
Received October 22, 2020, accepted November 8, 2020, date of publication November 11, 2020,
date of current version November 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037510

Field Current Waveform-Based Method
for Estimation of Synchronous Generator
Parameters Using Adaptive Black
Widow Optimization Algorithm
MIHAILO MICEV 1, (Student Member, IEEE), MARTIN ĆALASAN1, (Member, IEEE),
DRAGAN S. PETROVIĆ2, ZIAD M. ALI 3,4, NGUYEN VU QUYNH 5,
AND SHADY H. E. ABDEL ALEEM 6, (Member, IEEE)
1Faculty of Electrical Engineering, University of Montenegro, 81000 Podgorica, Montenegro
2School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
3Electrical Engineering Department, College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Wadi Addawasir 11991, Saudi Arabia
4Electrical Engineering Department, Aswan Faculty of Engineering, Aswan University, Aswan 81542, Egypt
5Electrical and Electronics Department, Lac Hong University, Bien Hoa 810000, Vietnam
6Mathematical, Physical and Engineering Sciences, 15th of May Higher Institute of Engineering, Cairo 11721, Egypt

Corresponding authors: Shady H. E. Abdel Aleem (engyshady@ieee.org) and Nguyen Vu Quynh (vuquynh@lhu.edu.vn)

This work was supported by Lac Hong University, Vietnam, under Grant LHU-RF-TE-19-04-03.

ABSTRACT This article presents a novel method for identification of synchronous generator parameters
that is based on sudden short-circuit test data and a novel metaheuristic algorithm, called the adaptive
black widow optimization algorithm. Unlike traditional methods defined by IEEE and International Elec-
trotechnical Commission (IEC) standards, which rely on the armature current oscillogram, the method
proposed in this article uses the field current waveform during the short-circuit test. Moreover, the standard
graphical method for extraction of the generator parameters is replaced by an effective metaheuristic
algorithm. The proposed algorithm tends to minimize the normalized sum of squared errors (NSSE) between
simulation and experimental results. The applicability and accuracy of the proposed optimization technique
are verified using experimentally obtained results from a 100-MVA synchronous generator at the Bajina
Basta hydropower plant.

INDEX TERMS Black widow optimization algorithm, field current waveform, parameter estimation,
synchronous generator.

NOMENCLATURE
d , q d-axis and q-axis quantities
d Dimension of the optimization problem
f , a Field and armature quantities
kd, kq d-axis damper winding and q-axis damper

winding quantities
i Current
if 0 Field current before short-circuit
If ,exp Experimental field current
If ,sim Simulated field current
L Leakage inductance
Lmd Mutual inductance between windings on d-axis
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Lmq Mutual inductance between windings on q-axis
N Size of the population
R Resistance
t Time
Ta Armature winding time constant
T ′d Direct-axis transient short-circuit time constant
T ′′d Direct-axis subtransient short-circuit time con-

stant
Tkd Direct-axis damper leakage time constant
u Voltage
X Reactance
x1, x2 Randomly chosen parents from the population
Xd Direct-axis synchronous reactance
X ′d Direct-axis transient reactance
y1, y2 Offsprings created of the population
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ψ Flux linkage
ω Angular speed
ω0 Synchronous speed
θ Vector of estimated parameters

I. INTRODUCTION
Among the many different types of electric generators
found in power systems, including synchronous generators,
double-fed induction generators, permanent magnet genera-
tors, switched reluctance generators, and so on, the first type
is the most widely used in electric power plants. Modeling
and steady-state and transient analysis of synchronous gener-
ators are a crucial part of power system analysis [1], [2].

