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ABSTRACT This article presents an efficient ray-tracing site-specific channel model compatible with
wireless sensor network (WSN) simulator applications for smart cities. It relies on two 2D approaches
dedicated to the main propagation modes; i.e. horizontal and vertical. The first is based on a pre-processing
of the propagation environment, involving the calculation of an exact visibility graph. Computed from the
discrete geometry concept called the super-cover model, it is improved to reduce its size and is used to very
efficiently compute the most significant propagation paths in 3D. The specific WSN context, characterized
by the sensor’s radio range and mobility, is exploited to limit the size of the propagation environment and to
pre-compute and store a set of visibility graphs, which are finally loaded and used on demand. The second
approach is an over-rooftop model that re-uses the super-cover model to very efficiently extract the vertical
profile containing the sensors, and proposes an original solution for the electrical field prediction where
there are multiple diffractions in the transition zone. The results are validated against measurements, and
show markedly better performance compared to others recent ray-tracing models. Finally, integration of the
proposed overall solution for channel modeling in a WSN simulator is proposed, and interest in using such
a model compared to conventional statistical models is demonstrated.

INDEX TERMS Radio propagation, ray-tracing, wireless sensor network.

I. INTRODUCTION
It was estimated in 2014 that 54% of the world’s popula-
tion lived in urban areas; roughly 3.3 billion people. This
proportion is expected to increase to 66% by 2030, around
5 billion people [1]. This massive increase has encouraged
new avenues of research into approaches to manage cities
and offer urban services in a different way. The increase
in interconnected elements in cities’ infrastructure due to
new technologies has also reshaped the vision for managing
cities [2]. This, in turn, has led to the concept of the ‘‘Smart
City’’. In general, a smart city refers to new technologies and
innovative ideas to improve both the quality and efficiency of
urban services, and to improve people’s lives.

Technically, smart city communications rely on wireless
sensor networks (WSNs). To develop tomorrow’s smart city,
researchers have to study, develop, test and evaluate new
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WSNs. These performance tests can be conducted using
either experimental test beds or simulations. Although test
beds are more realistic and more reliable, they are fairly com-
plex, time-consuming, costly, and may be practically unfea-
sible for deploying a large number of sensors [3]. Simulation
is an appropriate alternative for studying network parameters
before deployment, especially for large-scale WSNs, as it
provides a cost-effective, rapidly deployable, and fairly reli-
able solution. A comparison between simulation tools and test
beds is given in [4] as a reference for choosing between them.
In fact, simulation is used by the majority of the research
community [5].

WSN simulators handle dynamic virtual networks,
to observe and evaluate their operation. They rely on radio
channel models along with their related protocols and algo-
rithms. One challenge is the accuracy and the computation
speed of the radio channel model. A wide range of avail-
able WSN simulators is presented in the literature [5]–[7].
Unfortunately, most of them use very simple and unrealistic

206528 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8040-7246
https://orcid.org/0000-0002-8226-1145
https://orcid.org/0000-0003-3129-1149
https://orcid.org/0000-0002-6115-5255


T. Alwajeeh et al.: Efficient Ray-Tracing Based Model Dedicated to Wireless Sensor Network Simulators for Smart Cities Environments

propagation models [8]–[19], allowing fast simulations even
for large networks but lacking in precision. Some simulators
incorporate more realistic site-specific models [20]. The
most widely used radio channel models are based on ray-
tracing (RT) combined with geometrical optics (GO) and
uniform theory of diffraction (UTD). Unfortunately, they
often become computationally expensive when the environ-
ment contains a large number of obstacles, or when a high
order of ray interactions is considered. This applies partic-
ularly in the WSN context, with a high number of mobile
sensors necessitating continuous updating of the channels
estimation.

The most computationally efficient models use 2D pre-
processing of the propagation environment [21], [22] to com-
pute an accelerating structure. A radio propagation model
based on such a structure relies on two steps. Firstly and from
a given transmitter, this structure is built to encode the wave
propagation with some reflexions and diffraction. The second
step uses this structure to calculate all valid paths for given
receivers. In other words, the complexity is split in two parts;
the calculation of the structure, and the calculation of the
paths. In previous studies, the authors have proposed a 2D
accelerating structure, the visibility graph (VG) [23]. This
is an accurate solution, since it calculates all ray contribu-
tions in the plane like any other exact 2D structure. Its fast
computation and use in ray-path determinations have already
established its high level of efficiency [24], [25].

In this article we propose a global solution (with horizontal
and vertical propagation) of a RT site-specific channel model
compatible with urban WSN simulator applications. It is
based on an improved VG structure and new contributions
addressing the specific context of WSN:
• A newVG computation is proposed that reduces its size,
and so reduces both the memory consumption and the
computation time for the final ray-paths.

• A very efficient algorithm is proposed to limit the ray-
path computations to the most significant ones. This
reduces the ray-path computation timewhile limiting the
increase in the power estimation error.

• The radio range of the sensors, depending on their tech-
nology, is exploited to limit the size of the simulated
environment, and thus the computation time.

• A new channel pre-process is proposed, based on the
relative spatial stationarity of the channel. It consists of
pre-computing and storing a set of VGs associated with
a grid of virtual transmitters. These VGs are then loaded
from the hard drive and used on demand.

• Finally, a new and efficient method is proposed for over-
rooftop transmission (ORT). It relies on fast vertical
profile extraction, and an original solution to avoid elec-
trical field divergence when multiple diffractions occur
in the transition region, which is often the case in dense
urban environments.

This paper is organized as follows. Section II presents
the state of the art in radio channel modeling. Section III
discusses the computation of exact VGs, and presents our

contribution to minimizing their size and thus the corres-
ponding ray-path computation times. Section IV details our
new contributions, addressing the specific context of WSN.
Section V shows how to handle ORT modeling, with low
computation times and divergency-free results. Section VI
presents the overall performance results of the proposed
model. Section VII discusses the channel model integration
into theWSN simulator, and illustrates how it produces added
value. Section VIII concludes this paper.

II. STATE OF THE ART
Of the different kinds of propagation channel models, only
site-specific models can provide accurate field predictions
in a particular environment. Such models require detailed
data about the propagation environment [26], usually from
a Geographic Information System (GIS). Basic RT models
involve impracticable complexity even for low geometry and
interaction numbers. Where n denotes the number of faces,
and i the number of interactions (reflection plus diffraction),
the computation time is in O(ni). Many models try to reduce
this.

A. 3D RT MODELS
Some of these models can be parametric, and although they
are based on site-specific geometry they need some measure-
ments for calibration purposes [27], [28]. Others are fully
deterministic and rely on exact or approximate numerical
solutions of Maxwell’s equations. The full wave solutions
are obviously not usable in WSN simulators due to the need
to sample the propagation environment at a sub-wavelength
order, leading to prohibitive computation costs. Therefore
ray-tracingmodels based on the geometrical optics (GO) con-
cept and its extensions appear to be better solutions [29], [30].
Many RT models proposed in the literature have been proved
accurate. By considering all the main physical phenomena,
namely line of sight, reflection, diffraction and their combi-
nations, it is possible to simulate complex three dimensional
(3D) rays. However, 3D RT can drastically slow down multi-
path determination in a realistic city environment. Some
optimization methods have been developed to keep com-
putation times down to an acceptable level, such as AZ
buffer [31], space-division methods [32]–[42], visibility pre-
processing [43], [44], GPU implementation [45] and machine
learning approach [22]. The calculation times for these
methods are often not given. When they are available, they
show either that these methods can only deal with very simple
environments (an interior scene with 4 rooms [46] or an
exterior scene made up of 64 buildings [47]), or that they are
based on a non-exact and costly visibility pre-process [43],
which would miss some significant contributions. In the
context of WSN smart city simulators, the potentially high
number of sensors and their dynamic behavior imply the need
for continuous updating of the calculated channel estimate
in very complex environments. Therefore, 3D RTs are not
efficient enough.
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Other approaches convert the three-dimensional problem
into a two-dimensional (2D) hybrid one, depending on the
distance between transmitting/receiving antennas, and their
relative heights compared to the average height of buildings
in the environment. Hence, 2D RT models fall into two
categories depending on the main plane in which the rays
are computed: 2D vertical propagation and 2D horizontal
propagation.

