
Received September 10, 2020, accepted October 29, 2020, date of publication November 11, 2020,
date of current version December 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3037276

Exploring and Exploiting Conditioning
of Reinforcement Learning Agents
ARIP ASADULAEV , IGOR KUZNETSOV, GIDEON STEIN,
AND ANDREY FILCHENKOV, (Member, IEEE)
Machine Learning Laboratory, ITMO University, 197101 Saint-Petersburg, Russia

Corresponding author: Arip Asadulaev (aripasadulaev@itmo.ru)

This work was supported in part by the Russian Ministry of Science and Higher Education under Grant 2.8866.2017/8.9, in part by the
Research and Development under Grant 619416, and in part by the Russian Science Foundation through Deep reinforced algorithms for
solving the routing problem with dynamically changing topology and graph properties under Project 20-19-00700.

ABSTRACT The outcome of Jacobian singular values regularization was studied for supervised learn-
ing problems. In supervised learning settings for linear and nonlinear networks, Jacobian regularization
allows for faster learning. It also was shown that Jacobian conditioning regularization can help to avoid
the ‘‘mode-collapse’’ problem in Generative Adversarial Networks. In this paper, we try to answer the
following question: Can information about policy network Jacobian conditioning help to shape a more
stable and general policy of reinforcement learning agents? To answer this question, we conduct a study
of Jacobian conditioning behavior during policy optimization. We analyze the behavior of the agent
conditioning on different policies under the different sets of hyperparameters and study a correspondence
between the conditioning and the ratio of achieved rewards. Based on these observations, we propose a
conditioning regularization technique. We apply it to Trust Region Policy Optimization and Proximal Policy
Optimization (PPO) algorithms and compare their performance on 8 continuous control tasks. Models
with the proposed regularization outperformed other models on most of the tasks. Also, we showed that
the regularization improves the agent’s generalization by comparing the PPO performance on CoinRun
environments. Also, we propose an algorithm that uses the condition number of the agent to form a robust
policy, which we call Jacobian Policy Optimization (JPO). It directly estimates the condition number of an
agent’s Jacobian and changes the policy trend. We compare it with PPO on several continuous control tasks
in PyBullet environments and the proposed algorithm provides a more stable and efficient reward growth on
a range of agents.

INDEX TERMS Reinforcement learning, neural networks, policy optimization, generalization, regulariza-
tion, conditioning.

I. INTRODUCTION
Reinforcement Learning (RL) is the area of Machine Learn-
ing concerned with finding optimal actions for an agent inter-
acting with an environment. Despite we can say that an RL
algorithm should predictwhat would be the best action for the
agent in the current situation, the RL setting is not similar to
the supervised learning setting as it has to search a set of such
dependent actions that should maximize a reward function.
It is thus not surprising that the generalization problem in
RL is different from the supervised learning generalization
problem [1]. We need specific techniques to avoid overfitting
of RL algorithms [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Venkateshkumar M .

In RL, an agent’s performance on the test data depends on
the agent’s architecture, because different architectures have
different prior algorithmic preferences (inductive biases) [1].
This can lead to situations when agents achieve different
scores on the test set while all of them achieve the same
rewards during training. For example, Convolutional Neural
Networks (CNNs) agents are too sensitive to small visual
changes and can completely fail due to perturbations [3].
Such techniques as the first CNNs layer randomization
can prevent it and help to learn robust representations [3].
However, the question on how to control an agent’s sen-
sitivity to small changes in an environment remains.

Policy gradient methods learn the policy directly with a
parameterized function [4]. Vanilla policy gradient methods
are easy of implementation and tuning in comparison to

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 211951

https://orcid.org/0000-0002-2581-935X
https://orcid.org/0000-0002-9652-3118

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

other vanilla Deep RL methods [5] which require to tune
a higher range of hyperparameters. Modern policy gradient
approaches are central to breakthroughs in using deep neural
networks for control, from video games [6] to Go [7] and
Chess [8].

However, policy gradient methods often have a poor sam-
ple efficiency and exploration, and agents need to take mil-
lions (or billions) timesteps to learn tasks. In policy gradient
methods, updates occur by small steps that may lead to explo-
ration problems in some cases. Agents may under-explore
their environments or under-develop strategies. If an agent
gets trapped in some states at the beginning of the training,
the experience obtained from different environment locations
later may not lead to significant policy changes because
the clip range became too small. In complex environments
where the transition from one area to another is not ‘‘trivial’’,
the agent may be stuck in a local minimum [9]. As a result,
the agent has a productive strategy only in a small area of the
environment, which leads to unpredictable outputs of the
policy for unseen states.