Estimation of synchronous generator parameters has been
a very important topic of research in recent years, as shown
by the development of standardized test procedures by IEC
and IEEE [3], [4]. Most of the procedures in the men-
tioned standards are based on graphical extraction of the
parameters from armature current oscillograms during three-
phase short-circuit tests. The graphical methods are actually
geometrical, which means they are subject to human error.
Moreover, the armature current is measured using current
transformers, which are subject to saturation. Despite the
existence of standard test procedures, many studies have been
performed to demonstrate different non-standard methods
for the determination of synchronous generator parameters.
Among the most frequently used are load rejection [5]–[9]
and field flashing [9] tests. Load rejection test consists
of two steps, in which d-axis parameters are determined
in the first step, while q-axis parameters are determined in
the second step. Precisely, to determine d-axis parameters,
the generator’s excitation system is set to manual mode,
and the generator is operating with 0 active power and
0.1 pu absorption of reactive power. After achieving such
an operating point, the breaker can be opened to reject the
load. It is then necessary to measure the generator’s voltage to
determine the parameters [5]–[9]. Similarly, in the q-axis test,
the generator’s power factor angle needs to be equal to the
rotor angle, which is approximately achieved when the gen-
erator operates with 0.1 pu active power and a few percent of
nominal reactive power (absorption, as in d-axis test). When
the mentioned condition is met, the second step of the test
can be conducted by opening the breaker. Field flashing test,
used in [9], consists of a slight increase of the field voltage
to supply initial excitation of the generator and incrementally
increase the terminal voltage to 1 pu. This test is conducted
when the armature circuit is opened. The methods of param-
eter extraction are different: Levenberg-Marquardt is used
in [5], asymptotic weighted least squares is applied in [6], [7],
the standard graphical method is used in [8], and the interior
point method is demonstrated in [9]. It is also important to
mention that the authors of [8] proposed an improved load
rejection method that takes into account the effects of satura-
tion, while variations of the field voltage are considered in [9].
Furthermore, many authors have developed parameter esti-
mation methods based on phasor measurement unit (PMU)

data [10]–[16], in which PMUs provide the data about voltage
magnitude and phase, rotor position, angular speed, stator
current, and electrical power at the generator bus. These data
are essential for applying the extraction methods presented
in [10]–[16]. Extraction of the parameters can be carried
out using a dynamic state estimator based on Kalman fil-
ters [10]–[12], modified least-squares (LS) algorithm [13],
genetic algorithms (GAs) [14], adaptive importance sampling
combined with Bayesian inference [15], and the primal-dual
interior points (PDIP) method [16]. Test methods that rely
on measuring field and armature voltage and current are
proposed in a significant number of recent studies [17]–[26].
Authors have demonstrated the use of a large variety of
methods for the determination of the parameters: nonlinear
LS is used in [17], [18], while the LS algorithm along
with observers for estimation of damper current is applied
in [19]–[21], nonlinear mapping is demonstrated in [22], and
the use of Hartley series is proposed in [23]. An improved
dynamic state estimator called the Unscented Kalman fil-
ter (UKF) is used in [24], a univariate search method is
applied in [25], and a maximum likelihood algorithm is
demonstrated in [26]. A large number of the test procedures
are conducted while the generator is at standstill; one of
the most popular is the chirp test, which is combined with
the hybrid GA–quasi-Newton method in order to determine
synchronous generator parameters [27]. Chirp signal stands
for the linear swept-frequency sinusoidal signal. The chirp
test is carried out by applying a chirp signal to the stator
windings while the field winding is short-circuited and the
generator is at a standstill. By measuring stator voltage
and currents and the field current, parameters of the gen-
erator can be extracted. In studies presented by Arjona,
the GA algorithm combined with the Gauss-Newton method
is used to extract the parameters when two standstill tests
are applied: sine cardinal perturbation in [28] and a step
voltage test in [29]. These test methods are very similar to
the previously described chirp test. In [28], a sine signal
is applied to the stator winding instead of a chirp signal.
Also, in [29], a step voltage signal is applied between two
of the stator terminals. In both cases, the field winding
is short-circuited, and the rotor is stationary. Application
of the pseudo-random binary sequence (PRBS) excitation
voltage at the field winding is demonstrated in [30]–[32],
while another standstill test, called the dc-flux decay test,
is applied in [32], [33]. The field winding must be short-
circuited, and the generator must be at a standstill during this
test (like the previously described standstill tests). Initially,
a constant direct current is applied at the stator windings,
setting up the machine’s magnetic flux. After the excitation
current reaches a steady-state, the direct current is turned off,
and the stator windings are short-circuited. The stator current
waveform during the short-circuit is used to extract the
generator parameters. The optimization or extraction
methods are different and include the H-infinity [30],
hybrid particle swarm optimization-quantum operation
(PSO-QO) [31], Levenberg-Marquardt [32], and maximum
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likelihood algorithms [33]. Short-circuit tests are part of the
standardized procedures described in [3], [4] but are also used
in combination with different optimization or determination
methods: the Knitro optimization solver [34], graphical meth-
ods [35], curve-fitting techniques [36], the LS algorithm [37],
and the nonlinear Lasso method [38]. Except for short-
circuit faults, parameters can be determined when remote
line-to-line faults are considered with the use of the PSO
algorithm, as described in [39]. The current injection test
method, along with the GA algorithm, is proposed in [11],
while a method combining use of online measured data from
the terminals of the generator in the case of the disturbance
and an artificial neural network (ANN) observer is presented
in [40]. An approach based on measuring field current dur-
ing a short circuit is presented in [41]. Namely, in [41],
a numerical procedure for synchronous machine parameters
determination is based onminimization of the sum of squared
errors (SE) between the periodic and aperiodic components
of the experimentally obtained field current waveform, and
the analytical waveforms. In [42], UKF is applied to extract
synchronous generator parameters under unbalanced oper-
ating conditions, while in [43], the estimation of dynamic
states (rotor angle and speed) under unknown measure-
ment noise using robust cubature Kalman filter (CKF) is
demonstrated.