B. 2D VERTICAL PROPAGATION MODEL
Reference [30] computes RT in a vertical plane by launching
some rays in vertical half-planes to identify the reflection
and diffraction points. When reflection occurs, a new ver-
tical plane containing the reflected ray is used to find the
next intersected building and so on until a stop criterion is
met. Thus, 3D ray-paths can be computed from 2D vertical
ray-launching. Good agreement with measurements is found
in [48], but this algorithm needs many intersection tests to
validate the ray-paths, and therefore still involves high com-
putation times.

ORT models are efficient and accurate solutions when the
transceivers are very far from each others. They only compute
the 2D ray-paths propagating in the vertical plane containing
the transceivers. They are based first on the extraction of
geometrical obstacles involved in the vertical plane, and then
on the estimation of the electrical field propagating in this
plane by successive diffractions from the horizontal edges of
the roofs of buildings. Obviously, this drastically reduces the
model complexity compared to basic RT models, since only
one propagation path is computed.

Several solutions have been proposed to deal with the
multiple diffraction problem. The multiple knife-edge
diffraction method is a recursive approach for estimating the
overall diffraction loss due to multiple diffraction. Using this
method, the obstacles are represented by simple geometry
as infinitely thin edges (knife-edges). The most widely used
multiple knife-edges methods are those of [49], [50]. They
give relatively good results when there are large differences
in building heights, but lead to large errors with grazing inci-
dence, which is common case in dense urban environments.
In [51], Vogler proposed a general multiple integral solution,
valid even at grazing incidence, but the computation cost
increases exponentially with the number of edges [52]. The
well-known Uniform Theory of Diffraction [53], although
computationally efficient and valid in the transition region,
still gives inaccurate results in the case of multiple diffrac-
tions in the transition zone. Some improvements involving the
addition of a higher order diffracted field have been proposed
by Holm [54], but they need to consider a very high order
for a realistic number of edges (100 order for 10 edges),
and so still imply huge computation times. As an alternative,
Andersen and Rizk [55], [56] enforced the diffracted field
continuity at the shadow boundary by adding a second order
diffracted field with a modified distance parameter L in the
definition of the UTD coefficient. This solution gives good
results but for separate wedges only, not for two joint wedges

as found in a conventional building shape, and their iterative
behavior leads to significant computation times as the number
of wedges increases. Finally, Capolino and Albani [57], [58]
proposed a closed-form solution for high-frequency diffrac-
tion problems from a perfectly-conducting thick screen. It is
efficiently computable, strictly continuous in the transition
region and still valid when the thickness becomes vanishingly
small. In this article, we use this coefficient jointly with the
conventional UTD coefficient for simple diffraction problems
to predict the electrical field for any realistic building roof
shape, which is an advantage with regard to the continuous
improvement of GIS data quality.

C. 2D AND 2.5D HORIZONTAL PROPAGATION MODELS
2D horizontal models are used when the most significant
ray-paths propagate horizontally in the streets by interacting
with building walls and vertical edges. The simulated results
usually compare well with measurements [59]. 2.5D models
are built on 2D ones, but using the correct elevations of the
interaction points for field calculations. Although 2D and
2.5D models are more computationally efficient than 3D RT
thanks to simpler computations and less geometry, they often
use some accelerating structures based on pre-processing of
the propagation environment.

The first VG was proposed by [60]. From the image the-
ory, it iteratively builds illumination zones, i.e. lit regions
from a given source’s image. These illumination zones are
not exact visibility zones, since they contain some blockers
(building faces). Then this VG is applied using a two-step
RT approach: first, all zones containing a given receiver are
identified; second, obstacles present in these illumination
zones are tested to validate propagation paths in the RT
process. Clearly, this reduces the computation time compared
to a brute force RT, because fewer contributions are built and
checked to obtain valid outcomes. Nevertheless, numerous
intersection tests are still needed. As with all VG methods,
the global complexity may be expressed from the complexity
of two successive steps, building and RT:

Build(n, i)+ RT(n, i). (1)

In [61], the illumination zones are more accurately com-
puted: an image is not valid for the whole wall, but only for
the part of the wall illuminated by the parent image. However,
illumination zones are still not exact visibility zones.

In [62], an exact VG is computed from the association
of image theory and a polar sweep algorithm, which is next
reused in [39]. Another optimization is to use the bounding
box of buildings to limit the number of walls and edges
on which intersection tests are needed to validate ray-path
segments in the RT process. Unfortunately, the computation
time is not given, and both its computational complexity and
the fact that this VG is emitter dependent (as in [61]) suggest
that it is not suitable for urban WSN simulators.

More recently, the illumination zone concept was reused
by [63]. Each illumination zone, called a lit visibility polygon,
is associated with a dark visibility polygon corresponding to
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the part of the zone shadowed by one blocker (building). A
ray segment is validated if the receiver is both inside the lit
polygon and outside all the dark ones at a given depth of
the graph. This operation is repeated for the lit polygon of
the previous order image and so on to validate a propaga-
tion path. The dark polygons lead to numerous intersection
tests for each ray-path, and thus high RT computation times.
Moreover, the proposed pre-process is very time consuming,
as shown in [66]. In [64], the solution was optimized for the
treatment of several receivers, by mapping in pre-process the
lit polygons to a coarse grid to limit the number of intersec-
tion tests needed in RT. In [65], the use of the polar sweep
algorithm [62] is added to compute an intra visibility matrix
in pre-process. It stores the visibility relationship between
each pair of geometrical elements (faces or edges), as the
extreme angles for which some parts of the two elements
are visible. Another pair of angles is computed to establish
the lit polygon of an image with regard to a wall. Thus
in pre-process, validation of wall visibility is obtained by
comparing its visibility angles with the lit polygon ones. A
50% reduction in pre-process computation time is obtained
against [64], but because the intra visibility matrix is still non-
exact, costly intersection tests are still needed to validate the
potential ray-paths in RT, so the computation times remain
too high for WSN simulators. In [66], the intra visibility
matrix is reused jointly with a visibility table containing the
list of faces/edges visible from an emitter moving along a
linear route. This allows significant acceleration of the pre-
processing time compared to [65] in the case of a mobile
emitter, but it still takes a lot of time. In [67], a new algorithm
is proposed to provide a dynamic visibility table taking into
account the modifications of the visibility relations between
a mobile emitter and mobile obstacles. A computation time
reduction of only 20% is achieved with regard to a brute-force
RT-process. Hence, it remains too large for WSN simulators.
In the rest of this article, the efficiency of the proposed
solution will be compared to those of [65] and [66].

As stated in Section 1, an exact 2D accelerating structure
called a visibility graph (VG) is proposed in [23]. Its main
advantage compared to other visibility structures is the exact
nature of the visibility relation, which leads to a very sim-
ple and efficient usage for a given receiver. Indeed, since
the visibility zones are mapped to a discrete grid, all those
containing a given receiver are extracted linearly, in a very
short time. Not only does this lead to far fewer zones; in
addition it doesn’t require checking the existence of ray-
paths since each zone is exact. Furthermore, the building
of this structure is optimized in many ways, such that even
the pre-processing is relatively fast. In order to use this
structure in WSN simulators for 2D and 2.5D horizontal
propagation, some new specific optimizations are proposed
in this article, allowing a reduction in the complexity of the
two steps.

More precisely, the solution proposed here to establish a
channel model suited to urbanWSN applications is composed
of two components:

• A 2.5D RT model associated with a 2D exact VG. Its
efficient computation is presented in Section III, and the
optimizations dedicated to theWSN context are detailed
in Section IV.

• An ORT model dedicated to distant transceivers
combining a very efficient vertical plane extraction
and an accurate field prediction, which is detailed
in Section V.

III. 2D EXACT VISIBILITY GRAPH
The visibility graph proposed here is the main acceleration
structure used for the 2.5D model. A graph contains some
elements called nodes, linked one by one by an arc providing
a kind of layered structure.

