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ABSTRACT Sheepdogs smartly herd a flock of sheep and guide them towards a goal. A single dog can
herd a few hundred sheep in easy to navigate environments. Understanding the interaction space between
the sheepdogs, sheep and the environment is important due to the possibility of transferring this knowledge
to solve practical swarm robotics problems. This interaction space is a complex mesh of influencing factors.
We scrutinize this interaction space to identify areas where the complexity of the herding problem changes
from low (easy to solve) to high (harder to solve or becoming unsolvable) complexity. In particular, we study
reactive models for shepherding, whereby agents respond directly to stimuli in the environments by fusing
the set of force vectors influencing their behaviour. We present an enhanced shepherding model with higher
success rate than its predecessor.We investigate four key factors that influence the complexity of the problem:
the relative speed between the sheepdog and sheep, the spatial configuration of the sheep at the start of
the task, the number of sheepdogs, and the density of obstacles in the environment. We discovered a phase
transition in shepherding resulting from the interaction between the number of sheepdogs and obstacles. The
phase transition occurs as the density of obstacles range from 0.2% for a single shepherding agent to 5% for
10 shepherding agents. During this phase transition, the problem changes from being an easy problem where
the flock gets collected quickly, to a hard one where the overall herding task becomes utterly not achievable
using reactive approaches.

INDEX TERMS Task complexity, shepherding, swarm robotics, swarm guidance.

I. INTRODUCTION
What makes a problem hard? Why are some problems that
appear from the outset to possess similar characteristics,
much harder than other similar problems? What is the true
source of complexity in the problem space? These questions
have been the subject of inquiry in artificial life [1] and
complexity science [2] for decades. They have gained interest
from a wide variety of research areas including optimiza-
tion [3] and machine learning [4]. More recently, Swarm
Robotics [5] have been confronted with the same question;
what makes a swarm robotics problem hard?

The literature of swarm robotics has seen many recent
attempts to solve the guidance and control problem [see for
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example Chung et al. [6]]. One approach for guidance and
control that started to gain attentions in recent years is shep-
herding. Long et al. [7] surveys the shepherding literature and
offers a comprehensive coverage of the topic.

In shepherding [8], a human, the shepherd, commands a
cognitive actuator, the sheepdog, to exercise a level of influ-
ence on a swarm, the sheep, to achieve an intent. Once a com-
mand is issued, the cognitive actuator needs to autonomously
achieve the intent of the command. For example, if the farmer
requests the sheepdog to herd the sheep, the sheepdog may
perform a series of two primitive behaviours to achieve the
intent [9]. The first behaviour is ‘‘collecting’’, whereby a
stray sheep needs to be brought back to the flock. The second
is ‘‘driving’’, whereby a flock needs to be influenced such
that the repulsive response from the sheepdog leads them to
the goal area.
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The shepherding problem definition is generic enough that
it has been transferred to many applications including crowd
control [10], rerouting and evacuation [11], keeping birds
away from airports [12], collecting oil spills [13], and herding
living cells to perform collective migrations [14]. A recent
survey on the topic lists more domain of applications [7].

More recently, Strömbom et al. [9] adopted a similar
model to Miki and Nakamura [15], but with different nam-
ing conventions. The guidance behavior was renamed to
driving, the flock making behavior renamed to collecting,
and the remaining two behaviors maintained their name.
Strömbom et al. calibrated their model using real-world data
and validated that the model replicated the macro behaviors
displayed by real sheep and sheepdogs. To the contrary of
Lien et al., Strömbom et al. were able to scale their model to
herd up to 300 sheep with a success rate of 80%.

While shepherding is a fascinating problem on a funda-
mental level, understanding the complexity (and its causes)
of the problem is paramount to identifying guidance and
control solutions which are able to scale up in a practi-
cal setting. The need for such control solutions is evident
when we consider the problem of sky shepherding, where
the sheepdog can fly over obstacles [16], [17]. A number of
drones act as aerial sheepdogs attempting to herd a flock
of sheep (which may themselves be drones or unmanned
systems). It seems plausible to assume that the larger the
number of sheep, the more complex the problem is. How-
ever, lessons from complexity science have revealed that
true complexity arises from the non-linearity inherent in
a system and the interactions of systems-of-systems, and
not from the size of a particular system [18]. For exam-
ple, today, we could guarantee to solve linear problems,
mostly in a polynomial time, with millions of variables. Still,
a highly nonlinear problem with a dozen variables could
be truly hard, if not impossible, to guarantee a solution
for.

Throughout the literature, there is a great deal of vari-
ations in how a shepherding task is judged complete. The
shepherding goal can be an object [19], a defined area [20],
a pen with a gate [21] or simply a selected corner of the
movement zone [9]. Another variation is in the complexity
of the environment, i.e. in some shepherding literature there
are obstacles in the environment [22], [23], while in others,
there are not [9], [24]. This lack of standardisation of com-
plexity is problematic as Linder and Nye [25] showed that
variations in the design of the shepherding problem impact
the performance of different shepherding strategies and the
claims made on one model vis-a-vis another.

