (8)

The relationship between the scattering coefficient of water
and the wavelength of light can be expressed as [30]:

bλ = (−0.00113λ+ 1.62517)b(λr ), (9)

where b(λr) is the scattering coefficient of reference wave-
length. The blue/green channel transmissions of tDλ (x) can
then be written as:

tDr (x) = [tDλ1 (x)]
cr
cλ1 ,

cr
cλ1
=
brAλ1,∞
bλ1Ar,∞

;

tDλ2 (x) = [tDλ1 (x)]
cλ2
cλ1 ,

cλ2
cλ1
=
bλ2Aλ1,∞
bλ1Aλ2,∞

;

, (10)

where λ1, λ2 ∈ {λg, λb}, if Īb(x) ≥ Īg(x), λ1 = λb, λ2 = λg;
otherwise, Īb(x) < Īg(x), λ1 = λg, λ2 = λb.


Idarkmax (x) = max(Idark (x)), Idarkmin (x) = min(Idark (x))

t(x) =
(Idarkmax (x)− I

dark
min (x)) · (A ◦ U )− Idark (x)

A · (Idarkmax (x)− I
dark
min (x)) ◦ U − (Idark (x)− Idarkmin (x)) ◦ Idark (x)

,
(6)
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2) ESTIMATION OF BACKSCATTERED COMPONENT
TRANSMISSION
The backscattered component transmission of dual transmis-
sion can be expressed as:

tBλ (x) = exp[−cBλd(x)], (11)

where cBλ is the attenuation coefficient of the backscattered
component, which is weakly correlated with the wavelength
of light [31]. Ignoring the effect of light wavelength λ on cBλ ,
the tBλ can be written as:

tBλ (x) = tBR (x) = tBG(x) = tBB (x). (12)

The backscattered component transmission is mainly
affected by the distance. When the underwater scene depth
is large, the image will show a blue-green tone, and the
backscattered component transmission is also the largest
under the image color-tone. Therefore, according to the adap-
tive color-tone of underwater image, the backscattered com-
ponent transmission is estimated as:{

tBλ (x) = 1− tDb (x), Īb(x) ≥ Īg(x)
tBλ (x) = 1− tDg (x), Īb(x) < Īg(x).

(13)

In order to eliminate the block effects and halo artifacts in
the restored images, guided filter [32] is employed to refine
the transmissions tDλ (x) and t

B
λ (x). The guided filter can be

used as an edge-preserving smoothing operator like the pop-
ular bilateral filter [33], with better smoothing performance
near edges. The refined transmissions t ′Dλ (x) and t ′Bλ (x) are
further used to restore degraded underwater images.

C. UNDERWATER SCENE RADIANCE RESTORATION
Once the t ′Dλ (x), t ′Bλ (x) and Aλ(x) are estimated, the scene
radiance Jλ(x) can be restored. The flowchart of the proposed
method for underwater image restoration based on adap-
tive color compensation and dual transmission estimation is
shown in Figure 2. According to Eq. (2), the scene radiance
of underwater image is restored by:

Jλ(x) =
Iλ(x)− Aλ(x)t ′Bλ (x)

max(t ′Dλ (x), t0)
, (14)

where t0 is a critical value set to prevent t ′Dλ (x) from being too
small. This value can effectively prevent over-bright pixels in
the restored image. The value of t0 is set as 0.1 [1], [14], [19].

The process of visibility restoration (of a degraded under-
water image) by the proposed method is shown in Figure 3.
It can be seen from Figure 3(a) that the captured underwater
image has a greenish color tone, and the red component has
been attenuated. The result of applying the quadtree decom-
position is show in Figure 3(c), in which the red rectangular
area is searched to estimate global water light according to
Eq. (3). The refined direct component transmission t ′Dλ (x)
is show in Figure 3(d), and the backscattered component
transmission t ′Bλ (x) is shown in Figure 3(e). The scene depth
is estimated by setting cBλ = 0.1 as an empirical value [31],

FIGURE 2. Flowchart of the proposed method.