A new VG implementation was written compared to [23],
and a new optimization was added to minimize the num-
ber of nodes. Furthermore, some explanations are missing
in [23]. This is why we detail the VG computation in this
section before presenting its validation and performance
evaluation.

A. VG COMPUTATION
In contrast to [60], [63], the VG used in this article is
exact. There is no dark zone inside the illumination zones;
i.e. the initial illumination zones are cut according to the
blockers located inside. In this way, every point located in
a zone is really visible from the transmitter (after reflec-
tions/diffractions). Thus, theVG exploitation is very efficient,
because no intersection test is needed for ray-path valida-
tion, which drastically reduces the RT process. To ensure
efficient zone use, a zone’s outline is composed of only
3 points, i.e. a triangle for line-of-sight (LOS) and diffraction,
or 4 points, i.e. a quadrangle for reflection. All zones are
convex.

As noted in Section II, a VG has a layered structure. Its
levels are built iteratively, according to the electromagnetic
interactions that occur. Its root node corresponds to the trans-
mitter; nodes at the first level of the VG represent the visible
zones; and nodes at the next levels are zones lit after some
reflections and/or diffractions from the geometrical elements
(walls or vertical edges). The VG computation principle is
presented by considering only reflection at first. The treat-
ment specific to diffraction is presented below. Fig.1(b) illus-
trates the computation of an initial illumination zone by the
image method for a first order reflection on the face F1 of
building B1, from the image Tx′ of the emitter Tx. Buildings
B2 and B3 are two blockers that must be taken into account
to obtain the exact reflection zone in Fig.1(d). The remaining
problem involves efficiently cutting any illumination zone
according to the blockers’ shapes. We call this process zone
reduction.

The corresponding treatment is based on a discrete geom-
etry concept, called the super-cover model, which discretizes
a line segment as a set of pixels. Fig.1(a) illustrates this
principle for the line D of equation ax + by + c = 0, where
(a, b, c) ∈ R are the line coefficients. The super-cover of D
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FIGURE 1. (a) Line super-cover, (b) buildings mapping and zone reduction principle, (c) non-optimal and (d) optimal zone reduction.

corresponds to the pixels whose centers are between the two
lines D′ and D′′ (see Fig.1(a)) defined by:

D′ = a(x +
1
2
)+ b(y+

1
2
)+ c = 0 (2)

D′′ = a(x −
1
2
)+ b(y−

1
2
)+ c = 0. (3)

For example, the super-cover of D in Fig.1(a) is composed
of all the blue pixels (x, y) given by the following double
inequation:

−
(bac + bbc)

2
≤ ax + by+ c ≤

(bac + bbc)
2

, (4)

where bc defines the integer part function.
In the first step, all the horizontal edges of the propagation

environment are mapped, using the super-cover model, into
a regular 2D grid, as illustrated in Fig.1(b) for building B0.
Hereafter, this first step is referred to as scene2D mapping.
Thus, each grid’s cell (i.e. pixel) stores the list of buil-
ding edges located in this cell. This step is done only once,
independently of any transceiver location. This mapping is
very much more accurate than the mapping of the buildings’
bounding box proposed in [62], which leads to map large
empty areas.

When a new illumination zone is computed at a given
VG level (i.e. for a given interaction order), it extends first
from the source (previous image) of the zone to the edges of
the scene’s outline (cf. Fig.1(b)). This zone is thus too wide

and contains some dark zones as in [60], [63]. To become
exact, i.e. that all its points are visible from the source, it has
to be cut according to the shape of the blockers. To do
this, the proposed solution is based on determining all the
edges in the environment that intersect the zone. As pre-
sented above, this is achieved by using a discrete geometrical
approach. Here the problem is twofold: first, being able to
provide an accurate zone’s discretization in the most possible
efficient way; and second, scanning the zone’s discretization
in the best direction, i.e. from the closest pixels to the most
distant ones.

This last point is quite logical: by scanning the zone’s
discretization from the pixel farthest from the zone’s source
(Tx′ in the example given in Fig.1(b)), we will probably
find a first edge that in fact is shadowed by many others.
In this case the zone will be cut in a non-optimal manner,
leading to many zones as illustrated in Fig.1(c). Even if the
number of resulting zones is not optimal, they remain exact.
In contrast, scanning the zone’s discretization from the closest
pixel to the source towards the most distant one (see Fig.1(b))
increases the probability of first finding a visible edge and
so minimizing the number of resulting zones (see Fig.1(d)).
This second approach firstly avoids loss of time in dealing
with shadowed parts of the illumination zone, and secondly
minimizes the memory consumption for VG storage, since it
creates fewer zones at the current VG level, leading to fewer
zone reduction steps in the next VG levels. As can be seen in
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Section III-B, this is important for the ray-path computations.
The second solution is used in this work.

In our implementation, these two problems are solved by
the two next elements.

Firstly, four potential directions are considered for the zone
scanning:
• from the minimum to the maximum x-axis value;
• from the maximum to the minimum x-axis value;
• from the minimum to the maximum y-axis value;
• from the maximum to the minimum y-axis value.
Secondly, the zone’s discretization is stored in a specific

data structure. Because the illumination zone is convex, its
discretization can easily be obtained from its outline, com-
puted from the super-cover model. Fig.1(b) illustrates the
super-cover of the zone’s outline as colored pixels. This data
structure is an array in which each cell contains two integer
values. The semantics of these two values depends on the
direction chosen for the scanning of the zone’s discretization,
as indicated previously. So zone reduction comes down to the
following process:
1) computation of the best scanning direction of the zone;
2) computation of the super-cover of the zone’s outline;
3) scanning of the zone’s discretization in the best

direction.
The third step simply consists of two nested loops (x and

y-axis). It is not time consuming because a very small number
(often 0) of edges is contained in each pixel. Each edge stored
in the corresponding pixel is tested as a valid blocker. If it is
a valid blocker, the zone is cut according to this blocker and
will be potentially cut again, either by another blocker in the
same pixel, or by a blocker in another pixel in the case of a
non-optimal scanning direction.

Applied to Fig.1(b), the best scanning direction is from the
minimum to the maximum y-axis, and from the minimum
to the maximum x-axis. The starting pixel is the closest red
one to the source. The data structure’s size, containing the
discretization of the zone’s outline, is given by the extreme
pixels on the x and y-axis respectively (in red and purple
in Fig.1(b)). The discretization of the zone’s outline corres-
ponds to the colored pixels. Zone reduction will start as soon
as a pixel containing a building edge corresponds to a pixel in
the zone’s discretization, i.e. pixels lying between the red and
purple ones in Fig.1(b), by scanning the zone in the previously
defined direction. Finally, the main parameter of zone reduc-
tion is the resolution of its grid. In [23], we found that any
sizes between 3 and 10 m gave almost the best performances.
Therefore, for the rest of this paper we consider a constant
cell size of 5 m x 5 m.

As mentioned above, diffracted zone computations need
specific attention. They are independent of the parent node
because they are linked only to buildings’ vertical edges.
As in [24], diffraction sub-graphs are thus computed once,
before the VG computation, according to all the diffraction
edges of the propagation environment. We call this step DG
computation. Starting from a diffraction edge (the sub-graph
root), the first DG level corresponds to diffraction zones.

The next levels are reflection zones, iteratively computed
until the maximum number of considered reflections is
reached. During VG computation, each diffraction sub-graph
is stored only once; i.e. the first time that its diffraction edge is
lit by a VG zone. When a diffraction on the same edge occurs
elsewhere in the VG, the corresponding sub-graph is re-used.
From a programming perspective, this is performed by only
copying pointers on the already computed sub-graph. This
technique allows optimization of the VG’s size and memory
consumption.