A primitive form of the relationship between com-
plexity and successful shepherding was investigated in
Lien et al. [26] by varying the tendency of the sheep agents
to scatter, or what we termed as the collision avoidance force
in this paper. The authors found that the performance of
shepherding systems, i.e. time steps to completion, decreased
as the complexity of the problem (sheep scattering) increased.
The rate at which this degradation occurred had an inverse

relationship to the number of shepherding agents that were
used i.e. the more shepherds, the better.

Considering the findings from Lien et al. [26], it is
not surprising that multi shepherd control is a popular
approach and is used by many researchers [11], [15], [20],
[23], [26]–[28]. In order to select the optimal position for each
shepherding agent in a multi shepherd system, the relative
locations of the other shepherds as well as the sheep must
be considered. Although it has been demonstrated that multi
shepherd co-operation could naturally emerge [11], [29],
a more common approach is to select a formation and assign
each shepherding agent a position within the formation [23],
[26]–[28], [30].

Researchers [23], [26], [27] used an arc shaped formation
for driving the flock, and others [23], [26] utilise a fixed
formationwhere a shepherd position is strictly assigned based
on the size of the flock and the relative position of the
flock to the goal. The focus of Masehian and Royan [23]
was on selecting the optimal time for shepherding agents
to leave the driving formation in order to collect sheep
that are separated from the flock (scattered). In contrast,
Kalantar and Zimmer [27] proposed ‘‘Deformable forma-
tions’’ with the ability to respond to the shape of the flock.
They suggest that a deformable formation is a more effi-
cient shepherding strategy and could reduce the frequency of
scattering.

Another formation that has been used is caging, where the
shepherds surround the flock, then coordinate their move-
ments towards the goal. Bat-Erdene and Mandakh [28] uti-
lized a square shaped cage formation. Interestingly, in their
proposed solution the shepherding agents are heterogeneous
with two distinct roles, ‘‘corner robot’’ and ‘‘sideline robot’’.
This strategy was necessary due to their reliance on physical
barriers rather than repulsive forces to contain the sheep,
necessitating specialized hard-wired behaviors depending on
position in the flock.

The aim of this paper is to focus on the interaction space
between the sheepdog, the sheep, and the environment to
understand a few sources of complexity for shepherding.
We consider an instance of a problem to be more complex
than another if, assuming everything other the complexity
factor being investigated are constant, the former has a lower
success rate and/or require a higher completion time than the
latter.

We carry out the investigation in two stages. In the first
stage, we limit the number of sheepdogs to one and study
the relationship between the density of sheep and the relative
speed of the sheepdog to the individual sheep on the one hand,
and task success indicators (success rate and completion
time), on the other. We assume an obstacle free environment.
This experiment allows us to identify the phase transition
where problem difficulties move from a problem that is sim-
ple to solve, to a problem that can’t be solved. To put it
simply, the experiment helps us to answer the question: how
many sheep can we collect with a single sheepdog at different
sheepdog’s speed profiles.
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In the second stage, the interactions between the number of
sheepdogs and the density of obstacles in the environment are
examined. It logically follows that an increase in the number
of sky shepherds for the same flock size will likely have a
positive effect on addressing task’s complexity. Therefore,
we study the interaction between the number of sheepdogs
and the density of obstacles in the environment, and the
impact of this interaction on task success indicators.

The contributions of this paper are:

• Wepresent amodifiedmodel for shepherding that avoids
disturbing the flockwhen the sheepdog approaches. This
is achieved by assigning a path to the sheepdog which
maintains a distance to the flock greater than its influ-
ence range.

• We present a systematic study to investigate factors for
the complexity of the shepherding problem.

• The results identify factors which contribute to the dif-
ficulty of the shepherding problem. These assist us in
designing difficult problem instances for testing swarm
guidance algorithms.

The rest of this paper is organised as follows: The sin-
gle and multiple sheepdog shepherding models, including
our modification to Strömbom, are first discussed. We then
present the mathematical metrics for task complexity fol-
lowed by experimental design. Analysis then conclusions are
then drawn.

II. SINGLE AND MULTIPLE SHEEPDOG SHEPHERDING
MODELS
The shepherding model that we are using in this study shares
some characteristics with Strömbom’s model [9]. The main
similarity between the two models is in terms of employ-
ing attraction and repulsion forces to model both sheep and
sheepdog behaviors. However, the forces are calculated dif-
ferently and used under different conditions. We will first
present the notational system used throughout themanuscript,
then present the single-sheepdog model.

A. GENERALISED NOTATIONAL SYSTEM AND
ASSUMPTIONS
We denote the set of sheep agents with 5 = {π1, . . . , πi,
. . . , πN }, where the letters 5 and π are chosen as the first
character of the Greek word for sheep 5ρóβατo and denote
the set of shepherd agents with B = {β1, . . . , βj, . . . , βM },
where the letters B and β are chosen as the first character of
the Greek word for Shepherds Boσκ óς .
We denote the set of behaviors in the simulation with 6 =
{σ1, . . . , σK }, where the letters6 and σ are chosen as the first
character of the Greek word for behaviour συµπεριϕoρά.
In the model, agents are initialized in a squared area.

We use u to denote the unit, where u could be described in
meters or other convenient units of length.

All the agents are assumed to have access to a shared
centralized information database. The database is managed
by a centralized task manager agent, which has access to

TABLE 1. Generalised shepherding notational system.

all sheep locations, sheepdogs’locations, and the goal. This
removes complexity resultant from related delays (e.g. multi-
ple communications interactions between entities) which are
out of scope for this study.