In this regard, the large list of papers dealing with syn-
chronous machine parameters estimation demonstrates the
importance of the topic. On the other hand, the use of different
methods in the previously mentioned papers reveals that there
is room for improvement and that we still have not found the
best one.

In this article, the field current waveform during a sudden
three-phase short circuit of an unloaded generator will be
used to obtain the transient parameters. In this way, all
time constants and short-circuit time constants except the
subtransient reactance can be estimated. In the available
literature, short-circuit tests are conducted with the purpose
of measuring the armature current and using its oscillograms
to calculate the machine parameters. This article proposes
the use of the field current, whose analytical expression
does not contain the double-frequency component, which can
significantly increase the accuracy of the results. Moreover,
the field current is measured using shunt resistors, which do
not have saturation problems, unlike the current transformers
used for measuring armature current, as mentioned before.
Furthermore, a novel metaheuristic algorithm is proposed
as a tool for extracting the synchronous generator parame-
ters from the field current waveform (based on measuring
field current during a short circuit). The parameters of the
generator are obtained by applying a numeric algorithm
with predefined error tolerance. It is essential to mention
that other computational intelligence algorithms can solve
the optimization problem considered using the methodol-
ogy proposed in this work. Some of the most represen-
tative computational intelligence algorithms are monarch
butterfly optimization (MBO) [44], earthworm optimization

algorithm (EWA) [45], elephant herding optimization
(EHA) [46], moth search algorithm (MSA) [47], and others.

The contribution of this article is twofold. First, a novel
method for determining synchronous generator parameters
based on measuring the field current during the short cir-
cuit is presented. Compared to the existing approaches, this
method is characterized by its simplicity and very high
accuracy. Second, a novel metaheuristic algorithm, called
adaptive black widow optimizer (ABWO), is proposed. The
performance of ABWO is compared with various compu-
tational intelligence algorithms, and it proved its superior-
ity in terms of convergence speed and the accuracy of the
obtained results. The proposed algorithm’s performance was
tested with some high-dimensional and multimodal bench-
mark functions. These tests proved the proposed method’s
scalability and applicability to solve high-dimensional opti-
mization problems. Also, good results obtained with mul-
timodal test functions show that the ABWO algorithm can
efficiently handle premature convergence.

This article is organized as follows. A short overview of
the synchronous generator model and the oscillograms and
analytical expression of the field current during the short
circuit are presented in Section 2. A detailed description and
the mathematical formulation of the proposed hybrid meta-
heuristic algorithm are given in Section 3. Section 4 shows the
results of the simulations carried out in this article. Finally,
the conclusions are provided in Section 5.