According to the grid resolution, a pixel can store several
edges; even a full building in the case of a coarse grid.
Consequently, when a zone has to be cutted according to the
edges located in a given pixel, it is possible to first cut it with a
bad edge, i.e. one that is shadowed by another edge located in
the same pixel. This situation can arise independently of the
scanning direction. Thus, the result of the zone reductionwill
be a set with toomany (but exact) visible zones, as in Fig.1(c).
To solve this problem, a new step is proposed in this article.
It consists of merging the zones resulting from a non-optimal
reduction. These zones are identified if they satisfy the fol-
lowing two conditions: they have the same source and they
share the same cutting edge (face F2 in Fig.1(c)). If this is
the case, the two zones are easily merged using knowledge of
their respective outlines.

B. MULTI-PATHS COMPUTATION
The ray-path computation simply consists of browsing the
nodes of all the VG’s levels to determine whether they include
the receiver. However, complex environments and large num-
bers of interactions lead to a high number of zones (up to
several tens of thousands), each having a very low probability
of containing the receiver. Hence, performing an exhaustive
inclusion test for every zones would become very time-
consuming. Consequently, we define a more efficient method
called VG mapping. First, we use a second 2D discrete grid
into which the VG’s list of zones is mapped. Thus, each pixel
of the grid contains the list of zones that intersect this pixel.
Finally, the pixel containing a given receiver is identified,
and the inclusion test is reduced to the list of zones stored
in this pixel; i.e. the zones with a very high probability of
containing the receiver. This step ensures the high efficiency
of this method.

Zone mapping can be done in a very accurate way by
reusing the same concept of 2D discretization used to com-
pute the VG (cf. Section III-A). A zone is stored in a given
pixel p if one pixel of its discretization corresponds to p.
The mapping is also very efficient because of the use of the
simple data structure presented in Section III-A to store the
discretization of the zones’ outlines. The concept is illustrated
in Fig.2, corresponding to a simple scene with 3 rectangular
buildings (B1 to B3). It shows the zones obtained by consi-
dering a maximal order of interactions equal to one. A total
of 23 zones is found (10 visible zones: V1 to V10; 9 reflected
zones: R1 to R9; and 4 diffracted zones: D1 to D4; for the sake
of simplicity, diffracted zones are only shown for the edge P).
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FIGURE 2. Extraction of the list of zones intersecting a pixel of the 2D
grid. Here, for the given Rx location, only four zones will be tested: V3, V4,
R7, and D2. Final inclusion test will remove V3.

Let us consider the receiver Rx. Instead of conducting inclu-
sion tests for 23 zones (for this simple configuration, with a
limited number of interactions, and without considering all
the diffracted zones), the test is done only for four zones,
namely V3, V4, R7, and D2, to identify the ones that really
contain the receiver, which are V4, R7, and D2.
The mapping of the VG to a 2D grid is quite similar to the

process used in [64]. However, the crucial difference is that
in [64] the illumination zones are not cut according to the
blockers. They are wider and contain dark zones, which are
also mapped to the grid, increasing the number of inclusion
tests needed. As a result, the grid mapping in [64] is much
less efficient than ours: the increase in grid resolution leads
to only a minor decrease of the computation cost due to the
inclusion tests, because the dark zones are stored in many
cells. In contrast, our VG contains exact visibility zones
only. Since dense urban environments contain a very high
number of blockers, the visibility zones are relatively small.
Consequently, the use of a high grid resolution (small grid
cells) is very efficient. Indeed, each cell stores a small num-
ber of zones, reducing the number of inclusion tests for a
given receiver location. The increase in the grid’s resolution
obviously increases the computation cost due to the mapping
process for the VG’s zones, but it is kept very low thanks to
the efficiency of the zone discretization algorithm. The grid’s
resolution is empirically fixed to 5 m x 5 m in the rest of this
article.

Once this node identification process is completed,
the nodes containing the receiver are known, as shown
in Fig.3. Another process is required to go up through each
identified branch from the node to the root (Tx) to compute
the received paths (cf. Fig.4). As explained in Section III-A,
each node stores all the necessary data to build the received
paths (nature of node: reflection or diffraction, geometry:
face or edge, zone boundary, zone source, etc.). This infor-
mation, from the receiver to the transmitter and in the right
order, is the key advantage of our VG structure. It allows an
almost instantaneous ray-path computation. There is no need

FIGURE 3. Resulting 2D paths.

FIGURE 4. Extraction of the zones list intersecting a pixel of the 2D grid.

for intersection tests to validate the ray-path segments since
the VG’s construction ensures it contains only exact visible
zones. Since in Fig.4 Rx is included in zones V3, R6, and
D2, three paths (direct, reflected, and diffracted paths) are
easily identified. These paths are built first in 2D using the
source image technique, as shown by the red dotted lines
in Fig.3. This is very fast because the order, the type of
interactions and the objects that generated these interactions
are all known. Then, from the knowledge of the transceivers
and buildings heights, and from Fermat’s principle of least
time travel, the heights of the intermediate reflection and
diffraction points along the path are adjusted to transform all
the 2D paths into real 3D paths [25]. Finally, the proposed
model is further improved by introducing the ground reflected
ray because it has a great impact, especially in near-ground
scenarios.

As a last step, the complex electrical field associated with
each 3D path is computed as follows:

Ei = E0FTxFRx

∏
m

Rm
∏
n

An(s′, s)Dn
e−jkd

d
, (5)

where E0 represents the reference field, FTx and FRx the
transmitting and receiving antenna radiation patterns, Rm the
reflection coefficient for the mth reflector, Dn the diffraction
coefficient for the nth diffracting wedge, An(s′, s) the diver-
gence factor of the diffracted rays, and e−jkd the propagation
phase factor due to the path length d (k = 2π/λ, with λ
representing the wavelength).
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FIGURE 5. Measurement route in downtown Paris.

C. PERFORMANCES
Model validation is based on field measurements that were
conducted by France Telecom R&D in the Charles de Gaulle
- Étoile neighborhood of downtown Paris (cf. Fig.5). The
measurement route of 5 km (blue curve) corresponds to
1,650 equidistant reception points at a height of 1.5 m. The
transmitter was a vertical dipole antenna located at a height
of 7 m with a transmission power of 45 dBm at 1.8 GHz. This
is a typical urban configuration with quite high buildings,
where the dominant propagation paths are mainly in the
horizontal plane. The geometry of the propagation scene, pro-
vided by the IGN (Institut National Géographique), includes
813 buildings (10,276 faces). The buildings are modeled as
typical concrete blocks (relative permittivity εr = 9, con-
ductivity σ = 0.01 S/m), and the ground as a perfectly flat
concrete surface.

As example, Fig.6(a) illustrates the power delay profile
obtained at the receiver position depicted by a black point
on Fig.5. This emphasizes the wideband character of our ray-
tracing channel method. From this result, we can deduce all
the wide-band parameters, like RMS delay spread whom the
evolution along the measurement route is shown on Fig.6(b).

Fig.7 shows the received power obtained from the pro-
posed 2.5D model (the black curve). It is parametrized for
4 reflections and 1 diffraction (4R1D), except for the pink
parts of the route where a second diffraction is needed to
reach the corresponding receiver locations. The 4R1D nota-
tion means that the VG is computed up to the fifth order of
interactions, combining all the possible interaction arrange-
ments from 0 (LOS) to 5 order, including a maximum of 4

FIGURE 6. (a) Power delay profile example, (b) RMS delay spread
evolution along the measurement route.

FIGURE 7. Simulation vs measurement.

reflections and 1 diffraction. In other words, the diffraction
may occur in positions 1 to 5 or even be absent.

There is good agreement between the simulation and the
measurements (the red curve), except for the pink parts where
it is difficult to accurately predict the field strength, even with
a second diffraction. The remaining errors, as circled in Fig.7,
and corresponding to a stroll through theArc de Triomphe and
the portion of the route along the Champs Élysée (cf. black
circled zones in Fig.5), can be justified by the vehicular traffic
and the vegetation that were not considered in the GIS data.
The mean error is 4.15 dB and the standard deviation of the
error is 8.87 dB.