At each time-step, the task manager assigns the collecting
tasks first; then if any remaining sheepdogs were not assigned
a collection task, the task manager assigns them a driving
task.

The above assumptions eliminate confounding factors that
could result from a decentralized setting, such as factors asso-
ciatedwith local communications among the agents, or loss of
situation awareness due to distributed sensing and/or decision
making. The authors acknowledge that such problems (dis-
tributed decision making, consensus, communication con-
straints and algorithmic complexity) are important for the
application to real robotic systems, and highlight these areas
as future work.

B. PROPOSED SINGLE-SHEPHERD MODEL
First, we will describe our model. Then, we will discuss
similarities and differences from our model and the one used
by [9].
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TABLE 2. Parameters and their assumed value(s) in both experiments in
this manuscript.

A sheep will be affected by the following behaviors:

1) The sheep will be repelled from any sheepdog that is
approaching;

2) A sheep will be attracted to the local center of mass of
its flock (cohesion);

3) A sheep will try to avoid colliding with other sheep;
4) A small jittering behaviour while grazing;
5) The sheep will also be affected by its previous direc-

tion; and
6) The sixth behaviour that we add to this model is the

obstacle avoidance behaviour, where the sheep repulse
away from obstacles with a stronger force than the force
they use to repulse away from each others to avoid
collision.

A sheep will try to escape from any sheepdog that exists
within a sheep to sheepdog detection range Rπβ. The repul-
sive force is regulated using function M1 presented in Equa-
tion 1, which regulates the collision avoidance forces between
any two objects according to the distance and speed ratio of
the two objects. In the case of the sheep trying to escape the
sheepdog, s is substituted with the ratio between the sheepdog
speed and the sheep speed, d is the distance between the
sheepdog and the sheep, rmax is the maximum distance that
a sheep can sense a sheepdog, and rmin is the minimum
separation distance that the sheepdog has to maintain to any
sheep.

M1(s, d, rmin, rmax) = s× e−2d/(rmax−rmin) (1)

FIGURE 1. Sheep influencing circles.

The cohesion force, F t
πi3t

πi
, toward the local center of

mass, is calculated based on the sheep that are sensed in the
neighborhood. Any sheep detected within a sensing range
Rsππ is considered as a neighboring sheep, and its location
will be part of the local center of mass calculated by that
sheep.

The collision avoidance force F tπiπi is a repulsion force
that is calculated as the cumulative sum of the regulated
forces away from any sheep within Raππ distance from this
sheep. The regulation of those individual forces is calculated
based on the distance between the two sheep. The regulation
function M2 is defined as 1

√
(N )

M1. The jittering force F tπiε
is a small random force across the two dimensions that will
affect the sheep location. It models the grazing when no other
forces are affecting the sheep direction. As the sheep changes
its direction, the previous heading direction will have some
force F t−1π i impacting the sheep direction.

If the sheep detects an obstacle withinRaπo, this sheepwill
be repelled from the obstacle in the same way that it avoids
sheepdogs, except that in the regulation function in Equa-
tion 1, the s parameter is set to the sheep agent speed due to the
static nature of the obstacles, and the maximum distance rmax
is defined by the obstacle detection range Raπo. The total
forces that affect the sheep’s next location is a cumulative
sum of the weighted forces of the individual forces discussed
earlier as in Equation 2.

F tπi = WπυF
t−1
πi
+Wπ3F tπi3t

πi

+WπβF tπiβj +WππF tπiπ i
+WeπiF

t
πiε
+WπoF tπio (2)

A sheepdog will be either collecting, driving, or approach-
ing its driving/collecting locations under a general mission of
herding the sheep toward a goal location. However, the driv-
ing and collecting points should be selected on the perimeter
of the middle circle shown in Figure 2. If the sheep are
clustered, the sheepdog will identify the driving location at
a distance R1 + R2 behind its local center of mass 3t

βj
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and pointing toward the goal. R1 is the maximum allowed
distance that a sheep can be located further away from the
sheepdog local center of mass and continues to be assumed
within the cluster. If the sheep goes beyond R1, then it needs
to be collected and returned to the group. If more than one
sheep were outside the area of the flock, then, the sheepdog
will identify the furthest sheep from the sheepdog’s local
center of mass, and set a collecting point behind that sheep
toward the 3t

βj
to herd the sheep back to the group. R2 is the

minimum separation distance the sheepdog needs to maintain
in order not to disturb the sheep. Therefore, if the sheepdog
is driving, it maintains R1 + R2 distance from 3t

βj
, which

indicates minimum separation from the furthest sheep of the
clustered flock. If the sheepdog is collecting, it maintains R2
separation distance from the most dispersed sheep from the
flock, which will induce a maximum herding force toward
that sheep. A small jittering force is applied to the sheepdog
to avoid deadlock situations.

The force toward either the collecting point or driving point
is identified as F tβjcd , and is calculated as the normalized
vector from the current sheepdog location toward that point.
The total force that affects the sheepdog at any time step is
calculated using Equation 3.