II. SYNCHRONOUS GENERATOR MODEL AND FIELD
CURRENT WAVEFORM
A synchronous machine consists of three armature coils,
the field coil, and the damper coil, for which the voltage
equations can be derived in terms of resistances and self
and mutual inductances. Taking into account that coils of the
machine are in relative motion, many of the inductances are
a function of the position of the rotor. Therefore, the arma-
ture variables are transformed into a new variable related
to a reference frame fixed to the field system. The men-
tioned approach is called Park’s transformations and is the
most widely used for the analysis of synchronous machines.
According to this theory, the machine is represented in a
two-axis frame consisting of a direct axis (d-axis) and a
quadrature axis (q-axis). The direct- and quadrature-axis
currents are defined as the currents in two fictitious coils
(D and Q) that are located on the corresponding axes, which
would set up the same magnetomotive force wave as the
actual currents in real armature windings (ia, ib, and ic) [2].

The order of the machine model is directly dependent on
the chosen number of damper windings [2]. In this article,
a simple model with one damper winding on each axis is
considered. According to this, besides the armature wind-
ings D and Q, there are three more windings in the machine:
the field winding (F), the damper winding on the direct axis
(KD), and the damper winding on the quadrature axis (KQ).
The described two-axis machine model used in this article is
graphically represented in Fig. 1.
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FIGURE 1. Two-axis model of the synchronous machine.

The basis of the two-axis theory is set up by writing the
voltage equations for each winding (1)–(5):

ud = Raid +
dψd
dt
+ ωψq (1)

uq = Raiq +
dψq
dt
− ωψd (2)

uf = Rf if +
dψf
dt

(3)

ukd = Rkd ikd +
dψkd
dt
= 0 (4)

ukq = Rkqikq +
dψkq
dt
= 0 (5)

where u, i, R, ω, and ψ are the voltage, current, resistance,
angular speed, and flux linkage, respectively. Subscripts refer
to the corresponding windings: d – direct axis winding,
a – armature winding, q – quadrature axis winding, f – field
winding, kd – d-axis damper winding, and kq – q-axis damper
winding. Assuming that Lmd and Lmq indicate the mutual
inductances between the windings on the d-axis and q-axis,
respectively, the flux linkages of the windings are expressed
using the following equations:

ψd = (Lmd + La) id + Lmd if + Lmd ikd (6)

ψq =
(
Lmq + La

)
iq + Lmqikq (7)

ψf =
(
Lmd + Lf

)
if + Lmd id + Lmd ikd (8)

ψkd = (Lmd + Lkd ) ikd + Lmd if + Lmd id (9)

ψkq =
(
Lmq + Lkq

)
ikq + Lmqiq (10)

where La, Lf , Lkd , and Lkq denote the leakage inductances
of the armature, field, d-axis damper, and q-axis damper
windings, respectively. The equivalent circuits of the syn-
chronous machine are represented in Figs. 2 and 3, where
Fig. 2 corresponds to the d-axis and Fig. 3 corresponds to the
q-axis. One can note that in equivalent circuits, inductances
(L) are replaced by the corresponding reactances (X = ωL).
The method presented in this article relies on the field

current waveform during a sudden short-circuit test of an

FIGURE 2. Equivalent circuit of d-axis.

FIGURE 3. Equivalent circuit of q-axis.

unloaded generator. The analytical expression for the field
current during the short circuit is derived in [2] using the
previously described two-axis model and is given by the
following equation:

if (t) = if 0 + if 0

(
Xd − X ′d
X ′d

)
×

[
e
−

t
T ′d −

(
1−

Tkd
T ′′d

)
e
−

t
T ′′d −

Tkd
T ′′d

e−
t
Ta cos (ω0t)

]
(11)

where if is the field current, t denotes time, if 0 denotes
the field current before the short circuit and is considered
to be known, and ω0 is the speed during the short circuit
and is assumed to be constant and equal to the synchronous
speed. The parameters of the synchronous generator that
appear in (11) are the direct-axis synchronous reactance (Xd ),
direct-axis transient reactance (X ′d ), direct-axis transient
short-circuit time constant (T ′d ), direct-axis damper leakage
time constant (Tkd ), direct-axis subtransient short-circuit time
constant (T ′′d ), and armature winding time constant (Ta). The
relation between the parameters from equivalent circuits and
the parameters from (11) is represented by the equations
given in (12)–(17):