FIGURE 3. Processes of underwater image restoration. (a) The
underwater image (input) is taken from [10]. (b) Dark channel estimation.
(c) The region for water light estimation. (d) Direct component
transmission estimation, (d1)–(d3) R/G/B-channel transmission of direct
component (t ′D

r (x), t ′D
g (x) t ′D

b (x)), respectively. (e) Backscattered
component transmission t ′B

λ
(x). (f) Depth map. (g) Restored image.

shown in Figure 3(f). The scene depth estimation is not accu-
rate unless the cBλ is accurately measured in an underwater
environment. The attenuation coefficient for backscattering
strongly depends on many factors (such as sensor response,
imaging range, and veiling light etc.). However, we do not
accurately estimate the attenuation coefficient of backscat-
tered component during the restoration of degraded under-
water image, and this part is left as future work. The result
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FIGURE 4. Color compensation and detail enhancement before and after underwater image restoration. (a) RGB color space of Figure 3(a). (b) Gray
histogram of R/G/B channels, (b1) red-channel histogram, (b2) green-channel histogram, (b3) blue-channel histogram. (c) Edge detection for detail
evaluation.

of underwater visibility restoration and compensation of red
component by the proposed method is shown in Figure 3(g).

To evaluate the color compensation capability of the pro-
posed method, the RGB space before and after restoration is
shown in Figure 4(a). It can be seen from the results that
the intensity range of each color channel is stretched after
restoration. For the red and blue channels: high intensity
pixels are compensated (shown by Figure 4(b1) and Figure
4(b3)), whereas for the green channel: intensity values (show
as Figure 4(b2)) are reduced to correct the distorted color of
the degraded underwater image. To evaluate detail enhance-
ment capability of our method, we apply canny algorithm
[34] on both degraded and restored images. The result in Fig-
ure 4(c) shows that the visible edges are increased after image
restoration.

The visibility restoration performance of our proposed
method can be further evaluated with degraded under-
water images shown in Figure 5. For the images with
blue tone, before and after restoration results are shown
in Figure 5(a). The results of restored images clearly show
the increase in visibility achieved by our method along with
rich color enhancement. The restoration results of green-
ish degraded images are shown in Figure 5 (b). It can be
seen from these results that the red component has been
significantly enhanced, and the color perception is greatly
improved.

III. EXPERIMENTAL COMPARISON AND ANALYSES
A. UNDERWATER IMAGE VISIBILITY RESTORATION
ANALYSIS
1) QUALITATIVE ANALYSIS OF UNDERWATER IMAGE
RESTORATION METHODS
To verify the superiority of ACDTE method, we compare
the restoration results of our method with the results of
three existing algorithms namely He’s method [19], Fusion
method [10], and Red-channel method [6]. The qualitative
comparison is presented in Figure 6. In Figure 6(a), image
1 and image 2 are the green tone underwater images, whereas

FIGURE 5. Visibility restoration of underwater degraded images. (a) Blue
tone image restoration. (b) Green tone image restoration. (a), (b) Upper
row: original images, and lower row: restored images. (a1), (a2) and (a4)
are from [35], (a3), (b1) and (b2) are from [13], (b3) and (b4) are from [11].

image 3 and image 4 are the blue tone images. The results of
He’s method (in Figure 6(b)) indicate that the method cannot
correct color distortions in underwater imaging. In case of
Fusion method, the color is over-corrected, especially the
red component is over-compensated as shown in Figure 6(c).
From Figure 6(d), it can be seen that the Red-channel method
restores the visibility of image 2 and image 4, but fails to
correct the colors of image 1 and image 3. In contrast, the pro-
posed method (Figure 6(e)) not only restores the visibility
of degraded underwater images (by eliminating scattering
blur), but also compensates for color distortion effectively.
In order to clearly show the effectiveness of the proposed
method in terms of color compensation, the color histograms
of the underwater images before and after restoration are
presented in Figure 7 for comparison. It can be seen from
Figure 7(b) that the red component in each histogram for
the ‘after restoration’ images has been compensated by our
method.