F tβj = F tβjcd +WeβjF
t
βjε

(3)

We consider the sheepdog as a repulsive agent, no plan-
ning/cognitive capabilities are assumed. However, a method
of circular path approach is enacted to minimise unnecessary
dispersion of the flock. To enable this, we constrain F tβj ’s
application to the sheepdog in the following manner:

• The sheepdog should approach its driving/collecting
points using a circle around the local center of mass,
which has a radius equals to the sum of R1, R2, and
R3. This sum represents the distance that ensures the
presence of the dog, as it approaches the collecting or
driving points, has no impact on the clustered sheep.

• The sheepdog is only allowed to enter that circle if it is
within a minimal distance of its target collecting/driving
point.

• If the sheepdog next position is trying to breach this
circle without being close to the target collection/driving
point, a correcting equation to the location is applied to
keep it at the boundary of the circle, with one step closer
to its target location.

fn defines the radius of the minimum circle that can be used
to accommodate all sheep. The sheep are considered clustered
if they are locatedwithin fn distance from the sheepdog global
center of mass. To calculate fn, we start by defining a circle
around each sheep with a radius of Raππ , representing the
collision avoidance range between two sheep. A square that
holds this circle will be of side length 2Raππ , and has an area
of (2Raππ )

2
= 4(Raππ )

2.
To allow the sheep some freedom to spread, we reserve

an area of 4(Raππ )
2 for a single sheep, whereby N sheep

occupy an area of 4N (Raππ )
2. The side length of this square

is 2Raππ
√
N , with a diagonal

√
2 of its side.

fn = Raππ
√
2N (4)

Therefore, fn is calculated using Equation 4, which pro-
vides a smaller circle than fn = RaππN

2
3 suggested in [9]. For

example, for N=100, and Raππ , fn using Equation 4 suggests
a radius of 28.28 compared to 43.09 used in Strömbom’s fn
equation. The new equation for fn has been validated to pro-
vide enough radius to accommodate N circles of radius Raππ
using data collected for the optimization problem of packing
equal circles in a circle for N values up to 2000 agent.1

The R2 parameter could be fixed to represent the mini-
mum separation distance between a sheepdog and a sheep.
The sheep to sheepdog escaping force is regulated using
M1(s, d,R2,R2+ R3) Equation 1. At R2 distance, the sheep
receives the highest repulsion force. At a distance of R2+R3,
the regulated repulsion force is very low.

During collecting behavior, the driving position is at dis-
tance R2 of the sheep, and will receive the maximum force.
However, during the driving behavior, the furthest sheep from
the global center of mass can be located at a distance to the
sheepdog greater than R2 + R3, for example, when it is at
the other side of the flock. To ensure that the sheepdog will
at least influence one sheep while driving, R2 + R3 must be
greater than R1+ R2; thus, R3� fn.

C. SUMMARY OF THE SIMILARITIES AND DIFFERENCES
TO Strömbom et al.’S MODEL
Our proposed model’s paramterisation was guided with the
parameters resultant from the calibration done by Ström-
bom et al. The similarities between our model and Ström-
bom’s model can be summarized in the following points:

1) Both models use attraction and repulsion forces to
model shepherding behaviour.

2) Both models consider the previous direction effect.
3) Attraction to neighbors, collision avoidance, and escap-

ing from sheepdogs are modelled in the same manner
in both models.

4) Both sheep and sheepdogs have jittering behaviour.
5) The two models share the same weights for the forces

shared between the two models.
The differences between ourmodel and Strömbom’smodel

can be summarized in the following points:
1) The sheepdog approaches the driving and collecting

locations via a circular path in our model rather than
a straight line in Strömbom’s.

2) In Strömbom’s model, if the sheep detect no sheepdog,
it maintains its previous location, no attraction to other
sheep or collision avoidance forces are applied. In our
model, the sheep will always be affected by all other
forces, the exception being force to escape (repulsion
from) a sheepdog, which in the absence of an influenc-
ing sheepdog is nil.

1http://www.packomania.com/
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FIGURE 2. Sheepdog operating circles.

3) In our model, the sheepdog operates using three cir-
cles: the first defines an imaginary boundary of radius
R1 around the sheep LCM. The second defines a
banned area that the sheepdog cannot enter to keep
the sheep grouped together. The radius of this circle is
R1+R2, where R2 is the minimum separation distance
between the sheepdog and any sheep. The third circle
defines the boundary of the area where the sheepdog
can operate beyond it without influencing any sheep.
The sheepdog uses this third circle boundary to reach
its driving and/or collecting points without influencing
any sheep. The radius of this circle is R1+R2+R3,
where R2+R3 defines a distance, where the sheepdog
has no influence on the sheep beyond it.

4) The function, F(N ) = RaππN
2
3 –used in Strömbom’s

to estimate if the sheep are grouped–was updated to
become a part of R1’s definition in our model. R1 =
Raππ
√
2N provides a smaller radius than F(N ), and will

yet accommodate N number of sheep within a circle.
In our model, R1 affects both driving and collecting
behaviors.

5) Driving and collecting positional equations were
updated to utilize the circles model.

6) In our model, sheep definition of the neighborhood is
based on sensing range, not on the closest n number
of sheep as in Strömbom’s model. This modification is
designed to reflect a robot’s limited sensing capabili-
ties.

7) In our model, two types of force regulations with col-
lision avoidance and escaping behaviors are used to
reflect the effect of the distance on the action. The
closer the sheepdog, the higher the escaping force.