Restriction of policy updates may not be always reason-
able. An agent visits profitable states as well, and the new
policy based on these data may be more competent than the
old one. However, determining whether the new policy is
more relevant than the old one or not is a challenge, as the
obtained rewards do not always reflect this, and rewards
are often unavailable during most training phases in many
environments. This difficulty is caused by various factors
such as sparsity of rewards or highly noisy gradients [10].

To decide how much we need to restrict a policy at each
update, we need some indirect policy characteristics that are
not dependent on the rewards. One of suchmeasurements that
we can calculate based only on the neural network state is
to verify whether or not the network fulfills the property of
Dynamical Isometry [11]. This property can be achieved by
having a mean squared singular value equal toO(1) of a Jaco-
bian input-output network [11]. Forcing a network to achieve
the Dynamical Isometry property by using orthogonal weight
initialization can dramatically speed up training, especially
for very deep networks with dozens of layers without Batch-
Norm [12] and residual connections [13].

The role of the Jacobian singular values distribution was
also studied for Generative Adversarial Networks (GANs).
It was shown that conditioning of generator Jacobian is
causally related to the generator performance, and a condi-
tioning regularization can help to avoid the ‘‘mode-collapse’’
problem when generators in GANs only represent a few
modes of the true distribution [14]. Here conditioning or con-
dition number is the measure that indicates how much the
function output can change for a small change in the input.

Being motivated by these powerful effects of well-
conditioning of Jacobian, we rise the following research
questions:
• Q1:Does Jacobian conditioning influence RL agents’
performance?

• Q2: Can Jacobian conditioning regularization help
to shape a more stable and general policy of RL
agents?

Our studies show positive answers to both questions.
We conducted a study of the relationship between policy per-
formance and conditioning described in Section III and found
that in many cases better policies are more well-conditioned.
Based on this, we proposed a conditioning regularization
technique aiming to improve the policy optimization agent’s
performance that is described and studied in Section IV.
We also propose an algorithm that clips changes in policy
with respect to conditioning that is described and studied in
Section V. To the best of our knowledge, this is the first work
that research conditioning of reinforcement learning agents.

II. POLICY OPTIMIZATION
A. VANILLA POLICY GRADIENT
Williams et al. [4] proposed the commonly used method for
policy gradient estimation:

ĝ = Êt
[
∇θ logπθ (at | st) rt

]
, (1)

whereπθ is a stochastic policywith parameters θ , at and st are
actions and states at timestep t with reward rt . Alongside with
the corresponding framework for minimizing the following
surrogate objective is based on a method closely related to
stochastic gradient descent:

LPG(θ) = Êt
[
logπθ (at | st) rt

]
. (2)

The expectation Êt is taken across several timesteps up to a
finite horizon with reward rt .

There are many methods for estimating a policy. For exam-
ple, Actor Critics methods use a value function approxima-
tion to get a lower variance advantage estimate [15]. One
of the main disadvantages of the vanilla policy gradient
method is that the variance of vanilla policy gradients is vast
and significant policy updates can cause policy performance
degradation.

During the optimization of policy gradient algorithms,
we search over the sequence of policies 5 = {πi}. In this
approach, we do not have direct control over the policy,
because the policy is updated by applying changes in the
space of the parameters θ ∈ 2 ⊂ Rm. One of the prob-
lems is that policy and parameter spaces do not always map
congruently. Taking a step using gradient methods in the
parameter space, we have no handle on relations between
parameters and probability distribution, which controls the
agent’s actions. This is why small changes in the parameter
space can yield large changes in the probability distribution.
If two pairs of parameters have the same distance in the
parameter space dθ (θ1, θ2) = dθ (θ2, θ3), they do not nec-
essarily have equal distance values between mapped policies
dθ (θ1, θ2) = dθ (θ2, θ3)<⇔ dπ

(
πθ1 , πθ2

)
= dπ

(
πθ2 , πθ3

)
.

This is a significant problem, since it is unclear how a policy
will be changed after updating parameters.

211952 VOLUME 8, 2020

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

This issue is important in RL as the agent has control
over the data that it will collect at future steps. Due to that,
an update that makes the policy worse is risky. Due to the
non-optimal policy, the collected observations in the next
episode will be less useful. A downward spiral can appear,
where the policy starts to collect inferior rewards at every time
step and, therefore, no longer visits states that can enhance
it. If the policy received such poor updates, it requires new
useful observations to recover. This problem is well known
as performance collapse [16]. It can be avoided by choosing
a proper update step size. However, this is often challenging.
Furthermore, even if the model overcomes performance col-
lapse, poor sample efficiency can be unavoidable.