Table 1 presents the performances obtained on a PC run-
ning with a processor Intel CORE i7 3.1 GHz and 16 Go
RAM. Notice that the results presented in this paper were all
obtained on this computer. The computation time associated
with the scene2D mapping plus the DG computation is 9 s,
whereas the time for the VG computation plus the VG map-
ping (cf. Sections III-A and III-B) is 13 s. The VG computa-
tion time is almost the same as in [23]. The additional com-
putation time due to the zone merging step is compensated
for by the technological advances in processor performance.
However, the number of resulting zones has decreased from
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TABLE 1. Performances of the 2.5D model.

FIGURE 8. Environment for performances comparison with [66].

270,168 in [23] to 98,888 with the zone merging step. This
reduction factor of about 2.7 leads to a significant time gain
in the path computation step. Hence, the multi-path contri-
butions between the emitter and all the 1,650 receivers of
the route presented in Fig.5 are computed in 7 s using the
VG described in Section III-B.

To further assess performance, we also present in Table 1
results obtained in a second environment, described in Fig.8,
corresponding to a part of the city of Munich (Germany)
used to evaluate performances of another recent published
RT-method [66]. The environment’s size is 1,000m x 1,000m
and is composed of 1,734 vertical faces.

In [66], the polar sweep algorithm is used jointly with the
intra visibility matrix to generate the visibility list for a fixed
transmitter location, to accelerate the RT process. This pre-
process is computed using a maximum reflection depth of 5,
which corresponds in our formalism to 5R0D. The resulting
computation time given in [66] is 262,800 s for 76 emitter
locations, extrapolated to 3,458 s for a single emitter location.
These results were obtained on a computer running with an
Intel CORE i5 3.3 GHz. The difference between CPUs in
our work and [66] should imply a constant but small scale
factor in computation time. Since the visibility structure is
not exact, the computation time of the RT-process must be
added. Although it is not given in [66], it should be significant
because of the need for numerous intersection tests to validate
the potential ray-path segments.

As presented in Table 1, the computation times for the
method proposed in this article is 1.7 s for the Scene2D map-
ping plus the DG computation and 0.12 s for the VG (com-
putation + mapping), for a total of about 2 s. Finally, using
the VG to compute ray-paths for one receiver location takes
on average 10 ms per receiver.

Although these performances are relatively good, the next
section introduces other processes dedicated to the specific
context of WSN, which allow further improvements.

IV. OPTIMIZATIONS IN A WSN CONTEXT
This section proposes more new optimizations developed
specifically to address the urban WSN context. Section IV-A
presents an original VG application to very efficiently
limit multi-path computations to the most significant ones.
Section IV-B shows how we exploit the WSN sensors’ cha-
racteristics to limit the size of the simulation environment in
an efficient and accurate way. Finally, Section IV-C illustrates
the proposed solution to take account of the WSN’s sensors
mobility.

A. LIMITATION TO THE MOST SIGNIFICANT PATHS
In many cases, a large number of propagation paths does
not significantly contribute to the total field, but takes time
to be computed. A simple optimization would involve only
computing the most significant paths, without degrading the
field prediction quality [68].

The VG nodes are roughly sorted from the most significant
to the least. The leveled structure of the VG naturally leads
to the nodes of level N being more significant than those of
level N+1, since it has undergone one less interaction. Fur-
thermore, since reflection is less penalizing than diffraction,
the reflected zones are always placed before the diffracted
ones for the same VG level, so the reflected paths are com-
puted before the diffracted ones. Therefore, optimization sim-
ply consists of calculating the paths by increasing levels of
interaction (the VG’s depth), from the VG’s root, until the
desired number of paths is reached. Table 2 shows the results
obtained for the same environment as Fig.5, always using the
1,650 receivers composing the measurement route. The abso-
lute mean error is computed by taking the computation of all
the paths as the reference. It shows that the path computation
becomes very fast as the number of paths decreases, but at the
price of a loss in accuracy. For example, if only 5 paths are
considered for each receiver, the path computation is almost
instantaneous but with an important loss in accuracy. Limiting
to 50 paths provides almost the same simulation results in
terms of accuracy as for all paths computation, but in about
0.59 s instead of 6.78 s. Consequently, the default value for
the optimal number of propagation paths is empirically set to
50 in the rest of this article.

One might ask about the difference between limiting the
number of interactions and limiting the number of paths for a
fixed number of interactions. It is not exactly the same thing,
even if both procedures limit the number of paths. Increasing
the number of interactions while limiting the number of
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TABLE 2. Limitation to the most significant paths: accuracy and computation time.

FIGURE 9. Principle of simulation scene limitation.

propagation paths has the advantage of achieving a higher
coverage rate, i.e. distant receivers need more interactions to
be reached.

B. SIZE LIMITATION OF THE SIMULATION ENVIRONMENT
As presented in Section II-C, the complexity of the simulation
environment has a direct impact on the computation time
for any RT model, VG included: the lower the complexity,
the faster the computation. Furthermore, in the context of
WSN, the transmitting power is usually limited for sup-
ply autonomy reasons. As an example, nominal transmitting
power for the most commonly used protocols based on the
IEEE 802.15.4 physical layer is 1 mW (0 dBm) [69], giving
a radio range of at most a few hundred meters. Thus, limiting
the simulation environment size to the order of magnitude of
the distance separating the sensors should reduce the compu-
tation time while limiting the loss of precision.

The developed algorithm is designed as follows: starting
from the transmitter, the buildings completely within a given
range are considered in the simulation (blue circle in Fig.9).
What exists outside this range is completely ignored (red
buildings). Partially included buildings are also considered
by adjusting the computation window’s size (black rectangle)
without including any new buildings that may exist inside the
modified window. Consequently, the VG is only computed

FIGURE 10. Scenarios for simulation scene limitation.

for the window of interest, which is much smaller than the
whole propagation scene.

In order to determine the optimal simulation range, three
urban test scenarios were defined on Fig.10 as follows:

• Scenario 1 - an open area: a uniform grid
of 1,061 receivers (the blue points in Fig.10) located
around the transmitter at distances of 0 - 100 m in an
open space. The receivers in this scenario are mainly in
LOS;

• Scenario 2 - a narrow street: a uniform grid
of 347 receivers attached around the transmitter in a nar-
row street. This environment is rich in multi-paths, and
the receivers are mainly in non-line-of-sight (NLOS);

• Scenario 3 - an intersection: a uniform grid
of 162 receivers placed at a distance between 80 - 100 m
(where the error values are higher than those of the
near receivers due to the scene limitation, in order to
assess the worst-case impact due to the area limitation
technique). The receivers are both in LOS and NLOS.

From these scenarios, the simulation ranges (represented
in Fig.10 as circles around the transmitter) vary from 100 m
to 300 m with 50 m steps.
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TABLE 3. Simulation range limitation: performance evaluation.

Table 3 shows both the absolute mean error and the com-
putation time (VG computation + mapping and multi-paths
computation for all Rxs) of the three test scenarios for 4R1D
at 1.8 GHz, using the whole scene as a self-reference for eva-
luating the impact of the simulation range. All three scenarios
showed the same behavior: limiting the simulation range
(∼150 m for these test scenarios) has a negligible impact on
accuracy (from 0.11 to 0.84 dB)with a significant gain in time
(gain factor from 2.2 to 5.9).

C. VISIBILITY GRAPHS PRE-PROCESSING
The VG computation depends on a given emitter loca-
tion. However, smart cities contain many mobile sensors.
A new VG needs to be computed at each location. In [66],
Hussain et al. proposed computing a dynamic visibility table
according to the emitters’ linear displacement. Although it
reduces the pre-processing time with regard to the computa-
tion of a visibility image tree according to each emitter’s loca-
tion, first its computation remains very time consuming and
second, it only allows linear emitter displacements. The pre-
process time for the emitter’s mobile route in Fig.8 composed
of 76 locations and computed for 5R0D is 42,715 s [66].
In comparison, the computation time for all our 76 exact VGs
for 5R0D is 3 s. However, for the more complex VG consider-
ing 4R1D, the computation time is 371 s. Although this time
is significantly less than the pre-process in [66], it remains

FIGURE 11. (a) Example of VG, (b) nearest VG search principle.

too long to treat the high number of mobile sensors involved
in an urban WSN. A significantly faster solution is proposed
in the next section.