D. PROPOSED MULTI-SheepDog SHEPHERDING
To evaluate the complexity of the multi-sheepdog shepherd-
ing problem, several decisions with respect to division of

labour and communication need to be made. We will start
first with the assumptions we made to reduce the number
of confounding factors that could impact our complexity
analysis.

1) COLLECTING
The task manager scans the locations for all the sheep, then
calculates its global center of mass 0t to identify whether or
not the sheep are grouped in a single cluster or not using a
radius �t

/∈0 .

�t
/∈0 = ∀πi ∈ 5, ‖0

t
− Ptπi‖ > f (N ) (5)

If�t
/∈0 6= ∅, then the task manager starts with the first sheep-

dog βj, and finds the closest sheep c in the out-of-flock set
�t
/∈0 to the sheepdog. It then allocates the task of collecting

the sheep identified in the previous step to this sheepdog.

πk = min‖Ptβj − P
t
πi
‖ : πi ∈ �

t
/∈0 (6)

roster(βj) = Collect(sheepID : πk ,GCM = 0t ) (7)

This allocation task is stored in a roster accessible by all
sheepdogs. Each row in this roster will have the sheepdog
ID, and the assigned task (either collecting or driving). When
a sheepdog looks up its ID in the roster table, and finds that
it is being assigned a collecting task, it looks for the relevant
collecting information in a shared collecting knowledge table.
In that table, the sheepdog will find the assigned sheep ID,
location, and GCM provided by the task manager. It then
derives its collecting position behind the sheep and toward
the GCM. Sheep πk gets removed from �t

/∈0 , and the task
manager repeats the same steps for the next sheepdog until
either �t

/∈0 = ∅, or all sheepdogs in the flock have been
assigned a collecting task.

2) DRIVING
The task manager starts from the next available sheepdog
after the collecting assignments have been assigned. If all
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sheepdogs are allocated a collecting task, the driving task
does not start. The sheepdogs assigned during driving will
make a formation using the following coding system. The
sheepdog in the center of the formation will be given the code
C . The one on its left will be called CL. The one on the left of
CL will be called CLL and so forth. The one on the right of
C is called CR. The coding continues with CRR, CRRR and
so forth.

The first available sheepdog in the list for driving becomes
the central sheepdog, C . The driving point for C is chosen
to be behind 0t , and facing the goal location. The distance is
defined based on the shepherding model selection.

roster(βj) = Drive(Role : ‘C’, P = Ptβj , GCM = 0
t ) (8)

Then, the next available sheepdog is assigned the task to
drive around a surface of a circle surrounding the 0t towards
theCL position relevant toC . The distance betweenCL andC
is a hyper-parameter. We select to use a driving arc of length
1
2π . Therefore, the angle that is used to calculate the location
of CL is calculated using 1

2M1
π , where M1 is the number of

driving sheepdogs remaining in the list (excludes all those
assigned to collecting tasks). The next sheepdog is assigned
the task of driving at CR on the right of C , and the allocation
process continues in the same way.

roster(βl) = Drive(Role : ‘CR’, P = Ptβl ,

GCM = 0t ,RefDog : ‘C’, DirectionRefDog = ‘R’) (9)

As every sheepdog has access to the roster, each sheepdog
can lookup its reference dog, and access its location as well.
Using information from Equation 9, a sheepdog βl identifies
the angle between its reference sheepdog and the global
center of mass using Equation 10, and its distance as well
using 11. It then calculates its own angle relevant to the
global center of mass using Equation 13 using the output from
Equations 11 and 12. Then, it can estimate its driving location
using Equation 14

θβj 0t = atan(Ptβj − 0
t ) (10)

R′βj 0t = ‖P
t
βj
− 0t‖ (11)

θdist =
1

2M1
π (12)

θβl 0t =

{
θβj 0t − θdist , DirectionRefDog = ‘L ′

θβj 0t + θdist , DirectionRefDog = ‘R′
(13)

Pt+1βlσd
= R′βj 0t cos(θβj 0t )+ 0

t .x,R′βj 0t sin(θβj 0t )+ 0
t .y

(14)

Using the design assumptions described above, sheepdogs
of lower IDs will have a higher chance to be allocated to
collecting tasks than driving ones. Those used for driving,
will have a higher chance to be at the center of the formation
than at either ends of the formation arc. Other strategies
could be adopted including shuffling of IDs, reordering of the
sheepdog list based on internal states such as energy/battery
level, and/or external states such as locations in the environ-
ment.

III. MATHEMATICAL METRICS OF TASK COMPLEXITY
Wood [2] identified three dimensions of task complexity. The
first two are static, i.e. they are invariant during the execution
of a task. These are component complexity, representing
the number of different information cues and acts that are
essential for the completion of the task, and coordinative
complexity, representing the relationships that exist between
the inputs to a task and the products. The third complexity
dimension is dynamic complexity, and measures the stability
of the relationships between products and task inputs.

In this paper, we focus on the latter dimension of complex-
ity. The task inputs are the independent influencing factors
that we manipulate to influence the complexity of a task. The
products are the actions performed by a sheepdog. Stability
is measured using two measures of performance.