To solve these problems, several policy gradient methods
were proposed. Practices such as Trust Region Policy
Optimization (TRPO) [17], Proximal Policy Optimiza-
tion (PPO) [18], and Kronecker-Factored Approximated Cur-
vature (K-FAC) [19] try to use a penalty or gradient clipping
techniques to avoid performance collapse. In these methods,
in particular, in PPO, policy updates occur by small steps,
and the magnitude of these steps often decreases towards
the end of the learning process. These methods are rela-
tively complicated but outperform approaches such as deep
Q-learning [6] or vanilla policy gradient methods [15] on
Atari games, Mujoco, and in other RL environments.

B. TRUST REGION POLICY OPTIMIZATION
In Trust Region Policy Optimization (TRPO), a surrogate
objective for local approximation of the expected return of
the policy was introduced:

LISθold (θ) = Êt
[
πθ (at | st)
πθold (at | st)

Ât ,
]
, (3)

where IS stands for ‘‘importance sampling’’ and θold is the old
policy. With a recurrent policy, this gradient method requires
to be run for T timesteps and then compute the advantage
estimation Ât with the following trajectory:

Ât = −V (st)+ rt + γ rt+1 + · · · + γ T−t+1rT−1
+γ T−tV (sT) . (4)

The truncated version of the generalized advantage estima-
tion when λ = 1 is as follows:

Ât = δt + (γ λ)δt+1 + · · · + · · · + (γ λ)T−t+1δT−1, (5)

where δt = rt + γV (st+1)− V (st) . This variant is differen-
tiable in the same way as the vanilla policy gradient following
the chain rule, when θ = θold:

∇θ log f (θ)|θold =
∇θ f (θ)|θ old
f (θ old)

= ∇θ

(
f (θ)

f (θ old)

)∣∣∣∣
θ old

.

(6)

Due to the locality of the approximation, TRPO forces the
policy to stay in a ‘‘trust region’’ and provides theoretical
justification, which leads to a guaranteed strict increase in
policy performance [17]. Such a restriction is achieved by

calculating each policy step based on the solution of the
following constrained optimization problem:

maximize
θ

Êt
[
πθ (at | st)
πθold (at | st)

Ât

]
subject to Êt

[
KL

[
πθold (· | st), πθ (· | st)

]]
6 δ

where KL is Kullback–Leibler divergence and δ is a posi-
tive constant. Since this is a hard problem to solve, TRPO
features the use of linear approximation for the objective
and quadratic approximation for the constraint. Furthermore,
the problem can be reformulated by replacing the constraint
with a penalty:

Êt
[
πθ (at | st)
πθold (at | st)

Ât

]
−βÊt

[
KL

[
πθ old (· | st), πθ (· | st)

]]
,

(7)

where β is a penalty coefficient. Nonetheless, TRPO meth-
ods typically use a constraint rather than a penalty, mainly
because a suitable choice of β is hard to achieve across
different tasks. Also, it is unsafe to rely on β in problems
where environmental characteristics change during the learn-
ing process.

C. PROXIMAL POLICY OPTIMIZATION
Unlike TRPO, Proximal Policy Optimization (PPO) is a
method that strikes a balance between ease of implemen-
tation, sample complexity, and ease of tuning. In the PPO
version featuring the KL penalty, the penalty coefficient β
dynamically scales to force a change of the trust region.

The PPO method represents an alternative approach to the
natural gradient. While TRPO forces locality assumptions by
using constraints, PPO clips the probability ratio between the
two following consecutive policies:

rt (θ) =
πθ (at | st)
πθold (at | st)

(8)

LCLIP(θ) = Êt
[
min

(
rt (θ)Ât , clip (rt (θ), 1−η, 1+η) Ât

)]
.

(9)

The expectation here is taken from a minimum of two terms.
The first term is the unconstrained TRPO objective. The sec-
ond one is also based on the TRPO objective, but additionally
features a clip in the interval [1− η, 1+ η] [18]. The purpose
of this formula is to make the minimum value of them as high
as possible while simultaneously allowing the probability
only to drop down but not exceeding a fixed rate of 1 + η.
An important note is that the PPO objective is equal to the
TRPO objective nearby θold.

PPO approximates the TRPO trust region via clipping pol-
icy updates in some desired range. The choice of the correct
clipping parameter value for PPO, which efficiently bounds
the policy updates, is a challenging task. In many cases,
PPO uses a constant clipping parameter. Moreover, it was
recently shown that PPO does not effectively approximate the
trust region via bounding the maximum of policy ratios [20].

VOLUME 8, 2020 211953

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

Based on that, the authors assumed that there is a need for
either a technique that enforces trust regions more strictly or a
rigorous theory of trust region relaxations.