Xd = Xmd + Xa (12)

X ′d = Xa +
XmdXf

Xmd + Xf
(13)

T ′d =
1

ω0Rf

(
Xf +

XmdXa
Xmd + Xa

)
(14)
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Tkd =
Xkd
ω0Rkd

(15)

T ′′d =
1

ω0Rkd

(
Xkd +

XmdXaXf
XmdXa + XmdXf + XaXf

)
(16)

Ta =
Xa
ω0Ra

(17)

In this article, a sudden three-phase short circuit of the
generator is carried out in order to obtain an experimental
waveform of the field current. This obtained current is com-
pared to the one calculated by the analytical expression given
by (11). The parameters defined by (12)–(17) are extracted
by using the novel metaheuristic algorithm proposed in this
article. The estimated parameters of the generator are calcu-
lated so that the objective function, defined as the normalized
sum of squared errors (NSSE), is minimized:

NSSE (θ) =

N∑
k=1

(
If ,exp (k)− If ,sim (k)

)2
N∑
k=1

If ,exp (k)2
(18)

In the previous expression, If ,exp and If ,sim are the experi-
mental and simulated field currents and N is the number of
measurements. The vector of estimated parameters is denoted
as θ = {Xd , X ′d , T

′
d , Tkd , T

′′
d , Ta}.

III. ADAPTIVE BLACK WIDOW OPTIMIZATION
ALGORITHM (ABWO)
This article presents a novel metaheuristic algorithm based
on the existing Black Widow Optimization (BWO) algo-
rithm [48]. The proposed modification relies on adaptive
change of the parameters of the algorithm, which are assumed
to be constant in [48]. This approach provides an increase
in the convergence speed as well as in the accuracy of the
results.

The proposed algorithm, like any other metaheuristic algo-
rithm, starts with a randomly initialized population. The
population consists of black widow spiders, each of which
represents a potential solution to the optimization problem.
For the d-dimensional optimization problem, each spider is
an array of d elements, called optimization variables (x1–xd ):

spider =
[
x1 x2 ... xd

]
(19)

Therefore, the population of black widow spiders is a matrix
of size N × d , where N stands for the size of the population
(number of spiders). After initialization, the second step of
the algorithm is the mating process, which is also called
procreation or crossover. It is necessary to randomly choose
two parents from the population, denoted as x1 and x2, which
are used to create the y offspring (y1 and y2) using (20):

y =

{
y1 = α (x1)+ (1− α) x2
y2 = α (x2)+ (1− α) x1

(20)

where α stands for the vector of random numbers in the range
from 0 to 1, whose size is 1 × d . The number of spiders

from the population that take part in the process of mating
is defined by the procreation rate (PR).

The third step of the algorithm is related to the cannibalistic
behavior that is often exhibited in invertebrates like spiders,
scorpions, and so on. Two types of cannibalism are observed
in the behavior of the spiders:

- The first is sexual cannibalism, in which the female
spider eats the male during or after the mating process.
In the optimization algorithm, male and female are iden-
tified according to the fitness function value.

- The second type of cannibalism is sibling cannibalism,
in which the strong spiderlings eat their weaker siblings.
The cannibalism rate (CR) defines the number of sib-
lings that will be eaten during the cannibalism process.

The final stage of the BWO algorithm is the mutation
process. The number of spiders from the population that will
be mutated is determined by the mutation rate (MR). Namely,
during the mutation, each of the selected spiders randomly
exchanges two elements (optimization variables) in the array,
as graphically represented in Fig. 4.

FIGURE 4. Graphical illustration of the mutation process.