1) DESCRIPTION OF THE ALGORITHM
The VG structure presented in Section III models the propa-
gation channels between an emitter and a set of receivers in
a very efficient way, especially when the path computation
is limited to the most significant ones, and the propagation
environment is limited with regard to the radio range of the
sensor. Consequently, the idea proposed here is to save on
hard disk a set of VGs computed for some virtual transmitter
locations. Then, from a given transmitter location, the VG
pre-computed on the nearest virtual transmitter is directly
used to compute the propagation paths, allowing a consi-
derable time gain. The introduced approximation does not
greatly affect accuracy if the distance between the position of
the pre-computed VG and the current transmitter is within a
limited range. To achieve this goal effectively and efficiently,
three problems have to be addressed: firstly, the best data
structure for saving the VGs in order to reduce both the writ-
ing/reading processing times and the storage size; secondly,
the positioning strategy of the transmitters for which the VGs
are calculated; and finally, how to find the best VG to use for
a given transmitter location and the impact on accuracy.

a: DATA STRUCTURE
Let us assume that the VG in Fig.11(a) needs to be saved.
The proposed data structure is a 2D integer array whose size
equals the number of the VG’s nodes. For each entry, i.e.
node, the number of rows is linked to the node’s depth in the
VG (the number of levels from that node to the root) as illus-
trated in Table 4. Visible nodes are coded by 6 integer values
corresponding to the Cartesian coordinates of the 3 zone
vertexes (triangle). Simply reflected/diffracted nodes are re-
presented by 12/8 integer values: 8/6 values for the zone’
vertexes for reflected/diffracted zones respectively; 1 integer
value coding the type of zone (Type R/D); 2 integer values
for the coordinates of the reflection zone’ source only; and
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TABLE 4. Data structure for pre-computed VG file, storing the
VG depicted on Fig.11(a).

1 integer value corresponding to the index of the face/edge
where reflection/diffraction has occurred. The choice of inte-
ger values to code coordinates instead of floating ones allows
the memory size of the data structure to be reduced. Hence,
all the coordinates are rounded in centimeters, and so are
easily coded with integer values. For nodes of depth > 2,
all zones from depth 1 are saved sequentially, except that
only the vertexes of the last level one are saved (e.g. R2 and
D2 in Table 4). The last-level zone is needed to perform the
inclusion test with the receiver, whereas the upper zones are
no longer needed.

b: PRE-COMPUTED VG LOCATIONS
The virtual transmitters’ locations are set using two strategies:
• A regular grid of NxM equally spaced virtual transmit-
ters, with a chosen space step;

• When some data on the sensors’ mobility is known,
the user may provide a list of predefined locations cor-
responding to potential sensors’ locations, allowing the
number of pre-computed VGs to be limited.

c: VG SEARCH PROCESS
The principle is illustrated in Fig.11(b) where blue points
correspond to virtual transmitters of pre-computed VGs.
An intelligent search strategy is implemented by using a
naming format that contains the position of the graph as
VG_xLocation_yLocation. This means that there is no need
to read all the saved VGs to obtain their locations, which can
instead be directly revealed from the name of the file. Finally,
the distance between the transmitter and the candidate VGs

TABLE 5. Computation time per link according to interactions number.

FIGURE 12. Absolute mean error and storage size vs step size, and the
corresponding number of VGs and computation time.

is calculated to select only the nearest VG (green point).
Hence, only one VG file is read and processed. From this file,
the propagation paths are built very quickly, as presented in
Section III-B.

2) PERFORMANCES
Table 5 shows the computation time evolution according
to the interactions number for selecting the nearest pre-
computed VG file, reading it, reconstructing the 3D propa-
gation paths, and calculating the field strength. It is averaged
over thousands of sensors distributed in theCharles de Gaulle
- Étoile environment (cf. Fig.5), and is thus given per link.
It shows that our proposed model can perform very high-
speed simulations even for quite a large number of interac-
tions, in the order of 1 to 10 ms per link. The impact on
accuracy of the VG pre-processing depends on the distance
between the location of the used VG’s root and the real trans-
mitter. With our regular grid of virtual transmitters, it is thus
directly linked to the step size. Another important parameter
is the storage space needed to back up the VGs. It depends
both on the mean VG size, which relies on the configuration
of the surrounding environment, the number of interactions
and the radio range considered, and on the number of VGs to
be stored, which is again directly linked to the step size of the
regular grid.

To illustrate the trade-off between accuracy and disk space
consumption, Fig.12 shows the evolution of the size of all
the precomputed VGs (red curve) and the corresponding
absolute mean error (blue curve) according to the step size,
along with the corresponding number of precomputed VGs
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and computation time. These results were computed in the
Charles de Gaulle - Étoile scene for a 4R1D configuration.
VGs were pre-computed using step sizes of 10 m, 5 m, 2 m,
and 1 m. Then, 150 transmitters were distributed through a
route of 500 m length. Each transmitter picked the nearest
pre-computedVG to reconstruct the paths. The absolutemean
error was estimated over a grid of 150 receivers regularly
distributed inside a range of 150 m around each transmitter.
Of course, Fig.12 shows that the error decreases with the step
size while the disk space requirement increases. The error
goes from 0.78 dB for a 1 m step to 4.4 dB for a 10 m step.
It remains relatively modest and of the order of the estimation
error of conventional RTmodels. Both the required disk space
and the computation time of the VGs pre-process reveal a
square dependency to the grid step size. Hence the required
amount of data to be stored goes from 14.8 Go for a 10 m step
to 1.5 To for a 1 m step, while the corresponding computation
time goes from about 3 hours to 13 days. The best trade-off
would be fixed by the accuracy requirement of the application
considered and the storage capacity of the used computer. But
in a first approach, a 10 m step could be a standard solution
for conventional computers.

V. OVER ROOFTOP PROPAGATION SOLUTION
As mentioned in section II, communication between two
sensors separated by a large distance in a dense urban area,
as for Lora or Sigfox sensors, is often established based
on ORT propagation. Models for this type of contribution
must first extract the geometry involved in the vertical profile
between the two sensors to compute the propagation paths.
Then a suitable physical model has to be used to predict the
corresponding electrical field.

A. COMPUTATION OF VERTICAL PROPAGATION PATHS
As presented in Section III-A, all the horizontal building
edges were mapped into a 2D discrete grid during the
scene2D mapping (cf. pink pixels in Fig.13). In order to
extract the vertical profile between the transmitter and the
receiver, the 2D straight segment of line is first drawn
between these two points. Next the segment of line is dis-
cretized according to the super-cover scheme (cf. blue pixels
in Fig.13). Then its pixels are scanned, and all the contained
edges intersecting the segment are added to the vertical pro-
file. The above-mentioned algorithm was used to extract the
vertical profile between a transmitter and a receiver in the
dense urban environment of Fig.14(a). The corresponding
profile (buildings height as a function of distance) is shown
in Fig.14(b). From this profile, the propagation path with
the minimum number of diffractions is considered to eva-
luate the electrical field, enhanced with a ground reflection
between the last building and the receiver. These two paths
are depicted in blue on Fig.14(b).

B. ELECTRICAL FIELD PREDICTION
As mentioned in Section II, propagation paths involved in
ORT configuration can present a large number of successive

FIGURE 13. Principle of vertical profile extraction.

FIGURE 14. (a) Considered link in Munich, (b) extracted vertical profile.

diffracted rays on edges in each other’s transition zones (cf.
black circle in full line in Fig.14(b)). Conventional UTD
diffraction coefficients [53] fail to accurately predict the elec-
trical field in this case. Our solution relies on the closed-form
solution for high-frequency double diffraction problems with
a perfectly-conducting thick screen, provided by Capolino
and Albani [57]. This was first formulated in a 2D geometry
illuminated by a line source. It was validated against results
obtained from the method of moment, and is still applicable
when the thickness becomes vanishingly small, which is the
case when a ray diffracts near any roof corner. Although
it needs the computation of generalized Fresnel integral,
an efficient solution was provided in [70]. Finally, it was
extended in [58] to handle 3D diffraction problems. This
solution is used in this work, in combination with classical
UTD coefficients when single wedge diffraction occurs (cf.
black circle in dotted line in Fig.14(b)).
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FIGURE 15. COST 231 measurement routes in Munich downtown.