III. CONDITIONING OF REINFORCEMENT LEARNING
AGENTS
A. CONDITIONING ESTIMATION
Evaluation of the mean squared singular value of a Jacobian
input-output network using Singular Value Decomposi-
tion (SVD) [21] is time-consuming, because we need to
apply SVD at each training time-step. For faster learning,
we adapted the Jacobian Clamping technique (JC) designed
to assess GAN models to RL agents Jacobian conditioning
estimation [14]. It penalizes the condition number of the
generator’s Jacobian to bring it inside the interval where the
Dynamic Isometry property can be achieved. The authors also
proposed a simple and efficient approach to estimate singular
values of the Jacobian of a deep neural network:

J =
‖G(z)− G(z+ ε)‖

‖ε‖
, (10)

where G is a generator, z ∼ p(z), ε ∼ Us(0, 1) and Us is
uniformly distributed from a unit sphere. Their experiments
shown that JC can stabilize generator behavior and help it
to avoid mode collapse, which means that in general, it can
help networks to preserve a wide coverage of the desired
distribution.

To compute condition number in RL agents, we feed two
mini-batches at a time to the agent. The first batch consists of
the real environment states St at timestep t . The second batch
consists of the same states but with some added disturbance δ.
Then we estimate how these batches affected the agent:
Jt =

‖πθ (St)−πθ (St+δ)‖
‖δ‖

. After this, we compute the value ψt
that characterizes how close Jt is to the range (λmin, λmax) .

These values approximately set the desirable range for model
conditioning. We set these parameters equal to the range
defined previously for GANs, namely (1, 20).

ψmax
t = (max (Jt , λmax)− λmax)

2 ,

ψmin
t = (min (Jt , λmin)− λmin)

2 ,

ψt = ψ
min
t + ψmax

t . (11)

More details are presented in Algorithm 1.

B. RESEARCH ON CONDITIONING AND POLICY
PERFORMANCE
To examine the relation between policy performance and
condition number, we run PPO with different hyperparam-
eters and random seeds on the four continuous control
PyBullet [22] environments Humanoid-v0, Hopper-v0,
Ant-v0, and Reacher-v0. Through these trials, we try to exam-
ine whether ineffective policies are less conditioned. We use
the standard PPO parameters as the optimal configuration and
made three adjustments to those parameters to produce less
effective policies.

In each configuration, we use the same minibatch size,
the number of timesteps T , PPO epoch, policy learning

Algorithm 1 Conditioning Estimation
Input: policy πθ , norm ε, target quotients λmax and λmin,
minibatch sizeM , number of epochs K , state size n
for iteration 1,2,. . . ,K do
for actor 1,2,. . . ,A do
δ ∈ RB×n ∼ N (0, 1)
δ := (δ/‖δ‖)ε
for Timesteps t, . . . ,T do

Make action with policy πθ at state St
Compute Jt =

‖πθ (St)−πθ (St+δ)‖
‖δ‖

ψmax
t = (max (Jt , λmax)− λmax)

2

ψmin
t = (min (Jt , λmin)− λmin)

2

ψt = ψ
min
t + ψmax

t
end for

end for
end for

rate (LR), and η. Parameters that we tune are: value func-
tion (VF) coefficient, VF LR, VF epochs, GAE parameter,
discount γ [17], [18]. The sets of hyperparameters are pre-
sented in Table 1. We test each setting on 4 PyBullet environ-
ments with 3 random seeds and 10 agents for each seed.

TABLE 1. Hyperparameters for different PPO starts to check their relation
to conditioning.

Results of the experiments are presented on Fig. 1. They
show that the conditioning has similar behavior patterns with
the number of received rewards.

On the Humanoid task, we found that the most effective
policy has the lowest condition number. And furthermore,
the drop of condition number in Params-2 corresponds to the
moment of a sharp increase in rewards for the agent. This
shows that is important to control sensitivity to the input
changes for the Humanoid task agent, and better conditioning
can lead to a more stable policy.

The contribution of the conditioning in achieved rewards
is very task-dependent because of different environments
structures and dynamics. For some tasks, it is more impor-
tant to have long-term stable policies than for others. The
connection between policy performance and conditioning is
not clearly evident in the Ant task. However, Params-2 and
Params-3 that obtained smaller reward values aremore distant
from the low conditioning values. Furthermore, an interesting
observation that is worth noting is that policies, which are
well-performing and gain higher reward values at the end of

211954 VOLUME 8, 2020

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

FIGURE 1. PPO rewards and conditioning ψ in PyBullet environments with different hyperparameters. Each curve is obtained by averaging the results
of 30 agents (10 for each seed).

the training, are better conditioned, often even from the first
training steps.