The described phases are iteratively repeated until the
stopping criterion is reached. Among the final population,
the spider with the lowest fitness function value represents
the globally optimal solution to the optimization problem.
The parameters that are essential for exploring the global
search space and escaping from local optima are the pro-
creation rate, cannibalism rate, and mutation rate. Properly
chosen values of the mentioned parameters control the bal-
ance between exploration and exploitation. The procreation
rate defines the production of different offspring, thereby
providing diversification and exploration of the search space.
Unlike the procreation rate, the mutation rate ensures high
performance in the exploitation stage. In [48], these param-
eters are assumed to be constant: PR = 0.6 and MR = 0.4.
This article presents the adaptive approach embedded in the
BWO algorithm, obtaining a novel adaptive BWO (ABWO)
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TABLE 1. Pseudo-code of the ABWO Algorithm.

algorithm. Namely, in early iterations, global exploration of
the search space is much more important than exploitation in
order to avoid local optimum solutions. Furthermore, in late
iterations, since the global search of the space has already
been performed, it is necessary to perform exploitation (local
search) of the optimum solutions obtained. Taking these facts
into account, it is obvious that the procreation rate, which
ensures the exploration, is supposed to have a higher value
during early iterations of the algorithm and a lower value
in later ones. Similarly, the mutation rate, whose role is to
force the exploitation phase, should increase its value as
the iterations proceed. Therefore, in this article, an adaptive
change of the parameters PR and MR is proposed, according
to the following equations:

PR = PRmax − (PRmax − PRmin)
ite

max_ite
(21)

MR = MRmin + (MRmax −MRmin)
ite

max_ite
(22)

where PRmin, PRmax , MRmin, and MRmax stand for the mini-
mum and maximum values of the procreation rate and muta-
tion rate, respectively, ite is the current iteration, and max_ite
denotes the maximum number of iterations.

The pseudo-code of the proposed algorithm is summarized
in Table 1, while the steps of the algorithm are graphically
depicted in the flowchart given in Fig. 5.

Finally, the computational efficiency of the proposed
ABWO algorithm can be demonstrated by calculating its
computational complexity. The Big-O notation is the most
common way used to depict computational complexity.
According to this, the computational complexity of the
ABWO algorithm is denoted as O(ABWO) and it consists of
the following components:

1) Problem definition: O(1).
2) Initialization: O(N × d).
3) Function evaluations: O(max_ite× N × c).
4) CalculatingMR and PR: O(2×max_ite).
5) Updating the population: O(max_ite× N × d).

where c stands for the cost of fitness function evaluation.
Therefore, the total computational complexity can be calcu-
lated using the following equation:

O (ABWO) = O (1)+ O (N × d)+ O (max_ite× N × c)

+O (2× max_ite)+ O (max_ite× N × d)

= O
(
1+ N × d + max_ite× N × c
+2× max_ite+ max_ite× N × d

)
(23)

IV. SIMULATION RESULTS
In order to demonstrate the improvement made by the
proposed algorithm, in this section, the parameters of the gen-
erator are estimated by applying both the original BWO algo-
rithm and the proposed ABWO algorithm. The parameters
estimation procedure is based on measuring the field current
during the sudden three-phase short-circuit test, as described
in Section 2.

After that, the capability of the proposed algorithm to
deal with high-dimensional problems and handle the problem
of premature convergence is discussed. The experiment is
carried out on a synchronous generator in the Bajina Basta
hydropower plant, whose basic data are 15.65 kV, 100 MVA,
and cosϕ = 0.95. To conduct a fair comparison, the sim-
ulations were performed using the same personal computer,
with the following hardware settings: AMD A4 CPU 4× 2.5
GHz, 4 GB RAM, and 1 TB hard drive. Also, the simulations
are carried out in Matlab R2019b, on the operating system
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FIGURE 5. Flowchart of the proposed ABWO algorithm.

Windows 10. The objective function, which is minimized in
the BWO and ABWO algorithms, is given in (18).

Furthermore, the parameters of the BWO andABWOalgo-
rithms are as follows: the population size is 30, the maxi-
mum number of iterations is 40, CR = 0.5, PRmin = 0.6,
PRmax = 0.8, MRmin = 0.2, and MRmax = 0.4. Finally,
the upper and lower bounds of each optimization variable
(parameters of the generator) are defined in Table 2.

TABLE 2. Bounds of the optimization variables.

It is very important to highlight that the terminal volt-
age of the generator during the short-circuit ytest must be

reduced in order to protect the armature winding. In the
experiment presented in this article, the terminal voltage
before the short-circuit test is set as 20% of the nominal one.
The results obtained by the proposed method are compared
with the parameters measured using standard IEEE tests [4],
the parameters from the catalog data provided by VA Tech,
and the parameters obtained by the method presented in [41].
The values of the parameters are presented in Table 3, along
with the values of the NSSE for each method.