We follow a similar philosophy to dynamiccomplexity [2]
and define task complexity as the change in a set of measures
of performance associated with a task when influencing fac-
tors that impact these measures change.

This definition suggests that complexity is in the eye of the
beholder, because it is the beholder who defines measures
of performance. The influencing factors could be internal to
the artificial agent/sheepdog or external. Internal ones reflect
the agent’s cognitive, behavioral and physical abilities such
as the speed of a sheepdog. External ones are related to
factors outside the agent’s control such as the initial spatial
distribution of sheep in the environment and the density of
sheep in the environment.

We use the time-to-herd as a measure of performance for
shepherding. The shorter the time it takes the sheepdog to
collect and drive all sheep to the goal location, the better.
Equation 15 represents this relationship, whereby T is the
total herding time, Tσi is the total time the sheepdog spent
while adopting behavior σi, and Tnatural is the time spent by
the sheepdog between behavior switching. The total time is
therefore calculated as:

T =
k∑
i=1

σi + Tnatural (15)

The complexity of shepherding is measured as the rate
of change in T due to a change in a non-trivial influencing
factor of the sheep and the environment. A factor is non-trivial
when it causes a nonlinear change in T . We consider the
initial distance between the sheep center of mass and the goal
location as a trivial factor due to the natural increase in T due
to a simple increase in this distance, which when everything
else is constant, will generate a linearly proportional increase
in T .
The first two factors investigated in this paper to impact the

complexity of the shepherding task are: the speed differential
and spatial distribution. The ratio between the speed of the
dog and the speed of the sheep is expected to impact the
completion time and success of herding. If the sheep is faster
than the dog, it is unlikely that the dog will be able to collect
the sheep unless the environment is so constrained and the
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sheepdog has the ability to plan how to ambush the sheep and
drive them to the goal. This case is not considered due to our
reliance on reactive agents.

This speed differential in the sheepdog-sheep relationship
impacts task performance. The influence of the sheepdog on
sheep M1 is multiplied by the speed differential Sβ

Sπ
; thus,

the magnitude of the influence vector the sheepdog exerts on
the sheep increases as the maximum allowed speed for the
dog increases.

The second factor is the spatial distribution of the sheep at
the start of the task/simulation, which is expected to influence
the complexity of completing the shepherding task success-
fully. We use the Index of Dispersion (I ) as a metric for
spatial distribution [31]. Describing this concept, consider
n circular quadrats are spread over an area according to a
uniform distribution. Assume each quadrat, i, has mi plants,
where m = {mi}i. If the plants were allocated to the quadrats
entirely at random, mi would be a random variable from a
Poisson distribution, where the mean E(m) equals the vari-
ance Var(m); that is, E(m) = Var(m). When this pattern
deviates from a random pattern, Var(m) > E(m). The Index
of Dispersion is calculated as

I =
Var(m)
E(m)

(16)

The Index of Dispersion evaluates the deviation of the
spatial distribution of objects according to some biased pat-
tern from the spatial distribution of these objects when
they get allocated in the environment completely at ran-
dom. To randomize the sheep in patterns, we use a method
inspired by [32], whereby the area the sheepwill be initialized
is divided into squares, where λ represents the density of
squares (the number of sheep that gets initialized in that
square), and µ is the sparsity of the squares.
In the second experiment, we study two influencing fac-

tors: the number of sheepdogs and the density of obstacles in
the environment.We use the same spatial distribution patterns
of sheep used in the first experiment.

In the remaining sections, we will present the design for
each experiment, results and discussion.

IV. EXPERIMENTAL DESIGN
A. SINGLE SHEEPDOG EXPERIMENTAL DESIGN
The number of sheep is fixed in these experiments to 100. The
sheepdog-sheep speed ratio is varied between 3 to 1 in a step
of 0.05. The sheep are initialized in a 10m×10m area divided
into 25 2m× 2m squares. The sheep get initialized using six
different patterns.

The first pattern allows the sheep to be randomly assigned
to any square in the initialization region. The second pattern
clusters the sheep in a highly dense area. The third Initializes
the sheep in a linear formation with gaps between clusters that
exceed their local sensing range. The fourth initializes the
sheep in a v-shape with the vertex of the ‘v’ pointing towards
the opposite direction of the goal, allowing it to align with
the driving point. The fifth is similar to the fourth except that

FIGURE 3. The six initialization regions with different spatial distribution.

FIGURE 4. Environment initialisation.

the vertex of the ‘v’ is pointing towards the goal, which could
cause the driving point to split the sheep. The sixth initializes
the sheep at the four corners of the initialization region. The
six initialization patterns are shown in Figure 3.
The environment’s size is 50m × 50m. The goal and ini-

tial sheepdog locations are fixed as shown in Figure 3. The
sheepdog starts behind the goal, in the opposite direction of
the region where the sheep gets initialized, to avoid any initial
impact from the dog on the sheep at the initialization stage.