Because of environment dynamics, a linear relationship
between the reward curves and condition number is difficult
to establish. However, in general, based on these experi-
ments, a pattern can be observed: a policy that receives
fewer rewards is less conditioned. Also, turning back to
the privileges that Dynamical Isometry provides for deep
non-linear networks in classification and generation tasks too,
we assume that if an agent is closer to Dynamical Isometry,
it will find a more stable and efficient policy.

IV. CONDITIONING REGULARIZATION
A. CONDITIONING REGULARIZATION TECHNIQUE
It was shown that in supervised learning settings for linear
and nonlinear networks, Jacobian conditioning regularization
allows for faster learning [11], [23]. In GANs, Jacobian
conditioning regularization [14] allows to achieve more sta-
ble training of generator network and help to avoid the
‘‘mode-collapse’’ problem [24]. To regularize the policy,
we simply use the condition number as a penalty. The exam-
ple of regularized PPO presented below. We used the PPO
algorithm and added a value ofψ to the surrogate policy loss:

LCLIP+ψ+VF+St (θ)

= Êt
[
LCLIPt (θ)+ c1ψ − c2LVFt (θ)+ c3S [πθ] (st)

]
, (12)

where LCLIP is PPO policy loss, c1 is the coefficient for

conditioning penalty, LVFt is a value loss
(
Vθ (st)− V

targ
t

)2
with coefficient c2, S [πθ] (st) is policy entropy for state st
multiplied by entropy coefficient c3. Conditioning penalty
can be applied to other algorithms too, in our experiments
we used it for TRPO as well. Condition number used for
a penalty computing on the new policy on PPO and TRPO
algorithm.

B. COMPARISON ON CONTINUOUS CONTROL TASKS
We conduct experiments of the regularization technique on
PPO and TRPO algorithms. We optimize 30 agents for each
task (10 agents for 1 random seed) over 2500 updates (5 mil-
lion timesteps).We test algorithms onHumanoid-v0, Hopper-
v0, Ant-v0, Reacher-v0, Double Inverted-Pendulum-v0,
Humanoid-Flag-v0, Walker-v0, and Half-cheetah-v0 envi-
ronments. In these tests, the selection of hyperparameter
values is equal to the optimal one presented in PPO and
TRPO literature [17], [18] for continuous control tasks. For
the TRPO algorithm, we also used mean conditioning of a
trajectory as a penalty for surrogate policy loss. In all exper-
iments, model with name ‘‘reg’’ is conditioning regularized
model. We used the penalty multiplied by a coefficient c1
equal to 0.001.

The results of comparing PPO with its regularized version
it presented on Fig. 2 and the results of comparing TRPOwith
its regularized version are presented on Fig. 3.

Both basic TRPO and regularized one show better results
than PPO. The average rewards for the last 100 updates are
shown in Table 2.

C. COMPARISON ON GENERALIZATION
Our continual learning problem was set without explic-
itly separated training and testing stages. In generalization
experiments, we trained models on the fixed large-scale set
of 500 levels of CoinRun [25] and tested on unseen levels.
In this experiment, we run PPO with l2 and Dropout [26]
regularization coefficients. Then we run the same meth-
ods but with the proposed conditioning penalty. For this
experiment, we use NatureCNNs architecture proposed for
tests in [25]. Also, we tested the PPO method without l2
and Dropout regularization but based on IMPALA [27]
architecture.

We noticed a high variance in scores during tests. Due to
that, we increase the number of runs at the evaluation stage
form 5 as it was used in [3] to 20.We trainedmodels over 50M

VOLUME 8, 2020 211955

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

FIGURE 2. Comparison of PPO and PPO with conditioning ψ in PyBullet environments. Each curve is obtained by averaging results of 30 agents (10 for
each seed).

TABLE 2. Mean reward over the last 100 optimization steps for TRPO, PPO, PPO reg, and TRPO reg. The mean was computed over 3 random seeds and
10 agents for each seed using optimal policy hyperparameters.

TABLE 3. PPO and PPO with conditioning regularization. Success rate after 50M timesteps on CoinRun environment, on train (seen) and test (unseen)
levels.

timesteps, but only on one random seed, all other settings
were the same as described in [3] (Section 4.2).

Results are presented in Figure 4 and Table 3. Our method
outperforms PPO in all 4 training scenarios.

V. PROBABILITY RATIO CLIPPING
A. JACOBIAN POLICY OPTIMIZATION ALGORITHM
Experiments on PPO verify that PPO with a clipped prob-
ability ratio performs the best [18]. However, the authors

reported that it was difficult to choose the right clip-
ping interval size. This observation was confirmed in other
studies.