By observing the results presented in the previous table,
it can be noted that the best match with the experimental
results, measured by the value of the NSSE, is provided
by the parameters estimated by the proposed ABWO algo-
rithm. Additionally, Fig. 6 presents a graphical comparison
of the field current waveform obtained by the experimental
measurement with the field current determined using the
analytical expression applying parameters calculated by the
ABWO algorithm, by the numerical-based algorithm pre-
sented in [41], and by IEEE standard test procedures.

In order to additionally demonstrate the accuracy of the
results obtained by the ABWO algorithm, a short-circuit test
of the generator was carried out at the moment when the
terminal voltage was at 30% and 50% of the nominal value.

A graphical presentation of the experimental and analytical
field current waveforms with the parameters calculated using
different methods is given in Fig. 7 (for a terminal voltage
whose value is 30% of the nominal value). The same com-
parison, but with voltage before the short circuit set to 50%
of the nominal value, is presented in Fig. 8.

Based on these figures, it can be concluded that, in all
considered cases, the application of the ABWO algorithm
ensures the best match with the experimental results. There-
fore, the proposed algorithm outperforms other considered
methods used for the determination of the synchronous
machine parameters.

Furthermore, a detailed comparative analysis between the
proposed ABWO algorithm and the original BWO algorithm,
Henry gas solubility optimization (HGSO) algorithm [49],
grey wolf optimizer (GWO) algorithm [50], and harris hawks
optimization (HHO) algorithm [51], [52] is carried out.

As highlighted in Section 3, the adaptive approach pro-
posed in this article is supposed to accelerate the conver-
gence of the algorithm. To prove this, Fig. 9 demonstrates
the convergence curves of all mentioned algorithms applied
to the described problem of estimation of synchronous
machine parameters. In order to adequately carry out the
statistical analysis, all algorithms have been run indepen-
dently 10 times. Also, the objective function, the maxi-
mum number of iterations, and the population size are the
same for all algorithms. It is imperative to highlight that the
metaheuristic algorithms have a stochastic nature, so they
had to be run independently 10 times or more. The best,
worst, mean, and median fitness function values, along with
the standard deviation, are presented in Table 4. The pre-
sented results show that the least values of best, worst,
mean, median, and standard deviation results are obtained
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TABLE 3. Values of the parameters determined by different methods.

FIGURE 6. Comparison of results obtained: (a) Graphical comparison of experimental and analytical field current waveforms (at 20% of
nominal voltage); (b) absolute error between simulation and experimental results.

with the proposed ABWO algorithm, which clearly demon-
strates its superiority over other algorithms considered for
comparison.

As shown in Table 4, the standard deviation has the low-
est value when the proposed ABWO algorithm is applied,
which means that the deviation of the results obtained by
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FIGURE 7. Comparison of results obtained: (a) Graphical comparison of experimental and analytical field current waveforms (at 30%
of nominal voltage); (b) absolute error between simulation and experimental results.

TABLE 4. Comparison of results obtained with different algorithms.

TABLE 5. p-values obtained with Wilcoxon’s rank-sum test (5% level of significance between the ABWO and other optimization methods).

each run is extremely small. In other words, the results
obtained from every run are consistent. Due to the stochastic
nature of these types of algorithms, the results obtained from
every independent run are not precisely the same. Therefore,
the results obtained as the final solution are the ones that
provide the minimum fitness function value of all runs. The
synchronous generator parameters presented in Table 3 pro-
vided the minimum fitness function value (4.86×10−4) from
all the independent runs.

Additionally, a non-parametric statistical test called
Wilcoxon’s rank-sum test is carried out to compare the
proposed ABWO algorithm and BWO, GWO, HHO, and
HGSO algorithms. The corresponding p-values obtained by
applying this test are presented in Table 5, with the 5% level
of significance between the ABWO and other optimization
methods. The results shown in Table 4 and Table 5 validate the
superiority of the ABWO algorithm over the other considered
algorithms [53].
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FIGURE 8. Comparison of results obtained: (a) Graphical comparison of experimental and analytical field current waveforms (at 50%
of nominal voltage); (b) absolute error between simulation and experimental results.