The sheep radius for cohesion is 3m. This ensures that all
sheep initialized in the same 2m×2m cells are connected and
that any sheep at the edge is not connected to a sheep in other
cells when the neighboring cells are empty. The maximum
cell density in this environment occurs with initialization
region P6, where there are four cells available and on average
25 sheep to be initialized in each cell. We select the collision
radius to be 40cm to ensure sufficient spread in the area.
We set PG =< 25, 50 >; P0β =< 25, 47 >; Sπ = 1;

the Dog-To-Sheep-Speed-Ratio ∈ {1+ 0.05 k | k ∈ [0, 40]};
Sβ =Dog-To-Sheep-Speed-Ratio×Sπ ; and the initialization-
Region-Boundry= {xStart, yStart, 10, 10}. Each experiment
was repeated 30 times with different seeds.

B. MULTIPLE SHEEPDOG EXPERIMENTAL DESIGN
Sheep and sheepdogs are repulsed by obstacles (i.e. there is
an interaction with the obstacle), and as such, an increase
in obstacle density within the environment represents an
increase in the task complexity. We assume a sky shepherd-
ing based approach, that is a drone or similar system is
being used to herd the flock as per [17], [33]. Therefore,
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FIGURE 5. Comparison between Strömbom’s model and the proposed
model.

the sheep are affected by obstacles, however, the sky shep-
herd is not. The environment is of size 50 × 50 meters,
contains 100 sheep, and one to ten sky shepherds. Sheep
move at speed 1 m/s, and sheepdog at a maximum speed
1.5 m/s; thus, the sheepdog-to-sheep speed ratio is 1.5:1. In
this environment we instantiate a circular goal area of radius
of 10 meters centered midway along the south boundary of
the field. The sheepdog initialization area is centered 5meters
north of the goal spaced at 20 × 5 meters. Sheep are initial-
ized in a 10 × 10 meters area located in the middle of the
field, with the sheep dispersed in 6 different patterns as per
figure 4.

As before, the sheep initialization area is split into
25 squares of 2 × 2 meters numbered 1 to 25, left to right,
top down numbering. The same patterns used in the first
experiment for sheep initialization are maintained. Obstacles
have a radius of 1 unit and are spread uniformly in the
environment with a systematically varied density from 0 to
10% in increments of 0.2%.

FIGURE 6. The dispersion index distribution in different environments.

Clearly the existence of obstacles is expected to increase
the number of steps it will take to herd the sheep due to the
need to navigate through longer routes and the difficulties to
maintain the flock when the sheep go around obstacles due
to the repulsive collision avoidance force and the cascading
effect this has on the flock. A maximum simulation duration
of 8000 time-steps was deemed appropriate via empirical
analysis. The simulation is repeated 30 times for each con-
figuration with different seeds. The parameters used in the
simulation are summarized in Table 2.

V. EXPERIMENTAL ANALYSIS
A. COMPARING PROPOSED AND Strömbom’s MODELS
An evaluation for the performance of Strömbom’s model
compared to the enhancements proposed in the new model
was performed. We compared the completion time of the
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FIGURE 7. Footprint of the sheepdog and sheep in different environments and speed differentials.

two algorithms using the same configuration discussed in
the experimental analysis. We limited the comparison to a
single speed differential ratio of 1.25, and a single spatial
distribution ‘‘P1’’. We varied the number of sheep agents
from 10 to 100 in a step of 10, and investigated two different
values for the sheep’s neighborhood in Strömbom’s model:
1
2N , and 3

4N .
Figures 5a and 5b were obtained using 30 runs per

each combination. It is demonstrated that the new model
outperforms Strömbom’s model. The proposed model was
able to complete all the tasks in less than 200 steps.
On the other hand, Strömbom’s model failed to complete

the tasks in most of the runs up to 2000 steps as shown
in figure 5b.

B. SINGLE SHEEPDOG COMPLEXITY
Due to the limitations of Strömbom’s model shown earlier,
we continued the analysis with the proposed model. The
average completion time over 30 runs ranged from 100 to
350 at sheepdog-to-sheep speed ratio of 1, and from 59 to
129 at a ratio of 3. We fit a linear and a parabolic function,
as follows:

y1 = a1× x + a2

y2 = a3× (x − a4)2 + a5
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FIGURE 8. Success rate Vs obstacle density.

TABLE 3. Root Mean Square Error (RMSE) and parameters for the linear
and parabolic curves in each environment.

where y1 is the linearly predicted average completion time, y2
is the quadratic predicted average completion time, and x is
the sheepdog-sheep-ratio. The parameters of the two equa-
tions for each of the six environments are shown in Table 3.
The quadratic fit consistently yielded a better root mean
square error (RMSE) compared to the linear fit.

The effect of the spatial distribution of the sheep at the time
of initialization is apparent from the fitted functions. The first
three environments P1 to P3 have similar coefficients. The
last three have significantly different larger coefficients, and
larger intercepts.

The effect of the spatial distributions on completion time
is bipolar, where the first three scenarios display lower aver-
age and variance of the completion time over the 30 runs.
Figure 6a shows a boxplot of the dispersion index over
all sheep. When we zoom on the top 25% and 5% in
Figures 6b and 6c, respectively, the differences between P2,
on the one hand, and P1 and P3, on the other hand, becomes
apparent. The high density initialization of the sheep in P2
shows smaller dispersion over the whole run; thus, it indi-
cates that the movements of the sheepdog did not cause the
sheep to disperse, and instead, maintained their grouping
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FIGURE 9. Completion time and success rate under Pattern 1 spatial
distribution.

together due to the simple circular path design we have
adopted.