VI. OVERALL PERFORMANCES
Our model was evaluated in comparison with the well-
known measurement data realized in the framework of
the COST231 European project [71]. Path loss measure-
ment campaigns were conducted at 947 MHz in downtown
Munich over three routes (the total length of the routes
was about 23 km) including different receiver heights (from
1.2 to 1.9 m), as illustrated in Fig.15. The transmitter was
located 13 m above the ground and had an omnidirectional
radiation pattern. These three routes had receiver locations
both distant and close to the transmitter, with significant
paths propagated in both lateral and vertical planes. Hence,
simulation results were obtained with the full model, i.e.
the 2.5D model (cf. Section III) configured with 3R1D for
the METRO200 and METRO202 routes and 3R2D for the
METRO201 route (sufficient for convergence in this envi-
ronment), in addition to the ORT model. Both geometrical
data and measurements were provided by the Mannesmann
Mobilfunk company.

Fig.16(a, b, and c) compare our simulation results to the
measurements. The pink areas indicate the portions of the
routes mainly covered by ORT contributions. They show
good agreement with the measurements. Quantitative com-
parison values in Table 6 are of the same order as those
in other published models [27]. Notice that both the mean
errors and the standard deviations given in Table 6 are those
obtained according to the full model, i.e. ORT+ 2.5D model.
One important point is that despite the good agreement

between simulation and measurements, some larger errors
were noticed at certain receiver locations (black circles
in Fig.16(b and c)) where the simulation underestimated
the path loss. This observation is similar to other models’
results [63], [64]. These points are located near the transmitter
as shown in Fig.16(d) (bottom scheme). The upper scheme of

TABLE 6. Computation time performances in Munich environment. The
pre-processing time given in the last row ( [66]) is given for order 2 with a
maximum of 1 diffraction (i.e. 1R1D + 2R0D), for the small part of Munich
environment presented in Fig.8.

Fig.16(d) shows a Google Earth map in this area, with a lot
of vegetation (green circles) around the buildings. These trees
are not considered in the GIS data. These missing obstacles
that obstruct the propagation path between the transmitter
and the receivers could explain the highlighted errors. Some
vegetation models recommended by the ITU could be inte-
grated to model the vegetation-induced losses [72]. The two
buildings surrounded by purple rectangles were built after the
measurement campaign and are therefore not modeled in the
GIS data.

Table 6 also presents the overall model performance in
terms of computation time. First, the scene2D mapping plus
the DG computation takes 85 s. These computations are per-
formed only once, whatever the transceivers locations. Then,
it shows that the ORT model is very fast: it takes less than
1 ms per link to extract the vertical profile, to find the verti-
cal paths, and to estimate the electrical field. Consequently,
the computation time for all the receivers in each of the three
measurement routes is less than 600 ms.

The 2.5D horizontal model was also calculated forMunich
environment to show that the overall model is fast even
for large scenarios. Table 6 shows that the VG computation
according to the combination 3R1D takes about 11 s, whereas
the paths computation takes 2.1 s, 128 ms, and 12 s for
routes 200, 201, and 202 respectively, when all paths are
computed. When only the 50 most significant paths are com-
puted, according to the method presented in Section IV-A,
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FIGURE 16. Performance evaluation: (a) route Metro 200, (b) route Metro 201, (c) route Metro 202. (d) Vegetation impact and missing buildings.

the computation time is drastically reduced to 100, 35, and
150 ms for the three routes. It should be noted that it is still
possible to obtain very fast performance with the VG pre-
processing mode (cf. section IV-C). The computation time
per link for the 2.5D model is not included because it is not
particularly dependent on the number of receivers.

Finally, Table 6 compares computation times obtained
from the proposed model with those of other published
solutions. The solution presented in [27] demands a pre-
processing step for the environment model, taking about
1 hour with a CORE i5 running at 2.8 GHz. Then the
computation of the propagation paths and the corresponding
electrical field is very fast but needs some measurements to
calibrate the model, which is a significant constraint because
measurements will be needed for any new environment in
which one wants to deploy a WSN. In [64], [66], no mea-
surement is needed, as in our solution, but computation times
are very high (obtained with a CORE i5 running at 3.3 GHz).
The visibility pre-process for 2R0D + 1R1D takes 142,200
/ 76 = 1,871 s on the small part of the Munich environment
presented in Fig.8 [66]. Unfortunately, the pre-process time
for the whole Munich environment is not given in any papers,
but should be much greater. To compute all the paths for all
Rxs locations, the RT-process takes 1,400 s, 540 s, and 1,560 s
for routes Metro 200, 201, and 202 respectively [64].

VII. INTEGRATION INTO THE WSN SIMULATOR
Having demonstrated the performance of our model in terms
of both accuracy and efficiency, this last section presents its
integration into the CupCarbon WSN simulator developed
in the framework of the PERSEPTEUR project, funded by
the French national research agency. An illustration of the
advantage of using a realistic channel model instead of a
conventional statistical ones is also presented.

A. CUPCARBON
CupCarbon [73]–[75] is a Smart City and Internet of Things
WSN simulator for both scientific and educational purposes.
Its objective is to provide reliable simulations for WSNs,
mainly in terms of propagation and interference of signals.
It is very useful for designing, visualizing, validating, and
debugging distributed algorithms for real projects such as
environmental data monitoring. It also enables engineers and
researchers to test their wireless topologies, protocols, etc.
in a 3D urban environment.

Networks can be easily designed with CupCarbon’s user
interface by deploying sensors directly on the map. CupCar-
bon uses the OpenStreetMap (OSM) framework, which is the
geometry source for deterministic radio propagation models.
Two simulation environments are offered by CupCarbon. The
first one enables the design of mobility scenarios and the
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FIGURE 17. (a) Initial OSM building (138 faces), (b) simplified building
(30 faces) with ε = 0.3.

generation of events. The second enables discrete event sim-
ulation, and takes into consideration the mobility scenarios
defined in the first environment.

CupCarbon also includes many interesting features such
as: the ability to simulate the interference of signals; an
energy consumption model; an easy script language (Sen-
Script) to program sensors; intelligent mobility; a user-
friendly graphical interface; the ability to split sensors into
separate networks; and clear visualization of the network and
the working environment, etc. It also includes some WSN
protocols such as ZigBee, LoRa, and WiFi.

B. PROCESSING OF GEOMETRICAL DATA
Radio propagation models were integrated through an Appli-
cation Programming Interface (API), designed to send
only the required simulation parameters and the geometry
database, to launch the computation and deliver back the
required channel estimations without having access to the
operations occurring in the background. The end-user can
define (through CupCarbon interface) the simulation para-
meters for the API; as for example, the combination of elec-
tromagnetic interactions.

The polygons defined in the geometry database contain
a large number of points, many of them having been gene-
rated by the measurement process and thus having no phy-
sical meaning. These unnecessary details considerably reduce
the performance of any RT model while consuming a huge
amount of memory. Therefore, in order to ensure the best per-
formance of the API, it is necessary to simplify the buildings’
outlines before using them as an input for the API. We used
the Douglas-Peucker method [76] to do this, as illustrated
in Fig.17, where its parameter ε was fixed at 0.3. This process
allows a drastic reduction of the number of faces composing
the building (138 to 30 in this example) while preserving its
overall shape.

Finally, some problems remain with the OSM geome-
tric database. First, a large number of existing buildings
are not modeled, even in the dense urban environments of
the city centers of major cities, such as Paris in France.
Second, the heights of the modeled buildings are often very
poorly documented or missing. However, these problems are
likely to be corrected in the near future with the continuous
improvement of GIS.