Ilyas et al. [20] showed that the PPO variants Policies
Maximum Ratios regularly violate the ratio trust region.
However, in our experiments, some PPO variants featuring
max ratio were typically inside the trust region, see Fig. 1.
On the contrary, low max ratio values do not reflect a policy’s
success, and rapidly decreasing maximum ratios are common

211956 VOLUME 8, 2020

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

FIGURE 3. Comparison of TRPO and TRPO with conditioning ψ in PyBullet environments. Each curve is obtained by averaging results of 30 agents (10 for
each seed).

FIGURE 4. PPO and PPO with conditioning regularization. Success rate on CoinRun environment on train and test levels.

for poor policies. In our opinion, this behavior is related to
exploration problems. Agents are visiting identical states that
do not change their policies.

Contrasting to the standard PPO implementation that has a
fixed interval, in which the probability is clipped, we propose
a method where we check how close the condition number

VOLUME 8, 2020 211957

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

FIGURE 5. Results on PyBullet Environments for PPO and PPO reg and JPO, on optimal hyperparameters.

of the old and new policy is to the desired range. Based on
that, we then shape the clipping range. The idea is that we
trust the policy, which is more conditioned. If the old policy
is more conditioned than the new one, we decrease the size
of the clip parameter by specific value τ . If the new policy is
more conditioned, the clip parameter is not changing, and the
policy can be updated more radically.

More specifically, at each timestep, we estimate the
value ψ of the old πold and the new policy π . We define
a function φ, which can output two values (0.0, τ). This
function takes the ψ values of the old and new policy as an
input. If the old policy is more conditioned than the new,
it returns τ and 0.0 otherwise. Then this parameter is used
as a penalty for the clip value η.

φ(ψold, ψ) =

{
τ, if ψold < ψ

0.0, otherwise.

LCCLIP(θ) = Êt
[
min

(
rt (θ)Ât , clip (rt (θ), 1− (η − φ), 1

+(η − φ)) Ât
)]
. (13)

Using the Jacobian clipping technique, the total loss
is then formed taking into account the squared-error loss

LVFt =

(
Vθ (st)− V

targ
t

)2
of the value function Vθ , with

value loss coefficient c1 and entropy S [πθ] (st) for state st ,
entropy coefficient c2 and LCCLIP:

LCCLIP+VF+St (θ)

= Êt
[
LCCLIPt (θ)− c1LVFt (θ)+ c2S [πθ] (st)

]
. (14)

B. COMPARISON
We performed a comparison between the PPO and JPO. The
parameters for these tests correspond to the values in Table 1.
Value of τ is set be equal to 0.01.
The results are presented on Fig. 5. The proposed algorithm

provides a more stable and efficient reward growth according
to the plots. The average rewards for the last 100 updates for
the optimal parameters are shown in Table 4. In all environ-
ments, JPO outperformed PPO demonstrating the importance
of finding the right clip parameter for efficient policy shaping.
Even though in JPO clip, we choose a more conditional pol-
icy, its value of conditioning is greater. In our opinion, there
are several reasons for this. 1. As it was said, conditioning is
very sensitive to the size of the steps with whichwe update the
policy.With narrower clip values, network parameters change
more slowly. 2. We also always update the policy, the size of

211958 VOLUME 8, 2020

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

the clip of this update is less in the less conditional direction.
At the same time, the graphs clearly show that the use of
regularization brings conditioning closer to a given range.

TABLE 4. PPO, PPO with conditioning regularization and JPO mean
reward over the last 100 optimization steps. The mean was computed
over 3 random seeds and 10 agents for each seed with optimal policy
hyperparameters.

VI. CONCLUSION
In this work, we propose a simple and computationally inex-
pensive optimization method for Deep RL. We adapted a
technique called Jacobian Clamping to approximately esti-
mate the conditioning of an agent. We tested our approach on
the PyBullet and CoinRun domains. In our opinion, extending
RL algorithms by conditioning regularization is a promising
research direction. The condition number can provide impor-
tant information about the policy, such as the correctness of
hyperparameters or stability.

Our experiments show that different architectures condi-
tioning regularization produces various results. We plan to
test conditioning contribution to other architectures too and
run them on the environments like DeepMind Lab [28]. Also,
we plan to compare conditioning regularization with other
methods such as information bottleneck [29]–[31]. Estimat-
ing squared singular values of the agent Jacobianmatrix using
SVD would be a very interesting experiment to examine the
role of Dynamical Isometry in RL agents too.

Our experiments demonstrate that conditioning influences
RL agent’s efficiency and can help to shape a more stable
policy. Agent conditioning can provide important information
about the policy, such as the correctness of hyperparame-
ters or stability, and can indicate problems with environmen-
tal exploration. Our results show that the PPO algorithm is
susceptible to the value of the clip parameter. The selection of
the clip parameter is critical and the condition number allows
determining this value more accurately.