207838 VOLUME 8, 2020



Y. Wang et al.: Underwater Image Restoration Based on ACDTE

FIGURE 6. Qualitative comparison of different visibility restoration methods applied on
underwater images. (a) Underwater images, (b) He’s method, (c) Fusion method, (d)
Red-channel method, and (e) our results. Image 1 from [21], image 2 and image 3 from [4],
image 4 from [6].

FIGURE 7. Comparison of color correction before and after underwater image restoration.
(a) Underwater images and their respective R/G/B channel histograms, (b) restored images
and their respective R/G/B channel histograms.

2) QUANTITATIVE ANALYSIS OF UNDERWATER IMAGE
RESTORATION METHODS
To quantitatively evaluate the visibility restoration perfor-
mance of the tested methods, three evaluation metrics are

used i.e., underwater image quality measure (UIQM) [36],
information entropy (E) [37], mean gradient (Ag) [38]. The
UIQM is used to understand the overall underwater image
restoration performance without reference to the ground truth
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FIGURE 8. Quantitative comparison of different visibility restoration methods for underwater images using the metrics of (a) underwater image quality
measurement, (b) information entropy, and (c) mean gradient.

image. The UIQM metric is a linear combination of three
independent image quality measures, given by:

UIQM = c1 · UICM + c2 · UISM + c3 · UIConM (15)

where UICM is the measure of colorfulness, UISM is the
measure of sharpness, and UIConM is the measure of sharp-
ness, and UIConM is the measure of contrast. We have set the
weights as follows: c1 = 0.3282, c2 = 0.2953, c3 = 3.5753.
A greater value of the UIQM indicates superior image quality.
The information entropy is introduced to quantify the amount
of information in the image, and it is defined as:

E = −
n−1∑
i=0

pi log pi, (16)

where n represents the total gray-level number of the image,
pi represents the probability that the image gray-level i
appears. A big score of E indicates rich amount of information
in the image. The mean gradient is used to evaluate image
sharpness, and is written as:

Ag =
1

(M − 1)(N − 1)

M−1∑
i=1

N−1∑
j=1

√
∇

2
i f (i, j)+∇

2
j f (i, j)

2
,

(17)

where f (i, j) denotes the gray value of coordinate point (i, j)
in the image, ∇if (i, j) and ∇jf (i, j) denotes the gradient of the
image point in the row and column directions, respectively.
A greater value of Ag suggests higher image sharpness.

The quantitative comparison for different underwater
image visibility restoration methods are shown in Figure 8.
From Figure 8(a), it can be seen that our method has the
highest UIQM score compared to other methods, confirm-
ing superior visibility restoration capability of our method.
The results in Figure 8(b) highlight the fact that the pro-
posedmethod extracts more amount of information than other
during recovery. Although the Ag value of our method is
smaller than that of fusion method, our method still obtains

better image sharpness indicated by Figure 8(c). In addi-
tion, to evaluate image detail information, the matching
number of local feature point is counted by SIFT opera-
tor. Figure 9 is a comparison of local feature point match-
ing before and after the visibility restoration of underwa-
ter degraded images. The matching number of local feature
points is counted as shown in Figure 9(c), which shows
that the underwater image details are improved by our
method.

B. EXPERIMETNAL RESULTS AND ANALYSIS
Experiments are carried out to verify the visibility restoration
capability of ACDTE on the images degraded by non-uniform
turbid water. Experiments are performed under turbid water
of different densities. The turbid water is generated by adding
milk in water, and the concentration of turbid medium cannot
be quantified due to non-uniform of milk. The scene objects
are: 3D print model, wire stripper, and cup. The degraded
images are captured by MV-SUA630C/M, Mind Vision cam-
era. The distance between the camera and water is 50 cm, and
this distance is fixed during image capturing. The volume of
the water tank used is 32cm×32cm×60cm.