To understand the phenotypic characteristics of the tra-
jectories taken by the sheep and sheepdog, a sample of the
simulations spanning different sheepdog-to-sheep speed ratio
and spatial distributions at the initialization phase are dis-
played in Figures 7a to 7f. The trajectories of the sheepdog
become much wider when the initialization of the sheep is
sparse. We also found differences in these footpaths when the
speed varies in the same environments. These differences are
negligible in the first three environments, and become more
significant in the last three.

C. MULTIPLE SHEEPDOG COMPLEXITY
Figure 8 shows the success rate versus obstacle density for
1 to 10 sheepdogs for the 6 different sheep initialization

TABLE 4. Thresholds for obstacle densities to achieve targeted success
rates per number of sky shepherds.

patterns. Varying the initialization of sheep location/
distribution makes little difference to the success rate, but
some general trends are evident.

Firstly, an increase in obstacle density increases the com-
plexity of the task as demonstrated by the decline in success
rate. Secondly, an increase in the number of dogs improves
the success rate in most cases. The interaction of these two
influencing factors is also visible in the graphs. For instance,
in Figure 8a, it can be seen that the maximum density above
which all 30 runswere unsuccessful was 3.4% for 1 sheepdog,
6.8% for 2 sheepdogs, 7.6% for 3 sheepdogs and 9% for
4 sheepdogs. Five Sheepdogs failed in all 30 trials at a density
of 9.6% and 6 or more sheepdogs had success in 1 or more
trials for all object densities between 0 and 0.1.

Continuing our analysis of the individual graphs
in Figure 8, one can observe that if linear lines of best
fit are used to represent the data, the gradients tend to
decrease for all initialization patterns, as the number of sheep-
dogs increases. This indicates that an increase in resources
is appropriate to tackle the rise in problem complexity
offered by increasing obstacle density. Analysing completion
time, Figure 9a shows that if an average completion time
of 2000 steps is required, this can be met by 10 sheepdogs
in environment densities of up to ≈7%, whilst five and one
dog(s) achieve this completion time for obstacle densities of
less than ≈3% and ≈1.0% respectively. This gain in per-
formance provides an interesting trade-off between the cost
of resources (number of sheepdogs) and the corresponding
benefits gleaned (higher success rates).

Inspecting the results for initial sheep distribution, Pattern
P1 in Figure 9a, it is noticed that there is a phase transition
in the gradient of the plots for 1-3 and 8-10 shepherds at an
obstacle density of≈0.04. If one considers splitting the graph
(and its associated data) at this point and provide a piece-wise
linear fit comprising two lines, one for the obstacle density in
the interval [0,0.04], and the second for obstacle densities in
the interval (0.04,1], we can see that for the region [0,0.04]
where the problem is solvable independent of the number of
sheepdogs, the gradients decrease as the number of sheepdogs
increase. Within the obstacle density range range (0.04,1],
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this is again true where the problem is solvable, namely for
4 or more sheepdogs. Given the linear nature of these graphs,
this suggests that the use of additional sheepdogs overcomes
the increase in complexity due to an increase in obstacle
density. However, we note that there is a diminishing return
on the addition of sheepdogs; we contend this is, in part,
brought about by their interaction with the obstacles. The
phase transition does not occur due to change in number of
sheepdogs alone. Due to lack of coordination and planning
mechanisms among the agents who are moving in a reactive
manner, the increase in obstacle densities cause the sheepdogs
to disconnect and potentially work in conflict to each other.

VI. CONCLUSION AND FUTURE WORK
In this work, we identified influencing factors that impact the
complexity of the swarm guidance problem using a shepherd-
ing approach. In the case of a single shepherd, we examined
the relationship between the relative speed of the sheepdog
to the sheep and the spatial density of the sheep during ini-
tialization. Both influencing factors were found to compound
the task complexity as indicated by a decline in success rate.
We further extended the analysis to study the interaction
between the number of sheepdogs and the density of obstacles
in the environment. The analysis revealed a phase transition
as we move from a lower number of sheepdogs (< 4) to
a larger number of sheepdogs (≥ 4) and as the density
of obstacles increased. The phase transition is specifically
caused by the interaction between the number of sheepdogs
and density of obstacles in the environment; it is not solely
due to a change in the number of sheepdogs used. Due to lack
of coordination and planning mechanisms among the agent
who are moving in a reactive manner, the increase in obstacle
densities cause the sheepdogs to disconnect and potentially
work in conflict to each other. These findings suggest that
the complexity for the swarm guidance task increases as the
(1) the relative speed of the sheepdog to the sheep decreases;
(2) the dispersion of sheep at the start of the task increases;
(3) the number of sheepdogs decreases; and (4) the density of
obstacles in the environment increases.

We found a linear relationship between the completion
time and an increase in obstacle density, and noted comple-
tion time growth reducing with the introduction of additional
sheepdogs. We, therefore, conclude that the use of additional
sheepdogs overcomes the increase in complexity due to the
rise in obstacle density.

With the work in this study presuming a specific sheepdog
formation, future work will examine the benefit of optimising
sheepdog placement dynamically to create adaptive forma-
tions in the hope of better tackling the complexity inherent
in the shepherding problem. We will also explore federated
learning as a mechanism to allow privacy in the exchange of
positional information for the sheep [34], [35].
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