A promising direction of the research is the development of
techniques that make the clip parameter more sensitive to the
difference between old and new policy conditioning. Finally,
an important direction is the use of proposed techniques in
state-of-the-art methods based on PPO.

REFERENCES
[1] C. Zhang, O. Vinyals, R. Munos, and S. Bengio, ‘‘A study on overfitting

in deep reinforcement learning,’’ CoRR, vol. abs/1804.06893, pp. 1–25,
Apr. 2018.

[2] J. Farebrother, C. Marlos Machado, and M. Bowling, ‘‘Generalization and
regularization in DQN,’’ CoRR, vol. abs/1810.00123, pp. 1–29, Sep. 2018.

[3] K. Lee, K. Lee, J. Shin, and H. Lee, ‘‘Network randomization: A simple
technique for generalization in deep reinforcement learning,’’ in Proc. 8th
Int. Conf. Learn. Represent., Addis Ababa, Ethiopia, Apr. 2020, pp. 1–5.

[4] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for
connectionist reinforcement learning,’’ Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and A.Martin Riedmiller, ‘‘Playing Atari with deep reinforce-
ment learning,’’ CoRR, vol. abs/1312.5602, pp. 1–9, May 2013.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[8] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, P. T. Lillicrap,
K. Simonyan, and D. Hassabis, ‘‘Mastering chess and shogi by
self-play with a general reinforcement learning algorithm,’’ CoRR,
vol. abs/1712.01815, pp. 1–19, Dec. 2017.

[9] E. C. Jackson andM. Daley, ‘‘Novelty search for deep reinforcement learn-
ing policy network weights by action sequence edit metric distance,’’ in
Proc. Genetic Evol. Comput. Conf. Companion, Prague, Czech Republic,
Jul. 2019, pp. 173–174.

[10] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team, ‘‘An empirical
model of large-batch training,’’ CoRR, vol. abs/1812.06162, pp. 1–35,
Apr. 2018.

[11] J. Pennington, S. Samuel Schoenholz, and S. Ganguli, ‘‘Resurrecting the
sigmoid in deep learning through dynamical isometry: Theory and prac-
tice,’’ in Advances in Neural Information Processing Systems, I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, R. Garnett, Eds., Long Beach, CA, USA,
Dec. 2017, pp. 4785–4795.

[12] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., vol. 37, Lille, France, Jul. 2015, pp. 448–456.

[13] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[14] A. Odena, J. Buckman, C. Olsson, B. Tom Brown, C. Olah, C. Raffel,
and J. Ian Goodfellow, ‘‘Is generator conditioning causally related to GAN
performance,’’ Proc. 35th Int. Conf. Mach. Learn., Stockholmsm, Sweden,
vol. 80, Jul. 2018, pp. 3846–3855.

[15] V. Mnih, ‘‘Asynchronous methods for deep reinforcement learning,’’ in
Proc. 33rd Int. Conf. Mach. Learn., New York, NY, USA, vol. 48,
Jun. 2016, pp. 1928–1937.

[16] W. L. Keng and L. Graesser, Foundations of deep reinforcement learning:
Theory and practice in Python, 1st ed. Reading, MA, USA: Addison-
Wesley, Dec. 2019, p. 416.

[17] J. Schulman, S. Levine, P. Moritz, I. M. Jordan, and P. Abbeel,
‘‘Trust region policy optimization,’’ CoRR, vol. abs/1502.05477, pp. 1–9,
Jun. 2015.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proxi-
mal policy optimization algorithms,’’CoRR, vol. abs/1707.06347, pp. 1–5,
Jul. 2017.

[19] Y. Wu, E. Mansimov, B. Roger Grosse, S. Liao, and J. Ba, ‘‘Scalable
trust-region method for deep reinforcement learning using kronecker-
factored approximation,’’ in Proc. Annu. Conf. Neural Inf. Process. Syst.,
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds. Long Beach, CA, USA, Dec. 2017,
pp. 5279–5288.

[20] A. Ilyas, L. Engstrom, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph,
and A. Madry, ‘‘Are deep policy gradient algorithms truly policy gradient
algorithms?’’ CoRR, vol. abs/1811.02553, pp. 1–5, May 2018.

[21] G. W. Stewart, ‘‘On the early history of the singular value decomposition,’’
SIAM Rev., vol. 35, no. 4, pp. 551–566, Dec. 1993.

[22] B. Ellenberger. (2018). Open-Source Implementations of Openai
Gym Mujoco Environments for Use With The Openai Gym
Reinforcement Learning Research Platform. [Online]. Available:
https://github.com/benelot/pybullet-gym

[23] M. Andrew Saxe, L. James McClelland, and S. Ganguli, ‘‘Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks,’’
inProc. 2nd Int. Conf. Learn. Represent., Y. Bengio and Y. LeCun, Eds.,
Banff, AB, Canada, Apr. 2014, pp. 1–5.