The results of visibility restoration by the ACDTE method
applied on degraded images captured under non-uniform
turbid water are shown in Figure 10(b). Figure 10(b) shows
that the scene visibility in the degraded images under tur-
bid water (of varying density) is significantly improved by
the proposed method. Targets with different scene depths
can be restored by the ACDTE method even under highly
dense turbid water. The visibility restoration results for the
wire stripper and cup targets are shown in Figure 11. Fig-
ure 11(a) shows that the color compensation of the proposed
method does not over-compensate the red component. From
Figure 11, image insets of the zoomed areas marked by red
rectangles indicate that the proposed method can recover fine
details under strong scattering condition.

To quantitatively evaluate the visibility restoration per-
formance of ACDTE method under different conditions (of
varying density), targets marked with ‘green dotted boxes’

207840 VOLUME 8, 2020



Y. Wang et al.: Underwater Image Restoration Based on ACDTE

FIGURE 9. Comparison of local feature point matching before and after underwater image restoration. (a) Local feature point matching in the
underwater images, (b) local feature point matching after image restoration, (c) quantitative comparison of local feature point matching before and after
visibility restoration. The second group is from [4], and the third group is from [21].

FIGURE 10. Experiments are carried out under non-uniform turbid water of different densities. (a) Experimental
setup; (b) Comparison before and after visibility restoration of images degraded by non-uniform turbid water, top row
are the underwater images, bottom row are the restored results. The target object is a 3D print model, and the
medium density gradually increases from left (low) to right (high).

in Figure 10(b) and Figure 11 are used for comparison. The
quantitative results are presented in Table 1. The results show
that the three metrics of UIQM, Ag and E of ACDTE improve
significantly after restoration (compared to before restoration
images), highlighting the superior underwater image restora-
tion performance of ACDTE.

C. DISCUSSION
Although the ACDTE method has good underwater image
restoration capability, there are some problems that affect
restoration performance. Here, we discuss some potential
limitations and provide solutions as future direction to
improve the performance of our method.

First, the real-time performance of ACDTE method needs
to be improved for processing underwater videos. The
ACDTE method requires 2s to restore an underwater image
(600×400 pixels), mainly due to the use of iterative template
matching algorithm (used to find water light region). To cater
real-time needs, as future work, a matrix operation can be
employed instead of loop nesting in template matching algo-
rithm, and a GPU can be used for acceleration in our method.

Second, although our algorithm can process images
degraded by water scattering and absorption, it cannot pro-
cess blurred defocused images. In our future work, we will
add super-resolution de-blurring technology to our imaging
model to enhance its underwater restoration capability.
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FIGURE 11. Qualitative comparison of images before and after visibility restoration (under non-uniform turbid water
of different densities). (a) The restoration results of ‘wire stripper’, (b) The restoration results of ‘cup’.

TABLE 1. Quantitative comparison of before and after restoration images.

IV. CONCLUSION
This paper presents a novel method (called ACDTE) for
the visibility restoration of images degraded by non-uniform
turbid water. The proposed method is based on adaptive
color compensation and dual transmission estimation for effi-
cient restoration capability. The method is tested on different
underwater images such as blue-tone green-tone images, and
images captured under different scattering conditions (i.e.,
under different turbidity). The simulation and experimental
results show that the proposed method has superior visibility
restoration capability. The proposed method not only restores
the visibility in degraded underwater images, but also com-
pensates for color losses underwater. To achieve real-time
performance for underwater video processing, the algorithm
should be optimized by matrix operation, and requires GPU
acceleration. The proposedmethod can effectively be used for
different application such as marine exploration, underwater
rescue, and various military applications.
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