TABLE 6. Results of ABWO algorithm for different benchmark functions.

The scalability ofmetaheuristic algorithms and their ability
to escape from local solutions are significant characteris-
tics of the optimization algorithms. The scalability of an

algorithm stands for its ability to deal with high-dimensional
problems. The scalability of the algorithm presented in this
article is proven by applying it to two well-known benchmark
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FIGURE 9. Comparison of the convergence curves of ABWO and other
algorithms.

FIGURE 10. Convergence curve of the ABWO algorithm for benchmark
function F1.

FIGURE 11. Convergence curve of the ABWO algorithm for benchmark
function F2.

functions used in [48]. The first one is the sphere function,
denoted as F1, and the second is the Rastrigin function, which
is denoted as F2. Their mathematical formulation, real global
optimal solution, and the optimal solution obtained by the
ABWO algorithm are depicted in Table 6. The convergence
curves of the ABWO algorithm used for these test functions
are presented in Fig. 10 (for F1) and Fig. 11 (for F2). Number
of independent runs is set to be 10, the dimension of the
problem is d = 100, population size N = 500, and the
maximum number of iterations max_ite=1000.

FIGURE 12. Convergence curve of the ABWO algorithm for benchmark
function F3.

FIGURE 13. Convergence curve of the ABWO algorithm for benchmark
function F4.

FIGURE 14. Convergence curve of the ABWO algorithm for benchmark
function F5.

Moreover, the proposed algorithm’s ability to avoid prema-
ture convergence, i.e., to escape from local solutions, is dis-
cussed. In [48], a certain number of multimodal benchmark
functions are used to prove the ability to avoid premature
convergence. Many local optimal solutions characterize mul-
timodal functions. According to this, three of the popular
multimodal benchmark functions were applied in this article
to prove the proposed algorithm’s ability to escape from
local optimal solutions. Selected benchmark functions are
Ackley function (marked as F3), Griewank function (marked
as F4), and Csendes function (marked as F5). Like the pre-
viously mentioned benchmark functions, Table 6 presents
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mathematical formulations of these functions, their optimal
global solutions, and the solution obtained by the proposed
ABWO algorithm. When applying benchmark functions F3,
F4, and F5, dimension size is set to be d = 10, popu-
lation size N = 100, the maximum number of iterations
max_ite=500, and the number of independent runs is 10.
Figures 12, 13, and 14 depict the convergence curves of the
ABWO algorithm for benchmark functions F3, F4, and F5,
respectively.

Based on the presented results, it can be concluded that the
proposed ABWO algorithm almost reaches the exact global
optimal solution for high-dimensional problems, which val-
idates that the ABWO algorithm can be used to solve the
problem of synchronous generator parameters estimation
efficiently, as well as other high-dimensional optimization
problems. Moreover, the ABWO algorithm was successfully
applied for solving benchmark functions F3, F4, and F5,
which proves that the ABWO algorithm can easily handle the
problem of premature convergence.

V. CONCLUSION
This article proposes a novel method for the estimation
of synchronous machine parameters. The first step of the
proposed method is measuring the field current during the
short-circuit test, while the second step consists of extract-
ing the generator parameters from the obtained field current
waveform using the novel algorithm proposed in this article,
called the adaptive black widow optimization (ABWO) algo-
rithm. The validation is carried out by comparing the simu-
lation results when the parameters are determined by various
methods with experimentally obtained results. Furthermore,
a short-circuit experiment test is carried out when the terminal
voltage of the generator is 20, 30, and 50% of the nominal
value. The proposed method is proven to outperform other
considered methods that are used for determination of the
machine parameters. Also, this article presents a comparison
between the proposed ABWO algorithm and BWO, GWO,
HHO, and HGSO algorithms.

By observing the convergence curves, as well as statisti-
cal parameters such as the best, worst, mean, median, and
standard deviation of the fitness function values, it can be
concluded that the ABWO algorithm outperforms the other
algorithms considered for comparison. Finally, it is important
to point out that the optimization problem solved in this
work could be solved by different computational intelligence
algorithms as MBO, EWA, EHA, MSA, and others.
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