VOLUME 8, 2020 211959

A. Asadulaev et al.: Exploring and Exploiting Conditioning of RL Agents

[24] H. Thanh-Tung, T. Tran, and S. Venkatesh, ‘‘On catastrophic forget-
ting and mode collapse in generative adversarial networks,’’ CoRR,
vol. abs/1807.04015, pp. 1–10, May 2018.

[25] H. R. Berenji, ‘‘Fuzzy Q-learning for generalization of reinforcement
learning,’’ in Proc. IEEE 5th Int. Fuzzy Syst., Long Beach, CA, USA,
Jun. 2019, pp. 1282–1289.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[27] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu,
‘‘IMPALA: Scalable distributed deep-rl with importance weighted actor-
learner architectures,’’ in Proc. 35th Int. Conf. Mach. Learn., Stockholm,
Sweden, Jul. 2018, pp. 1406–1415.

[28] C. Beattie, ‘‘Deepmind lab,’’ CoRR, vol. abs/1612.03801, pp. 1–8,
Jun. 2016.

[29] A. Goyal, R. Islam, D. Strouse, Z. Ahmed, H. Larochelle, M. Botvinick,
Y. Bengio, and S. Levine, ‘‘Infobot: Transfer and exploration via the
information bottleneck,’’ in Proc. 7th Int. Conf. Learn. Represent.,
New Orleans, LA, USA, May 2019, pp. 1–6.

[30] A. Galashov, M. Siddhant Jayakumar, L. Hasenclever, D. Tirumala,
J. Schwarz, G. Desjardins, M. Wojciech Czarnecki, Y. W. Teh, R. Pascanu,
and N. Heess, ‘‘Information asymmetry in kl-regularized RL,’’ in Proc. 7th
Int. Conf. Learn. Represent., New Orleans, LA, USA, May 2019, pp. 1–5.

[31] M. Igl, K. Ciosek, Y. Li, S. Tschiatschek, C. Zhang, S. Devlin, and
K. Hofmann, ‘‘Generalization in reinforcement learning with selective
noise injection and information bottleneck,’’ in Proc. Annu. Conf. Neural
Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2019, pp. 13956–13968.

ARIP ASADULAEV received the bachelor’s
degree in information security and the master’s
degree in machine learning and data science
from ITMO University, Saint Petersburg, Russia,
in 2018 and 2020, respectively, where he is
currently pursuing the Ph.D. degree in theoreti-
cal computer science. Since 2017, he has been
a Researcher with the Machine Learning Lab,
ITMO University. He has experience in various
applications of reinforcement learning and gen-

erative modeling, including drug discovery problems. His research inter-
ests include deep reinforcement learning, generative adversarial networks,
optimal transport theory for generative modeling, and memory network
architectures. He was a laureate of the Ilya Segalovich Prize for the Young
Scientists, in 2019.

IGOR KUZNETSOV is currently pursuing the
degree with the Department of Software Engineer-
ing, ITMO University, Saint Petersburg, Russia.
Since 2019, he has been with the Machine
Learning Lab, ITMO University, on projects of
mathematically tractable models and reinforce-
ment learning. His research interests include
memory-representations in a reinforcement learn-
ing setting and robotics applications.

GIDEON STEIN received the degree in program
philosophy and economics from the University
of Bayreuth and the degree (Hons.) in program
machine learning and data science from ITMO
University, Saint Petersburg, Russia, in 2020.
While being introduced to academic research
only recently he is working on multiple projects
mostly focusing on reinforcement learning and
natural language processing. His research interests
include meta-learning, neural reasoning, and com-

pound fields between machine learning and philosophy.

ANDREY FILCHENKOV (Member, IEEE)
received the degree in computer science from
Saint Petersburg State University, in 2010, and
the Ph.D. degree in computer science from
Samara State Aerospace University, in 2013.
From 2009 to 2014, he was a Researcher with
the St. Petersburg Institute for Informatics and
Automation of the Russian Academy of Sciences.
From 2010 to 2014, he worked as a Teaching
Assistant with Saint Petersburg State University.

Since 2014, he has been the Heading Machine Learning Lab, ITMO
University, Saint Petersburg. He is also an Associate Professor and the
Heading Master Program in machine learning and data science. He is the
author of more than 200 articles. His research interests include automated
machine learning, image processing and generation, natural and program-
ming language processing, and reinforcement learning application to various
domains, including the routing problem. He was a laureate of the Ilya
Segalovich Prize for the Development of the Scientific Community and
Training of Young Scientists, in 2019.

211960 VOLUME 8, 2020