FIGURE 18. (a) Scene extracted from OSM (in blue) superposed to the
one provided by the IGN (in brown, cf. Fig.5); some buildings are missing
in OSM; (b) simulation result from OSM scene.

C. API VALIDATION
We validated the API with the scene Charles de Gaulle -
Étoile, Paris, already used in section III-C. But here, its
geometry was taken directly from the CupCarbon user inter-
face, and so from the OSM database. Obviously, the building
outline simplification based on Douglas-Peucker algorithm
was applied. The result is shown in Fig.18(a). As mentioned
in Section VII-B, some buildings are missing in comparison
to those shown in Fig.5.

Fig.18(b) compares the simulation result of the OSM scene
to the measurements, by considering 4R1D. Relatively good
agreement can be seen even though the mean and standard
deviation errors are higher than those obtained in section III-C
(10.87 dB and 12.83 dB respectively), as expected with the
large number of missing buildings. This result shows the
importance of accurate geometrical data in achieving good
field predictions in urban areas.
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FIGURE 19. WSN scenario.

D. IMPACT OF DETERMINISTIC MODEL ON WSN
PERFORMANCES
This section describes a case study carried out in Brest city,
France. The test scenario consisted of a small WSN with
10 sensors (s1, s2, . . . , s10). All the sensors are moving along
predefined trajectories represented by the red-dotted paths
in Fig.19. The sensors move at a constant speed along these
paths and reach the end of their trajectories in 59 seconds;
therefore, it is convenient to trace the behavior in steps of 1
second, resulting in 60 snapshots for each sensor.

The main simulation parameters are presented below:

Configuration: Urban; Frequency: 2.4 GHz;
Location: Downtown Brest; Sensitivity level: -100 dBm;
Simul. area: 800 m x 800 m; Channel model: 2.5D;
Protocol: ZigBee; Interactions number:4R1D.
Transmit power: 20 dBm;

However, it should be noted that the transmitter’s power
and Rx’s sensitivity values are not the theoretical values
defined by the standard; rather, they came from a commercial
ZigBee module (Ember EM357 Transceiver - ZICM357P2)
in order to extend the link budget.

In order to show the importance of using a realistic channel
model that takes the propagation environment into account,
we conducted a comparison of a network parameter: the
Packet Error Rate (PER). PER values were obtained by
using firstly our deterministic model and then a statistical
channel model classically used in WSN simulators, i.e. the
Log-Normal shadowingmodel. To obtain comparable results,
the different parameters of the Log-Normal model were fitted
to measurements obtained in the relevant environment, which
led to the following model:

LdB(d) = −14.27+ 10× 5.7× log(d)+ Xσ=16dB, (6)

where d is the distance between the sensors andXσ is a normal
distributed random variable with σ standard deviation equal
to 16 dB. Thus, random data were generated and formatted
as ZigBee Payloads, then they were added to the ZigBee
preamble to form a ZigBee frame as defined by the physical
layer of the protocol. All the other physical layer parameters

FIGURE 20. Impact of channel model on the PER. The results for the
300 first links are detailed in the zoomed part.

such as center frequency, sampling frequency, bit rate, chip
rate, etc., were also considered. The ZigBee frames were then
sent to the receiver sensor, via the radio channel: first with the
proposed deterministic model and then with the adapted Log-
Normal one. The same white Gaussian noise was added to the
two channels. At the receiver side, the received signal was
decoded with a maximum of three retransmission requests,
as indicated by the ZigBee protocol.

The PER values of the two models were computed over the
2,700 links of the considered mobility scenario in Fig.19. Our
deterministic model led to a mean PER of 57.10−2 whereas
the Log-normal model overestimated the transmission perfor-
mances with a mean PER of 46.10−2.
In order to highlight their specific impact, Fig.20 com-

pares the PER obtained by our deterministic model to the
Log-normal one, radio link per radio link. More specifically,
the three y-axis values in the figure were analyzed as follows:
• 1: the packet was correctly received/not received by
considering the deterministic model and the Log-normal
one respectively;

• 0: the packet was received or not received for both
models;

• -1: the packet was not received/correctly received by
considering the deterministic model and the Log-normal
one respectively.

From this figure, it appears that 51% of packets were
considered as received by the Log-normal model when they
were not received correctly by the deterministic model, and
vice versa. This difference confirms that the parametrized
Log-Normal is not accurate enough to characterize the WSN
performances in a realistic specific environment.

VIII. CONCLUSION
This article has presented a study of the radio wireless chan-
nel used in a dense urban environment for the communication
between a set of mobile sensors composing a WSN. The
proposed solution is a ray-tracing based model able to effi-
ciently simulate large networks. It consists of two approaches
linked to the main mode of wave propagation - horizontal or
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vertical - depending on the relative heights of the antennas
and buildings, and the distance between the sensors.

The first approach uses a 2D exact visibility graph, which is
a point-to-zone structure allowing the fast calculation of exact
lit zones based on the super-cover model. The exploitation
of this structure permits very efficient computation of the 3D
propagation paths between a transmitter and a set of receivers.
As a first contribution, a new implementation of the VG com-
putation allows a reduction of the number of nodes, and so
both the memory consumption and the final ray-paths com-
putation time. After validating the model by comparison with
measurements, and as a second contribution, we showed that
the specific VG structure naturally led to classifying the ray-
paths contributions in an increasing order of attenuation. It is
thus easy to limit the calculation to the main significant paths
so as to decrease the computation time while controlling the
loss of precision in the simulation. A third contribution uses
the theoretical radio range of sensors to limit the size of the
simulation area. The results show that this drastically reduces
the computation time without decreasing the accuracy level
of the simulation. As a fourth contribution, we proposed
an algorithm dedicated to the management of the dynamic
behavior of the sensors. This involves precomputing a set of
VGs according to a set of virtual transmitter locations. Then,
the one computed for the nearest location to the considered
sensor is used on demand, instead of the exact VG, to simulate
the propagation paths. The results showed that this process
leads to mean computation times of less than 10 ms per link,
which is significantly better than other published models, and
compatible with WSNs composed of thousands of sensors.
Nevertheless, a tradeoff has to be found between computation
time gain and disk space consumption for VG storage.

The second approach is dedicated to ORT transmission
for distant sensors. First we used the super-cover of the
Tx-Rx segment to quasi-instantaneously extract the vertical
profile, and compute the main significant ray-paths contri-
butions. Then, we avoided the field divergence problem for
multiple successive diffractions on the building roof tops,
by the joint use of conventional UTD coefficients for single
edge diffraction and the Albani and Capolino’s coefficients
for double diffraction on a thick screen. The simulation
results were validated by comparison with measurements and
gave a level of accuracy of the same order as the litera-
ture results. Computation times were, in turn, significantly
better.

As a global validation, we integrated the proposed pro-
pagation model into the CupCarbon WSN simulator. Some
problems relating to the accuracy of the geometric database
were highlighted, such as the level of detail of the building
outlines, and solutions were proposed to remedy them by
adapting the available data in an automatic way. Finally,
we demonstrated the importance of considering a realis-
tic channel model instead of a conventional statistical one,
by simulating a WSN evolving in a real environment. Results
showed that a statistical model can lead to the mis-estimation
of more than 50% of the links.

Further research could address the environment geometry.
First, new algorithms could be developed to simplify the 2D
outline of the buildings, for instance by grouping a set of
related buildings together, in order to further improve the
VG computation time. Second, the geometry of roof tops
could be enhanced by introducing the real shape of the roof,
i.e. not a flat surface as considered in this study. The impact on
the ORT model could be significant. Finally, new algorithms
will have to be developed to deal with future 5G networks,
taking into account the diffusion phenomena for millimeter
waves or even light waves. In this case, particular attention
should be paid to the vegetation and accuracy of 3D urban
models, which will have a great impact on predictions.

As the parametrization space for this type of channel pro-
pagation modelling approach is large, future research may
consider machine learning approaches to adaptively deter-
mine suitable parameters, for any properly defined urban
context. This would allow theWSN designer to more produc-
tively focus on the task at hand with less knowledge needed
on the intricate radio model components.
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